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ABSTRACT
Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell
variability in the organization and packaging of genomes. These single-cell methods, unlike their
multi-cell counterparts, allow straightforward computation of realistic chromosome conformations
that may be compared and combined with other, independent, techniques to study 3D structure.
Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows
comparison with data from microscopy. We then carry out a systematic evaluation of recently
published single-cell Hi-C datasets to establish a computational approach for the evaluation of
single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool
for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of
interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient
longer-range cis- and trans-chromosomal contacts.
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Introduction

Chromosome conformation capture (3C) is a biochemi-
cal technique where contact frequencies between two
particular genomic sequences in a population of cells
are quantified after restriction enzyme digestion and
proximity-based DNA ligation [1]. The simple and ele-
gant idea that digestion and re-ligation of chromatin
could be used to measure contact frequencies has meant
that 3C (one to one) and its many related techniques
(4C: one to all, 5C: many to many, and Hi-C: all to all)
have now been widely utilized to study genome struc-
ture. Together, they have revealed a hierarchical organi-
zation where above the megabase scale the genome is
partitioned into large regions enriched in transcription-
ally active or repressed genes, referred to as the A and B
compartments [2]. At scales below a megabase, the
genome has smaller, self-associating regions of chroma-
tin called “topological-associated” domains that are sup-
ported by DNA loops mediated by the Cohesin
complex (for a recent review see Denker & de Laat [3]).

Our initial attempts to calculate 3D chromosome/
genome structures using population data (millions of

cells) showed that there were many conflicting contacts,
suggesting that there was no dominant, underlying 3D
conformation and hence considerable variation in
structure from cell-to-cell. Thus, it was not initially clear
to what degree the genomic features discussed above
may exist in single cells. In 2013 we were able to calcu-
late the first structures of the X chromosome from dip-
loid mouse TH1 cells using data from a new single-cell
Hi-C experiment, which introduced in-nucleus diges-
tion [4]. Whilst the number of contacts from a single T
cell (several thousand) was substantially lower than
canonical, population Hi-C data (tens to hundreds of
millions of contacts) it was immediately clear that there
was indeed a high degree of cell-to-cell variability in
chromosome structure.

More recently, differences have been reported
between contact frequencies obtained from population
5C data and the corresponding distance measure-
ments obtained with DNA Fluorescence In-Situ
Hybridization (FISH) experiments, leading to con-
cerns about the validity of chromosome conformation
capture data [5]. However, these discrepancies are
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expected to arise because population 3C-type experi-
ments and microscope images detect quite different
spatial features of chromatin [6,7]. In a 3C experiment
carried out on a population of cells the interaction of
two DNA loci is only detected in a subset of cells
where the loci are sufficiently proximal to ligate, and
direct contacts are not detected in cells where they are
far apart. In contrast, due to the resolution limit asso-
ciated with the diffraction of light, it is more difficult
to accurately detect when two DNA loci are in close
proximity (within a few hundreds of nm) to one
another using microscopy (Fig. 1A). Although the
problem of resolution in imaging can be mitigated
using super-resolution methods [8], fluorescence
microscopy only allows the investigation of a
restricted set of labeled loci at one time.

By computing a complete 3D genome structure
from single-cell Hi-C data we have shown [9] that it
is possible to overcome the limitation of Hi-C, of
only detecting DNA sequences in close spatial prox-
imity, because we can now determine distances
between loci regardless of whether they have direct
contacts or not (see Fig. 1B where we study the dis-
tances between various pericentromeric loci in the
computed Hi-C structure). A 3D image obtained by
fluorescence microscopy and the 3D genome struc-
ture calculated from the Hi-C data can thus be
directly compared, and, in a proof of concept, we
superimposed images of the centromeric histone H3
variant CENP-A, which is localized at centromeres,
with 3D genome structures [9] (Fig. 1B). Impor-
tantly, the combination of imaging and single-cell
Hi-C experiments paves the way to directly relate a
process being imaged with the underlying DNA
sequence of the chromatin involved. There is
also another significant benefit, however, because
the combination of the two types of data (from
the images and the Hi-C experiment), will in the
future offer a route to dramatically improve the accu-
racy and precision of the 3D genome structures.
As with other methods where structures are calcu-
lated from a network of only short-range restraints,
e.g. protein structure determination by NMR
spectroscopy using nuclear Overhauser effect-based
restraints, when the calculations use only Hi-C con-
tacts the larger scale 3D structure is not as well deter-
mined as the local structure. This can be overcome
by combining global and long-range restraints deter-
mined using a different type of data. Therefore, in

the longer term we can look forward to considerable
improvements in the quality of the 3D genome struc-
tures, as we include image-based restraints in the
structure calculations. To compute 3D genome struc-
tures from Hi-C data, however, the study of single
cells is critical because it is only in this situation that
the measured contact data represents a single under-
lying conformation. By contrast, in population Hi-C
experiments the data represents a vast number of
different conformations. Although probabilistic
structural models can be derived from canonical,
multi-cell, population Hi-C data [10], the models

Figure 1. 3D genome structures calculated from single cell Hi-C
data can detect the entire range of distances between two pairs
of loci for comparison with microscopy images. (A) In a popula-
tion of cells 3C based techniques such as Hi-C can only detect dis-
tances between two genomic loci when they are very close
together. Due to the resolution limit imposed by the diffraction
of light (»200 nm), close distances between two loci cannot be
detected accurately by microscopy. 3D genome structures calcu-
lated from single cell Hi-C data, however, allow one to detect the
distance between two loci regