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Abstract. While the leukocyte integrin lymphocyte 
function-associated antigen (LFA)-I has been demon- 
strated to bind intercellular adhesion molecule 
(ICAM)-I, results with the related Mac-1 molecule 
have been controversial. We have used multiple cell 
binding assays, purified Mac-1 and ICAM-1, and cell 
lines transfected with Mac-1 and ICAM-1 cDNAs to 
examine the interaction of ICAM-1 with Mac-1. Stimu- 
lated human umbilical vein endothelial cells (HUVECs), 
which express a high surface density of ICAM-1, bind 
to immunoaffinity-purified Mac-1 adsorbed to artificial 
substrates in a manner that is inhibited by mAbs to 
Mac-1 and ICAM-1. Transfected murine L cells or 
monkey COS cells expressing human ICAM-1 bind to 
purified Mac-1 in a specific and dose-dependent man- 
ner; the attachment to Mac-1 is more temperature sen- 

sitive, lower in avidity, and blocked by a different se- 
ries of ICAM-1 mAbs when compared to LFA-1. In a 
reciprocal assay, COS cells cotransfected with the o~ 
and/3 chain cDNAs of Mac-1 or LFA-1 attach to im- 
munoaffinity-purified ICAM-1 substrates; this adhesion 
is blocked by mAbs to ICAM-1 and Mac-1 or LFA-1. 
Two color fluorescence cell conjugate experiments 
show that neutrophils stimulated with fMLP bind to 
HUVEC stimulated with lipopolysaccharide for 24 h 
in an ICAM-I-, Mac-l-, and LFA-l-dependent fashion. 
Because cellular and purified Mac-1 interact with cel- 
lular and purified ICAM-1, we conclude that ICAM-1 
is a counter receptor for Mac-1 and that this receptor 
pair is responsible, in part, for the adhesion between 
stimulated neutrophils and stimulated endothelial cells. 

Primary event in the immune system's response to 
infectious agents is the recruitment of circulating 
neutrophils to the inflammatory site. Adhesion to 

the endothelium is the prerequisite physical step for extrava- 
sation to the peripheral site of injury. Neutrophil localization 
has been examined on a molecular level to define both the 
sequence of events that promotes neutrophil exit from the 
bloodstream and the cognate proteins on the surface of neu- 
trophils and the endothelial cells that coordinate this inter- 
action. 

The CDll/CDI8 family defines three high molecular 
weight, cell surface heterodimeric glycoproteins that have a 
broad distribution on leukocytes (53). This family, known 
as the leukocyte integrins, consists of lymphocyte function- 
associated antigen (LFA)1-1 (CDlla/CD18; ot 175,000 Mr), 
Macq (CDllb/CD18; ct 160,000 Mr), and p150,95 (CDllc/ 
CD18; ot 150,000 Mr); the three proteins share a common 13 
(CD18) chain (95,000 Mr) that is noncovalently associated 
with each unique a chain. These proteins are critical for 
adhesive functions in the immune system (29): mAbs to 
LFA-I block leukocyte adhesion to endothelial cells (16, 56) 

1. Abbt~oviations used in this paper: fMLR formyl methionine-leucine- 
phenylalanine; HE, hydroethidine; HSA, human serum albumin; HUVEC, 
human umbilical vein endothelial cell; ICAM, intercellular adhesion mole- 
cule; IL, interleukin; LFA, lymphocyte function-associated antigen; SFDA, 
sulfofluorescein &acetate; TEA, triethylamine. 

and inhibit conjugate formation that is required for antigen- 
specific cytotoxic T cell killing (29), T cell proliferation 
(14), and natural killer cell killing (30); mAbs to Mac-1 
block binding of iC3b-coated particles (9), myeloid cell ad- 
hesion to endothelial cells (34, 56), neutrophil homotypic 
aggregation, and chemotaxis (3); mAbs to p150,95 block 
monocyte adhesion to endothelial cells (3, 25) and CTL con- 
jugate formation with target cells (24). The importance of 
the leukocyte integrins was confirmed by the discovery of a 
clinical syndrome, leukocyte adhesion deficiency, that is 
characterized by a congenital deficiency or absence of the 
common 13 chain and presents with diminished pus forma- 
tion, abnormal wound healing, and grave susceptibility to 
pyogenic infections (1, 2, 4) as well as abnormalities of 
adhesion-dependent leukocyte functions in vitro (1, 62). The 
CDll/CD18 family is related structurally and genetically to 
the larger integrin family of surface receptors that moderate 
embryogenesis, adhesion to extracellular substrates, and cell 
differentiation (23, 28, 29, 51). 

Although mAb blocking studies have demonstrated con- 
vincingly a role for Mac-1 in neutrophll adhesion to both 
unstimulated and cytokine-stimulated endothelial cells (33, 
34, 36, 56), the identification of the counter-receptor(s) on 
the endothelial cell surface remains less certain. Two candi- 
date ligands for Mac-1 are intercellular adhesion molecule 
(ICAM)-I and ICAM-2, adhesion molecules that were ofigi- 
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nally defined as counter-receptors for LFA-1 (41, 54, 58, 59). 
ICAM-1 is a 90,000-110,000 M, glycoprotein with a low 
RNA message level and moderate surface expression on 
unstimulated endothelial cells; lipopolysaccharide (LPS), 
interleukin (IL)-I, and rumor necrosis factor ot strongly up- 
regulate ICAM-1 mRNA and surface expression with peak 
expression at ~18-24 h (16, 58). LFA-I-ICAM-1 interaction 
is responsible partially for lymphocyte (16, 42), monocyte 
(5, 43, 61), and neutrophil (34, 56) adhesion to endothelial 
cells. ICAM-2 is a 55,000 M, glycoprotein with high mRNA 
level (59) and surface expression (A. de Fougerolles and 
T. Springer, manuscript in preparation) in both unstimulated 
and stimulated endothelial cells. Unstimulated endothelial 
cells bind purified LFA-1 in a manner that is inhibited by a 
combination of ICAM-1 and ICAM-2 mAbs (A. de Fouger- 
olles and T. Springer, manuscript in preparation). 

Recent studies (55, 56) by one group suggest that LFA-1 
and Mac-1 cooperate in neutrophil adherence to endothelial 
cells; unstimulated neutrophils bind primarily through sur- 
face LFA-1 while formyl methionine-leucine-phenylalanine 
(fMLP) activated neutrophils attach mostly through Mac-1. 
Mac-1 and LFA-1 both may be interacting with ICAM-1 since 
a mAb to ICAM-1 thoroughly blocks CD18-dependent, 
fMLP-stimulated neutrophil adhesion to unstimulated en- 
dothelial cells (55). Because mAbs to LFA-1 and Mac-1 also 
abrogate neutrophil attachment to planar membranes con- 
taining ICAM-1 (56), this group concludes that neutrophil 
adhesion to endothelial cells is partially ICAM-1-LFA-1- and 
ICAM-1-Mac-I-dependent. In contrast, a second group re- 
ports (34) that when phorbol ester-stimulated neutrophils 
adhere to unstimulated endothelial cells, while both Mac-1 
and LFA-1 are involved, only LFA-1 interacts with ICAM-1. 
In addition, they find that when macrophages are plated on 
ICAM-1 substrates, only LFA-1 is down-modulated from the 
apical portion of the cell surface. This group concludes that 
Mac-1 does not bind ICAM-1, but rather, it interacts with an 
uncharacterized endothelial cell surface receptor. 

To resolve this paradox, we use immunoaflinity-purified 
Mac-1 and ICAM-1, and transfected cells expressing ICAM-1, 
Mac-l, and LFA-1, to show in reciprocal adhesion studies 
that ICAM-1 is a counter receptor, not only for LFA-1, but 
also for Mac-1. Cell-cell binding studies demonstrate that 
neutrophil Mac-1 interacts with ICAM-1 expressed on hu- 
man umbilical vein endothelial cells (HUVECs). These find- 
ings also suggest that Mac-1 interacts with at least one addi- 
tional cellular ligand, besides ICAM-1, on the surface of 
endothelial cells. 

Materials and Methods 

mAbs 

The following murine mAbs against human antigens were from ascites: 
LPM19c (anti~CDllb, IgG2a, gift of Dr. K. Poldman, Oxford) (63), W6/32 
(anti-HLA A, B, C, IgG2a) (7), TS1/22 (anti-CDlla, lgGl) (52), YFC51.1 
(anti-CDl8, rat IgG2b, gift of Dr. H. Waldmann, Cambridge) (63), 
CBRIC2/I and CBRIC2/2 (anti-ICAM-2, IgG2a; A. de Fongerolles and T. 
Springer, manuscript in preparation), and TS2/16 (anti-CD29, IgG1) (52). 
The following ICAM-1 mAbs were used as purified IgG: CL203 (37) (gift 
of Dr. S. Fermne), LB-2 (12) (giR of Dr. E. Clark), and 84H10 (38). RRU1 
FOlY2 (IgG1) (50) were prepared by pepsin digestion after Protein A affinity 
chromatography (48). R6.5 (IgG2a) (55) IgG and Fab were a generous gift 
of Dr. R. Rotlflein, Boehringer lngelheim (Ridgefleld, CT). CBRIC1/I, 
CBRIC1/2, CBRIC1/3, CBRIC1/4 (anti-ICAM-1 mAb, S. Stacker and T. 

Springer, manuscript in preparation), M1/42 (anti-H-2, rat IgG2a) (57), and 
X63 (nonbinding antibody, IgGl) were used as tissue culture supernatants. 
For inhibition assays ascites were used at 1:400 dilutions, purified IgG were 
used at 20-25 #g/ml, FalY2 were used at 20 #g/ml, Fab were used at 50 
#g/mi, and tissue culture supernatants were used at 1:2. In inhibition experi- 
ments, the difference between our binding mAb and media controls was 
<30%. Protein A-purified TS1/18 (anti-CDlS, IgG1) (52) and LM2/1 (anti- 
CDllb, IgG1) (44) were iodinated and used for site density measurements 
as described (17); TSI/18 recognizes only the intact a/13 beterodimer. 

Protein Purification 
Mac-1 is purified from leukocyte lysates by a modification of a previous pro- 
cedure (17, 46). Briefly, to obtain 500/~g of the purified functional heterodi- 
mer, 10 g of frozen peripheral blood leukocytes are solubilized in 200 ml 
of lysis buffer (100 mM Tris-HC1, pH 8.0, 150 mM NaC1, 2 mM MgClz, 
1% Triton X-100, 5 mM iodoacetamide, 0.025% NAN3, 1 mM PMSF, 
1 mM diisopropylfluorophosphate, 0.2 TIU/mi Aprotinin) for 1 h at 4°C 
while stirring gently. The resultant lysate is centrifuged at 10,000 g for 2 h 
at 4°C; the supernatant is decanted and then ultracentrifuged at 100,000 g 
(Ti45; Beckman Instruments, Inc., Palo Alto, CA) for 1 h. The clarified 
lysate is precleared with human IgG coupled to Sepharose CL-4B; 40 #1 
of a 1:1 slurry of lgG-Sepharose is added per mi of lysate and rotated over- 
night at 4°C. The Sepharose is pelleted and the precleared lysate is then 
passed over an LM2/1 (anti-CD1 lb; IgG1) immunoaflinity column (bed vol- 
ume 6 mi, 3 mg/mi of LM2/I) that is prepared by attaching protein 
A-purified LM2/1 to cyanogen bromide-activated Sepharose (40). The 
column is preequilibrated with 10 bed volumes of 50 mM Tris-HCl, pH 8.0, 
150 mM NaCI, 2 mM MgC12, 0.1% Triton X-100, the precleared lysate is 
loaded at 10 mi/h. The column is sequentially washed at 20 mi/h with 10 
bed volumes of 50 mM Tris-HC1, pH 8.0, 150 mM NaC1, 2 mM MgCI2, 
0.1% Triton X-100, and then 10 bed volumes of 50 mM Tris-HC1, pH 8.0, 
150 mM NaC1, 2 mM MgC12, 1% n-octyl ~-v-glucopyranoside. Mac-I is 
eluted with 5 bed volumes of 50 mM triethylamine (TEA), pH 10.0, 300 
mM NaCI, 2 mM MgCI2, I% n-octyl ~-D-glucopyranoside into tubes with 
neutralizing buffer (10% by volume I M Tcis-HCl, pH 7.4). The peak frac- 
tions are pooled, aliquoted, and stored at -80°C for 3-6 mp without loss 
of activity. 

LFA-I is purified by immunoaffinity chromatography as described previ- 
ously (17) except peripheral blood leukocyte lysates were substituted. 
ICAM-1 is purified by immunoaffinity chromatography as described previ- 
ously (41). 

SDS-PAGE 
Protein samples are run on reducing (5% ~-mercaptoethanol) SDS 7-10% 
polyacrylamide gels (31) and silver stained (47). 

Tissue Culture, Transfection, and Cell Preparation 
COS cells are grown on 10- or 15-cm tissue culture-treated plates (Falcon 
Labware, Oxnard, CA) in RPMI 1640 with 10% FCS, 5 w_M glutamine, 
and 50 #g/ml gentamycin. Cells are transfected at '~50-60% confluency in 
10-cm plates with 4-6 #g of CsCi-purified (39) ICAM-1 eDNA (60) or 
cotransfected with 6 #g Mac-1 a or LFA c~ plus 6 #g ~ eDNA (21, 32) by 
the DEAE-Dextran method for 4 h at 37°C (6, 26). After 72 h cells are 
eluted from the tissue culture plates before functional assays with PBS, 
5 mM EDTA at 37°C for 5 min. 

ICAM-1 + L cell stables are generated as described (ll). Briefly, murine 
L cells (thymidine kinase [tK]-) are seeded onto 6-cm tissue culture 
dishes and grown to 10-20% confluency over 2 d. ICAM-1 cDNA in the 
plasrnid CDM8 (60) (10 #g) and plasmid containing a thymidine kinase se- 
lection marker (100 ng) are mixed with 0.2 mi CaCI2 and 0.2 mi of 50 mM 
N-,N-bis-2-amino-ethanesulfonic acid, 280 mM NaC1, 1.5 mM Na2HPO4, 
pH 6.95, and incubated at room temperature for 10-20 min. The calcium 
phosphate-DNA solution (0.4 mi) is added dropwise to the plated cells and 
incubated at 35°C in a 3% CO2 incubator. 24 h later, the cells are washed 
with regular DME media and grown at 37°C in a 5% CO2 incubator until 
day 3 when HAT (100/~M hypoxanthine, 400 nM aminopterin, 16 #M 
thyrnidine) selection is initiated. Cells with high ICAM-1 expression are 
identified by flow cytometry after single colony picks with a cloning cylin- 
der. ICAM-1 + L cells are maintained in a selection media that consists of 
DME with 10% heat inactivated FCS, 5 mM glutamine, 50 ttg/ml gentamy- 
cin, and supplemented with HAT. Untransfected L cells are maintained in 
DME without HAT. 
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HLrVECs are cultured to low passage number (2-5) on tissue culture 
plates precoated with fibronectin (50 ~g/ml) in M199 media supplemented 
with 20% heat-inactivated FCS, 100/~g/ml heparin, 100/~g/ml endothelial 
cell growth factor, 10 mM HEPES, pH 7.3, 5 mM glutamine, and 50 ttg/ml 
gentamyein (16). LPS treatment is performed by adding 1 ~g/ml of E. coli 
lipopolysaccharide (endotoxin) 24 h before harvesting of cells. Cytokine 
stimulation is performed by addition of 5 U/ml of rlL-115 (Genzyme, Cam- 
bridge, MA). To elute HUVEC for the two color fluorescence studies, cells 
are treated with PBS, 5 mM EIYI'A at 370C for 5-10 rain. 

Neutrophils are isolated from the whole blood of healthy volunteers by 
dextran sedimentation, Ficoll gradient centrifugation, and hypotonic lysis 
(19). Before experimental manipulation, neutrophils are stored at room 
temperature in HBSS, 10 mM HEPES, pH 7.3, 0.5 % human serum albumin 
(HBSS/HSA). 

Cell Conjugation Experiments 
The dual fluorescence cell conjugate assay is performed by a modification 
of a published protocol (35). Briefly, l0 s neutrophils are washed twice in 
HBSS/HSA, resuspended in I0 ml of a filtered (0.2 Ixm) solution of 40 itg/ml 
hydroethidine (HE; Folysciences, Inc., Warrington, PA) in HSA, and in- 
cubated for 35 rain at 370C while rocking gently. HUVECs (2 x 107) are 
eluted from T-150-cm 2 flasks with PBS, 5 mM EDTA, washed thrice in 
RPMI 1640, 20 mM HEPES pH 7.3, 5% heat inactivated FCS, resuspended 
in 10 ml ofa 200-ttM solution of sulfofluorescein diaeetate (SFDA, Molecu- 
lar Probes, Eugene, OR), and incubated also for 30 rain at 37°C. Subse- 
quently, cells are washed four times in RPMI 1640, 10 mM Hepes, pH 7.3, 
0.5% HSA, 5% heat-inactivated human serum and resuspended as follows: 
neutrophils, 1 x 107 cells/ml; and HUVEC, 2 x 106 cells/ml. The assay 
is performed in the presence of heat-inactivated human serum (5%) to pre- 
vent Fc receptor cross-linking with the mAbs. The appropriate antibodies 
are added to both cell types and preineubated for 25 rain at room tempera- 
ture. Neutrophils (150 tzl) and HUVECs (250 ttl) are added to a 24-well 
plate (Falcon Labware) and the following experimental protocol is used (all 
incubations are at 37°C while shaking at 75 rpm on a gyratory shaker [New 
Brunswick Scientific Co. Inc., Edison, NJ]): 5 rain preincubation, 1 x 
10 -7 M fMLP addition, 10 rain incubation. Conjugates are recovered after 
pipetting the solution thrice (small aggregates may settle) and quantitated 
as the percentage of HUVEC found in two color conjugates by flow cytome- 
try with either an EPICS V (Coulter Electronics Inc., Hialeah, FL) or a 
FACScan (Bectun Dickinson and Company, Paramus, N J). 

Cell Binding to Purified Proteins 
Purified Mac-I, LFA-1, and ICAM-1 are diluted from 1/8-1/120 depending 
on protein content (judged by SDS-PAGE and RIA; 17) in 20 mM Tris-HCl, 
pH 7.4, 150 mM NaC1, 2 mM MgCI2 with an octyl glucoside detergent 
concentration ranging from 0.1% to 0.01% and plated over the entire surface 
of 35-ram Petri dishes, as a 40-~1 demarcated spot on 60-ram Petri dishes, 
or in 50/~1 for each well of 96-well plates (Linbro-Titertek Flow Labs, 
McLean, VA) for 90 rain at room temperature (59). Plates and dishes are 
blocked subsequently by three washes with and subsequent incubation in 
PBS, 2 mM M8C12, 0.5% HSA (PBSMI-I) for 2 h at 37"C. For the COS 
cell adhesion assay to Mac-l, lower site densities of Mac-1 (<500 
sites/~m 2) were used to avoid a background cell binding that is due to the 
expression of an endogenous ligand for Mac-1 on the COS cell surface 
(M. Diamond and 1". Springer, unpublished observations); this site density 
allowed ICAM-1 expressing COS cells to adhere but did not sustain binding 
of vector alone transfected COS cells. 

For the 96-well plate assay, unstimulated, 18-h IL-lfl or 24-h LPS- 
stimulated HUVECs are eluted from tissue culture plates with PBS, 5 mM 
EDTA, washed twice in HBSS/HSA, resuspended to 106 eells/ml, labeled 
with 50 itCilml 51Cr for 1 h at 37*C, washed twice in HBSS/HSA, twice 
in PBSMH and 0.2% glucose, and along with the Mac-l-treated plates are 
preincubated for 25 rain at room temperature with appropriate antibodies. 
HUVECs (50/~1 of 106 cells/ml) are added to each well and the binding as- 
say is performed at room temperature for 1 h. Unbound cells are removed 
by a high stringency aspiration wash procedure that uses a 26 gauge needle 
(17). Bound cells are eluted with 0.2 M NaOH or PBS, 25 mM EDTA, and 
quantitated by 3' emission. The same protocol is used with L cells except 
that RPMI, 20 mM HEPES, pH 7.3, 5% FCS, 0.1% HSA is substituted as 
the binding buffer, the cells are centrifuged at 300 rpm for 5 rain onto Mac-I 
substrates, the incubation is performed at 37°C, and only two aspiration 
washes are required. 

For the 35- and 60-ram Petri dish assays, transfected COS cells or L cells 

are eluted from tissue culture plates with PBS, 5 mM EI3q'A or RPMI,, 10 
mM EDTA. COS cells are washed twice in HBSS/HSA, resuspended in 
HBSS/HSA to 8 × 105 cells/ml, and labeled with 50 t~Ci/ml 5tCr for 1 h. 
Excess label is washed out and the COS cells are resuspended to 8 × 
105/ml in PBS, 1.5 mM MgCI2, 0.5 mM CaC12, 0.2% glucose, 0.5% HSA 
or 20 mM Tris-HC1, pH 7.3, 150 mM NaCl, 1.5 mM MgC12, 0.25 mM 
MnCI2, 0.2% glucose, 0.5% HSA. Cells are preineubated with appropriate 
antibodies for 30 rain at room temperature, added to Petri dishes, and in- 
cubated for 50 rain at 37°C. Unbound COS or L cells are removed by three 
successive washes with I ml of binding buffer that is added and then swirled 
gently across the plate. With COS cell experiments, after washing, the plates 
are inspected visually for bound cells, assessed qualitatively, and the adher- 
ent population is eluted with 1 ml PBS, 25 mM EI)TA (15 rain at 37*C) 
and qnantitated by 3' emission. For L cell experiments~ after washing, bound 
ceils are qnantitated by visually scoring the number of cells in four to five 
high power light microscope fields for each experimental point. This num- 
ber is divided into the input number of cells per field to obtain the percent- 
age of cells binding. 

Flow Cytometry 
0.5-1.0 x 105 cells in 50 t~l in HBSS/HSA are added to V-bottom microti- 
ter plates containing 50/~1 of antibody supernatants or 50 ~tl of a 1/200 dilu- 
tion of antibody ascites. The plate is sealed with tape and shaken on a Dy- 
natech plate shaker for 45 rain at 4"C. Cells are pelleted (2,000 rpm, 2 rain, 
4"C) and washed thrice (150 ttl) with HBSS/HSA, and re.suspended in 100 
td of a 1/20 dilution of purified FITC-conjngated goat anti-mouse IgG light 
and heavy chain antisera (Zymed, CA) in HBSS/HSA. The plate is resealed, 
and shaken for 30 rain at 40C. Ceils are washed twice in HSA, once in PBS 
5% FCS, and resuspended in 200/zl of PBS, 2.5% FCS, 1% paraformalde- 
hyde. The samples are analyzed on an EPICS V flow cytometer. 

Reagents 
All chemical reagents were of highest grade and purchased from Sigma 
Chemical Co. (St. Louis, MO) except the.following: rIL-1t5 (Genzyme), HE 
(Folysciences, Inc.), SFDA (Molecular Probes), Na251CrO,t and Na125I 
(Amersham Corp., Arlington Heights, IL), Dextran-500 (Pharmacia, 
Sweden), FCS (Flow Laboratories, Inc., McLean, VA or JR Scientific, 
Woodland, CA), endothelial cell growth factor (Chemicon International, 
Los Angeles, CA), HSA (Alpha Corporation, Los Angeles, CA), FITC goat 
antimouse Ab (Zymed, San Francisco, CA), Protein A (Pharmacia), Iodo- 
ten (Pierce Chemical Co., Rockford, IL), Triton X-100 (DuFont, Wilming- 
ton, DE), CsCI (BRL, Bethesda, MD), hypoxanthine (Gibeo Laboratories, 
Grand Island, NY). 

Results 

Adhesion of Mac-1 and LFA-1 Transfectants to 
Purified ICAM-1 
Previous studies (56) which suggest that Mac-1 on neutro- 
phils binds to ICAM-1 are complicated by the presence of 
multiple adhesion receptors on neutrophils, e.g., neutrophils 
express significant quantities of both LFA-1 and Mac-1. We 
utilized a purified protein-transfectant cell binding assay 
where each of the ligand pairs could be examined indepen- 
dently for adhesion (32). COS cells cotransfected with the 
cDNAs for the common 13 subunit and either the Mac-1 or 
LFA-1 ot subunit were assayed for binding to purified ICAM-1 
coated on a plastic substrate. Surface expression averaged 
30% for Mac-1 and 40% for LFA-1 as determined by immuno- 
flUOrescence flow cytometry (Fig. 1 B). Transfected COS 
cells expressing Mac-1 and LFA-1 bind purified ICAM-1 (Fig. 
1 A), while cells transfected with the/3 chain alone do not 
bind (data not shown; 32). Adhesion is specific as mAbs to 
LFA-1, Mac-I, and ICAM-1 inhibit attachment, whereas a 
control mAb that binds the monkey homologue of CD29 does 
not inhibit. The adhesion of Mac-1 transfectants is weaker 
(44 % binding compared to 75 % for LFA-1 transfectants) and 
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Figure I. Adhesion of LFA-1 
and Mac-1 COS cell transfec- 
tants to purified ICAM-1. 
COS cells cotransfected with 
cDNAs of LFA-1 or Mac-1 ot 
chains and the common /~ 
chain are labeled with stCr 
and then both the ceils and the 
ICAM-l-coated substrates are 
pretreated with the following 
mAbs: control (TS2/16), LFA-1 
(TSl/22), Mac-1 CLPM19c), 
and ICAM-1 (a mixture of P.dS.5 
and RR1/1). Subsequently, the 
cells are allowed to settle on 
ICAM-l-coated 35-ram Petri 
dishes for 1 h at 37"C. Plates 
are washed four times by pipet- 
ting and bound ceils are re- 
moved and quantitated for 

COS Cell Transfectant gamma emission. The data is 
normalized for surface ex- 

pression by dividing the percentage of bound cells by the percentage of positive cells. Without normalization COS cells transfected with 
the # chain alone, Mac-l, and LFA-1 were positive for expression in 7, 30, and 40% of the ceils, respectively. The data is the average 
of three separate experiments and the error bars represent the standard errors of the mean. (B) Surface expression of Mac-1 and LFA-1 
on COS ceil transient transfectants. (top) COS cells transfected with vector alone (light line) or Mac-1 a and B cDNA (bold line) were 
incubated with Mac-I a mAb (LM2/1), FITC goat-anti-mouse IgG, and subjected to flow cytometry. (bottom) COS ceils transfected with 
vector alone (light line) or LFA-1 a and B cDNA (bold line) were stained with TS1/22, FITC goat-anti-mouse IgG and subjected to flow 
cytometry. The profiles are from a single representative experiment. The data is expressed as the number of cells (ordinate) versus the 
log fluorescence intensity (abscissa). 

occurs at 37°C but not at 230C, whereas COS cells trans- 
fected with LFA-1 bind to ICAM-1 at 230C (data not shown). 

Immunoaffinity Purification of Functional Mac-I 
To gain additional evidence for an interaction between Mac-1 
and ICAM-1, we wanted to test the reciprocal assay, whether 
ceils bearing ICAM-1 bound to purified Macq. To purify 
Mac-l, we modified a procedure used to obtain LFA-1 in a 
form that was functional and in which the o~ and/~ chains re- 
mained noncovalently associated (17). Peripheral blood leu- 

kocytes were lysed in Triton X-100 in the presence of Mg 2+, 
and the Mac-1 otB complex was bound to an LM2/1 mAb 
affinity column. Triton X-lO0 was exchanged with the di- 
alyzable detergent n-octyl-B-D-glucopyranoside. Elution con- 
ditions of varied salt, divalent cation concentration, and pH 
were tested and optimized for yield and the ability to repre- 
cipitate the heterodimer. The optimum buffer contained 50 
mM triethylamine, pH 10.0, 300 mM NaC1, and 2 mM 
Mg 2+. Mac-1 obtained by this procedure was substantially 
pure, and migrated on reducing SDS-PAGE as two bands 
with Mr of 160,000 and 95,000 (Fig. 2), consistent with our 
previous observations (46). Immunoprecipitation with the 

Figure 2. SDS-PAGE of purified Mac-l. 
Purified Mac-1 (10 #1 of a 2-ml fraction 
from an LM2/1 mAb affinity column) is 
subjected to reduction, SDS 7.5 % PAGE, 
and silver staining. Molecular weight 
standards are marked to the left. 
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Figure 3. Surface expression of ICAM-1 on COS cell transient and 
L cell stable transfeetants. COS cells transfected with (A) vector 
alone or (B) ICAM-I eDNA, or L cells, (C) untransfected or (D) 
transfected with ICAM-1 eDNA were incubated with ICAM-1 mAb 
(RR1/1), FITC goat-anti-mouse IgG, and subjected to flow cytome- 
try. The data is expressed as the number of cells (ordinate) versus 
the log fluorescence intensity (abscissa). 
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anti-fl mAb TS1/18 of the purified material yielded the bet- 
erodimer, indicating that the two chains, after elution, re- 
main associated (data not shown). This material has comple- 
ment receptor type three (CR3) activity as it binds specifi- 
early to iC3b-coated erythrocytes but not erythrocytes coated 
only with anti-Forsmann antibody (15). Approximately 500 
~g of intact Mac-1 was recovered from 10 g of leukocytes. 

Adhesion of Cells Transfected with ICAM-1 cDNA to 
Purified Mac-1 and LFA-1 
To test whether cells bearing ICAM-1 interact with Mac-l, 
COS cells were transfected with the ICAM4 eDNA and al- 
lowed to settle on Mac-l-coated substrates. Surface expres- 
sion of ICAM-1 on transfected COS cells averaged 50-60 % 
(Fig. 3 B), while vector-transfected COS cells showed no ex- 
pression (Fig. 3 A). COS cells expressing ICAM-1 adhere to 
purified Mac-1 (Fig. 4 A), whereas cells transfected with 
vector alone do not adhere (Fig. 4/9). The binding is specific 
as it is blocked completely with mAbs to Mac-1 o~ (LPM19c) 
or ICAM-1 (a mixture of R6.5 and RR1/1) (Fig. 4, B and C). 

To assess more quantitatively the strength of the interac- 
tion between Mac-1 and ICAM-1, we performed a dose re- 
sponse analysis. Because of the variation between experi- 
ments in the percent of COS cells expressing ICAM-1 and 
the heterogeneity in the level of ICAM-1 expression between 
cells (Fig. 3 B), stable transfectants expressing human 
ICAM-1 in murine L cells were generated as described in 
Materials and Methods (11). Colonies were selected in which 
100% of the L cells expressed high amounts of human 
ICAM-1 (Fig. 3 D). 

Titration experiments were performed in which ICAM-1 + 
L cells were allowed to hind to substrates coated with a wide 
range of Mac-1 site densities (Fig. 5). L ceils expressing 
ICAM-1 adhered to Mac-1 in a dose-dependent fashion with 
a threshold of "~ 250 sites//~n 2 before significant adhesion 
is seen. The adhesion is specific as plates pretreated with 
mAb to Mac-1 ot (LPM19c), cells pretreated with mAhs to 
ICAM-1 (a mixture of RR1/1 and R6.5), and untransfected L 
cells did not attach. 

Parallel experiments were performed on LFA-1- and Mac- 
1-coated substrates to determine the  difference in relative 
avidity for ICAM-1 using a lower stringency wash protocol 
(Fig. 6). The amount of Mac-1 and LFA-1 bound to substrate 
was determined by RIA with a mAb to the common 
subunit. ICAM-1 + L cells adhered tO LFA-1 substrates with 
a slightly higher avidity as the binding isotherm for purified 
Mac-1 is shifted to a higher site density. The difference in 
avidity is consistent with the observation that when COS 
cells express ICAM-1 at low levels, they adhere to LFA-1 but 
not Mac-1 substrates (data not shown). Binding of ICAM-1 ÷ 

L cellS tO Mac-1 is more temperature sensitive than binding 
to LFA-1 (Fig. 7). Despite equivalent site densities of LFA-1 
and Mac-1 on the substrate, cells adhere strongly to LFA-1 
but weakly to Mac-1 at room temperature, while there is lit- 
tle or no difference in the quantitative adhesion at 37°C. 

Adhesion of HUVEC to Purified Mac-I 
To confirm that stimulated HUVECs adhere to Mac-1 in an 
ICAM-1--dependent fashion, we tested their ability to bind 
Mac-1 substrates. HUVECs, when stimulated for 18-24 h 
with IL-1/~ or LPS, bind purified Mac-1 under high strin- 

gency wash conditions (Fig. 8). Adhesion is specific and pri- 
marily ICAM-1 dependent since it is inhibited by mAbs to 
ICAM-1 (82% for LPS, 66% for IL-1B) and Mac-1 ot (>95% 
in both cases) but not by control mAb. Unstimnlated 
HUVECs, which express lower amounts of ICAM-1 (18), do 
not attach significantly to purified Mac-1 at this stringency 
of wash. However, if the assay is performed under gentler 
wash conditions, unstimulated HUVECs adhere to purified 
Mac-1 in a dose-dependent manner (Fig. 9). There is com- 
plete inhibition with mAb to Mac-1 but only a small inhibi- 
tion of unstimulated HUVEC adhesion with mAb to ICAM-1, 
suggesting the presence of an additional ligand(s) for Mac-1 
on HUVEC. mAbs to ICAM-2 that block its interaction with 
LFA-1, alone or in combination with ICAM-1 mAbs, have 
little effect on HUVEC adhesion to Mac-1 (Fig. 9 and data 
not shown). 

Difference among ICAM-I mAbs in Blocking Adhesion 
to Mac-1 and LFA-1 

Our reciprocal adhesion assays show that both Mac-1 and 
LFA-1 bind to ICAM-1. This result prompts the question of 
which epitopes on ICAM-1 are involved in interactions with 
LFA-1 and Mac-1. Studies above were performed with a mix- 
ture of RRU1 and R6.5 mAb. We examined ICAM-I* L cell 
adhesion to both Mac-1 andLFA-1 in the presence of a panel 
of individual ICAM-1 mAb. In addition to previously 
characterized ICAM-1 mAbs (RR1/1, R6.5, LB-2, CL203, 
84H10), four new ICAM-1 mAbs were generated against 
HUVEC stimulated with IL-1/3 (S. Stacker and T. Springer, 
manuscript in preparation). There is a striking difference 
among mAbs to ICAM-1 in their ability to block adhesion 
of ICAM-1 + L cells to Mac-1 and LFA-1 (Fig. 10). As previ- 
ously reported (34, 38, 41, 50, 55), RR1/1, R6.5, LB-2, and 
84H10 all inhibit LFA-I-ICAM-1 interaction to varying 
degrees; in addition, one of our new mAbs, CBRIC1/4, in- 
hibits LFA-I-ICAM-1 binding. Only R6.5 strongly inhibits 
ICAM-1 adhesion to Mac-I and LFA-1, whereas CBRIC1/1 
blocks roughly 35-40% of Mac-I-ICAM-1 binding but does 
not inhibit LFA-I-ICAM-1 adhesion. RR1/1 does not appear 
to block ICAM-1-Mac-1 interactions. 

Neutrophil-HUVEC Conjugate Formation 

While the reciprocal assays of cell binding to purified protein 
strongly suggest that Mac-1 interacts with ICAM-1, we 
wanted to confirm that this interaction is physiologic, i.e., 
that it could occur between cells that both normally express 
Mac-1 and ICAM-1 and adhere to each other in vivo. We 
used fMLP-actiwted neutrophils which strongly express 
Mac-1 (45) and 24-h LPS-treated HUVECs which express 
high levels of ICAM-1 (16) but low amounts of.ELAM-1 (10, 
49). To characterize adhesion quantitatively, a two color 
fluorescence conjugate assay was developed in which neutro- 
phils ~ d  HUVECs are labeled with red and green fluores- 
cent compounds, respectively. This system differs from the 
binding of neutrophils to HUVEC monolayers under static 
conditions and removal of nonadherent cells by 1 g sedimen- 
tation, an assay that was used in a previous report (56) that 
described ICAM-1 as a ligand for Mac-1. In our system, neu- 
trophil-endothelial cell heterotyplc conjugates form in sus- 
pension while the cells are gently agitated. 

Chemotactic stimulation of neutrophils resulted in a 
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Figure 5. Dose response curve of ICAM-1 + L cell adhesion to 
purified Mac-l. ICAM-I + or ICAM-1- (untransfected) L cells are la- 
beled with nCr. For antibody blocking experiments, both the 96- 
well plates and cells are pretreated with the following rnAbs: con- 
trol (M1/42), Mac-I (LPM19c), and ICAM-1 (a mixture of RR1/1 
and R6.5). Cells are added to Mac-l-coated wells and incubated 45 
min at 37°C. Unbound cells are removed after four washes by fine 
needle aspiration (26 gauge). Bound cells are removed with 0.2 N 
NaOH and quantitated by 3' emission. Site densities are determined 
in parallel and are quantitated by RIA with 12SI-LM2/1. All experi- 
ments are performed in triplicate and the data shown is the average 
of three separate experiments. The error bars represent standard 
deviations. 
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Figure 6. Avidity comparison of ICAM-I + L cells for purified 
Mac-1 and LFA-I. ICAM-1 + L cells are added to 60-mm Petri 
dishes coated with a spot of Mac-1 (open circles) and LFA-1 (shaded 
circles) for 50 rain at 37°C. Unbound cells are removed by three 
washes with a Pasteur pipette. Bound ceils are quantitated by 
visually scoring the number of cells in four to five high power light 
microscope fields for each experimental point. This number is di- 
vided into the input number of cells (see Materials and Methods) 
to obtain the percentage of ceils binding. Binding outside the 
integrin-coated spots varies between 1-3 %. Site densities are de- 
termined using 12SI-TS1/18 (anti-CDl8). One representative experi- 
ment of two is shown and the error bars represent standard de- 
viations. 

significant increase in conjugation with HUVEC over the 
baseline conjugate formation of unstimulated neutrophils 
(Table I). There was a three- to fourfold increase in the num- 
ber of  HUVECs conjugated with neutrophils after stimula- 
tion. When TS1/22, an anti-LFA-1 ot mAb was added, there 
was a slight but not statistically significant inhibition of  con- 
jugate formation. If  an mAb to the Mac-1 ot subunit was 
added, there was a significant inhibition (73 %) of  stimulated 
cell conjugates. A combination of  anti-LFA-1 and anti-Mac-1 
mAbs or an antibody against the common fl chain showed 
the greatest inhibition (88-98%). A mixture of R6.5 Fab and 
RR1/1 Fab'2 fragments decreased conjugate formation by 
48 %. Since this inhibition is greater than that of  LFA-1 an- 
tibodies alone, the results suggest that both LFA-1 and Mac-1 
inferact with ICAM-1. Because the CD18-dependent adhe- 
sion cannot be inhibited solely with mAbs to ICAM-1, LFA-1 
and/or Mac-1 may be interacting with additional ligands. For 
LFA-1, ICAM-2 is a strong possibility, yet it does not appear 
that Mac-1 binds to ICAM-2 (Fig. 9) and, thus, other en- 
dothelial cell surface counter receptors may be involved. 

D i s c u s s i o n  

We prove that Mac-l, like LFA-1 (41), is a counter-receptor 
for ICAM-1 by demonstrating that purified Mac-1 mediates 
cell adhesion dependent on ICAM-1, and reciprocally that 
purified ICAM-1 mediates cell adhesion dependent on Mac-1. 
Cells transfected with specific cDNAs of  putative counter 
receptors were used to eliminate complications associated 
with additional receptor-ligand interactions. We show that 
ICAMq + transfectants and Mac-1 + transfectants bind purified 
Mac-1 and ICAM-1, respectively. To rule out the possibility 
that this result is an effect of the experimental system, we 
show a Mac-l, ICAM-l-dependent adhesion between stimu- 
lated endothelial ceils and purified Mac-1. We also demon- 
strate a Mac-I-ICAM-1 interaction in a cell-cell context as 
stimulated Mac-1 + peripheral blood neutrophils form cell 
conjugates with ICAM-1 + HUVEC in a manner that is in- 
hibited with Mac-1 and ICAM-1 mAbs. 

The binding of ICAM-1 to both Mac-1 and LFA-1 shows 
that an immunoglobulin-like molecule can adhere to more 

Figure 4. Adhesion of ICAM-l-transfeeted COS cells to purified Mac-1. COS cells transfected with ICAM-1 cDNA (A-C) or vector alone 
(D) are allowed to settle on a spot of purified Mac-1 in a 35-ram Petri dish for 50 min at 37"C. Cells and the dishes are pretreated with 
mAb for 20 min: (,4, D) control (TS2/16), (B) Mac-1 (LPMI9c), (C) ICAM-I (a mixture of R6.5 and RR1/1). After incubation, plates 
are washed three times with a Pasteur pipette to remove unbound cells. Photographs show one of five representative experiments. 
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Figure 7. Temperature dependence of ICAM-1 + L cell adhesion to 
purified Mac-1 and LFA-1. ICAM-1 + L cells are preincubated at 
the indicated temperature for 10 min, and then added to 60-mm 
Petri dishes containing spots of Mac-1 and LFA-1. The dishes were 
incubated at the appropriate temperature for 50 min, washed thrice 
by Pasteur pipette, and scored visually for adherent cells at high 
power magnification. Site density for LFA-1 = 803 sites/# 2 and 
Mac-1 = 738 sites/p 2 as determined by RIA with i25I-TS1/18 (anti- 
CDI8). The percent binding is determined as described in Fig. 6. 
The asterisk indicates there was no binding of ICAM-1 transfectants 
at 4°C to purified Mac-1. The data is the average of two experiments 
and the error bars indicate standard deviations. 

than one integrin. However, the interaction between the two 
sister leukocyte integrins and ICAM-I  is not identical, mAb 
blocking data (Fig. 10) suggests differences with respect to 
the site of interaction on ICAM-1 for LFA-1 and Mac-1. Only 
one mAb (R6.5) is able to significantly inhibit binding of 
ICAM-l-transfected L cells to substrates coated with Mac-1 
and LFA-1, whereas others (RR1/1, LB-2, 84H10, CBRIC1/4) 
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Figure 9. UnstimulatedHUVEC adhesion to purified Mac-l. Un- 
stimulated HUVECs are added to Mac-l-coated spots at different 
site densities and allowed to adhere for 50 min at 37°C. Plates are 
washed three times with a Pasteur pipette and scored visually for 
the number of cells bound per high power field. The percent bind- 
ing is determined as described in Fig. 6. Antibody blocking is per- 
formed by preincubating the cells and the plates at room tempera- 
ture for 25 rain with the following mAbs: control (TS2/16), ICAM-1 
(a mixture of RRI/1 and R6.5) ICAM-2 (CBRIC2/I and CBRIC2/2), 
and Mac-1 (LPM19c). No additional inhibition was observed when 
ICAM-1 and ICAM-2 antibodies were used together (data not 
shown). Site density was determined using 125I-TS1/18. The data is 
an average of two experiments and error bars indicate the standard 
error of the means. 

that block LFA-I-ICAM-1 function (34, 38, 41, 50, 55) do not 
decrease binding to Mac-1. Furthermore,  one new mAb 
(CBRIC1/1) partially blocks Mac-I-ICAM-1 binding but has 
little or  no effect on LFA-I-ICAM-1 adhesion. Additional evi- 
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Figure 8. HUVEC adhesion to purified Mac-l. HUVECs that are 
unstimulateA or stimulated with IL-1B (5 U/ml, 18 h) and LPS 
(1/~g/nd, 24 11) are labeled with 51Cr, added to Mac-l-coated 96- 
well plates, and incubated for 1 h. Unbound cells are washed at high 
stringency by fine needle aspiration; bound cells are recovered and 
quantitated by 3, emission. Antibody blocking is performed by 
preincubating the cells and the plates at room temperature for 25 
rain with the following mAbs: control 0V6/32), Mac-I (LPM19c), 
and ICAM-1 (a mixture of R6.5 and RR1/1). The experiments are 
performed in triplicate and the data shown is the average of three 
separate experiments. Error bars indicate standard deviations. 
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Figure 10. mAb inhibition studies of ICAM-1 + L cell adhesion to 
purified Mac-1 and LFA-1. ICAM-1 + L cells are pretreated with 
saturating concentrations of the indicated ICAM-1 mAb for 20 rain 
at 4°C. Ceils are then added to a 60-mm Petri dish spotted with 
Mac-1 or LFA-1, and incubated for 50 rain at 37°C. Unbound cells 
are removed with three washes using a Pasteur pipette. The percent- 
age of bound cells are determined as in Fig. 6. The data is the mean 
of two separate experiments and error bars show standard devia- 
tions. 
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Table L Conjugate Formation between fMLP-stimulated 
Neutrophils and 24-h LPS-cultured HUVEC 

HUVEC Inhibition of 
mAb fMLP in conjugates n adherence 

% % 

None - 12 + 3 6 - 
CD18 - 9 + 1 3 25.0 NS 
None + 42 + 6 5 - 
Control + 41 + 5 7 0.3 NS 
ICAM-2 + 44 + 6 5 - 0 . 6  NS 
LFA-1 + 38 ± 6 5 14.4 NS 
Mac-1 + 21 + 6 7 73.0 ( p  < 0.0005) 
CD18 + 16 + 5 5 88.0 ( p  < 0.0005) 
Mac-I  + LFA-1 + 13 + 3 5 98.3 ( p  < 0.0005) 
ICAM-1 + 27 + 3 8 48.3 ( p  < 0.0005) 

Neutrophils (1.5 x l0 s) stained red with HE and HUVECs (6 × 105) stained 
green with SFDA are resuspended and pretreated separately with the follow- 
ing mAb: Control 0N6/32), ICAM-2 (CBRIC2/I); LFA-1 (TS1/22), Mac-1 
(LPMI9c), CDI8 (YFC51.1), ICAM-1 (a mixture of R6.5 Fab and RRI/1 
Fab'2 fragments). The ceils are mixed in 24-well plates and preincubated at 
370C. fMLP (10 -~ M) is added and the cells are agitated at 75 rpm for 10 rain 
at 37°C. Resultant suspensions are analyzed immediately by flow cytometry. 
The data is expressed as the percentage of HUVEC found in heterotypic con- 
jugates with neutrophils, and the inhibition of conjugation of stimulated neu- 
trophils is expressed relative to the baseline level of conjugates without 
stimulation with fMLP. Significance values were determined using a pooled 
t test. NS means that values were not statistically different (p < 0.05) from con- 
trois. Values after the + sign show standard deviations. 

dence suggests that Mac-1 and LFA-1 do not interact identi- 
cally with ICAM-1. Previously, our laboratory (32) has 
shown that when Mac-1 and LFA-1 expressing COS cell 
transfectants are allowed to adhere to ICAM-l-coated sub- 
strates and washed under high stringency conditions by fine 
needle aspiration (17), only LFA-1 + cells remain attached. 
However, we demonstrate here that if the cells are washed 
more gently, both Mac-l- and LFA-l-transfected COS cells 
remain bound; thus, the LFA-I-ICAM-1 interaction appears 
more shear resistant. This phenomenon can be explained, in 
part, by a difference in the avidity of the binding. When par- 
allel adhesion assays are performed with ICAM-1 + L cells 
binding to either Mac-1 or LFA-1, a lesser amount of LFA-1 
than Mac-1 is found to sustain cell adhesion. The range of 
site densities on plastic substrates that supported adhesion in 
vitro was 250-500 sites//F for Mac-1 and 100-400 sites/# 2 
for LFA-1. The physiologic site density of Mac-1 on neutro- 
phils can be estimated at 130 sites/~2 for unstimulated neu- 
trophils; this number increases after stimulation. LFA-I on 
peripheral blood lymphocytes is estimated to be present at 
130 sites/~ 2. (The site density of Mac-1 on neutrophils is 
calculated from the number of molecules of Mac-1 on resting 
neutrophils [13] and the surface area of resting neutrophils 
[22]. The site density of LFA-1 on a lymphocyte is calcu- 
lated from the number of molecules of LFA-1 on a lympho- 
cyte [64] and a mathematical approximation for the surface 
area of a lymphocyte [255/F: diameter = 9 it].) Although 
we used a mAb to the common/3 subunit to quantitate Mac-1 
and LFA-1 site densities, and the mAb reacts with associated 
but not free/3 subunlt (27), we cannot ascertain what per- 
centage of protein on pl~tic is in an active conformation that 
can bind to ICAM-1. Definitive measurement of the absolute 
affinity of Mac-1 and LFA-1 for ICAM-1 remains to be done. 
Another feature distinguishing the interaction with LFA-1 
and Mac-1 is the striking effect of temperature on adhesion. 

While ICAM-1 + L and COS cells bind strongly to purified 
solid phase LFA-1 at room temperature (Fig. 7, and our un- 
published observations), there is a strict 37°C temperature 
requirement for significant adhesion to purified Mac-1 (Fig. 
7). Interaction of ICAM-l-bearing cells with purified Mac-1 
also appears more energy dependent than interaction with 
LFA-1 (59; data not shown). The temperature and energy de- 
pendence of Mac-I-ICAM-1 interaction may be due to a re- 
quirement for greater ICAM-1 clustering on the cell surface 
or to a need for closer cell-substrate apposition. Consistent 
with the stronger interaction with LFA-1, we observed that 
transfected cells expressing ICAM-1 spread and flatten out 
more on LFA-l-coated substrates than on Mac-1 substrates 
(M. Diamond, O. Carpen, and T. Springer, unpublished ob- 
servations). 

The binding of Mac-1 to ICAM-1 demonstrates directly 
that Mac-1 interacts with an endothelial cell surface counter 
receptor. Our results agree with previous studies that show 
neutrophil adhesion to endothelial cells is inhibited by mAb 
to Mac-1 (3, 20, 65), and that Mac-I- and LFA-l-dependent 
adhesion of fMLP-stimulated neutrophils to unstimulated 
endothelial cells (55) or ICAM-1 containing planar mem- 
branes (56) is blocked completely by a mAb to ICAM-1 
(R6.5). In contrast, ICAM-1 has been reported not to be a 
ligand for Mac-1 (34). In that study, neutrophils stimulated 
with phorbol esters adhere to unstimulated endothelial cells 
in a manner that is LFA-I-, Mac-l- and ICAM-l-dependent, 
results that agree with our findings. However, this group con- 
cluded that only LFA-1 interacts with ICAM-1 because the 
inhibition with LFA-1 and ICAM-1 mAbs (LB-2, 84H10) is 
not additive whereas the inhibition with Mac-1 and ICAM-1 
mAbs is additive. The differences in the previous reports 
may be explained partially by the disparity in mAb selection; 
here we show that R6.5 mAb blocks both Mac-l- and LFA- 
1-ICAM-1 interactions, whereas LB2 and 84H10 mAb only 
inhibit LFA-I-ICAM-1 binding (Fig. 10). Our results do not 
explain, however, a previous observation that when macro- 
phages are plated on an ICAM-1 substrate, LFA-1 but not 
Mac-1 is down-modulated from the apical surface (34). Our 
mAb blocking data is consistent with mutagenesis studies 
that map mAb epitopes to distinct regions of the ICAM-1 
molecule (60). RRI/1 and LB-2 map to the first NH2- 
terminal immunoglobulin domain whereas R6.5 maps to the 
second domain. Our data is also consistent with in vivo ex- 
periments (8) that show a reduction in the granulocyte 
infiltration into rabbit lungs inflamed with phorbol esters af- 
ter pretreatment with mAbs to CD18 (R3.3) or ICAM-1 
(R6.5), but not with mAb to LFA-1 (R3.1). These findings 
suggest that stimulated neutrophils may utilize a Mac- 
1-ICAM-l-dependent pathway of adhesion to mediate at- 
tachraent in vivo to inflamed endothelium. 

Experiments presented here are consistent with the possi- 
bility of counter-receptors for Mac-1 distinct from ICAM-1 
on the surface of unstimulated (34) and stimulated en- 
dothelial cells. In our assays, endothelial cell ICAM-1 cannot 
by itself account for all of the Mac-1-dependent adhesion of 
neutrophils. Adhesion of stimulated HUVEC to purified 
Mac-1 under high stringency wash conditions is only par- 
dally (68-82%) blocked by mAb to ICAM-1 (Fig. 8). Fur- 
thermore, there is little adhesion of unstimulated HUVEC to 
Mac-1 at this stringency, but when washed at a lower strin- 
gency (Fig. 9), there is significant non-ICAM-l-dependent 
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adhesion to purified Mac-1. This result conflicts with a re- 
port that showed that fMLP-stimulated neutrophil adhesion 
to unstimulated endothelial cells was blocked 84 % by a mAb 
to ICAM-1 (55). We do not understand the discrepancy, but 
it may be explained by differences in tissue culture conditions 
of untreated HUVEC which may induce a second ligand for 
Mac-1. At present, we do not understand fully the role of 
ICAM-2 in neutrophil adhesion to unstimulated or stimu- 
lated endothelial cells, although ICAM-I÷ICAM-2 + endo- 
thelial cells adhere to LFA-l-bearing cells or coated sub- 
strates in a manner that is Mocked by mAbs to ICAM-1 and 
ICAM-2 (A. de Fougerolles and T. Springer, manuscript in 
preparation). At present, we have no evidence for interaction 
of Mac-1 with ICAM-2, since mAbs to ICAM-2 do not block 
HUVEC adhesion to Mac-1 and ICAM-2 + COS cells do not 
bind to purified Mac-1 (data not shown). Thus, we hypothe- 
size and are currently looking for a non-ICAM-1, non- 
ICAM-2 counter receptor for Mac-1 on the surface of un- 
stimulated endothelial cells. 

Unexpectedly, our mAb blocking data suggest that Mac-1 
and LFA-1 may not share the same binding site on ICAM-1. 
Amino acid substitution and domain deletion mutagenesis of 
ICAM-1 have shown that the binding site for LFA-1 is local- 
ized in the most NH2-terminal of the five Ig-like domains of 
ICAM-1 (60). Similar experiments must now be done to map 
the region of ICAM-1 that contacts Mac-1. 
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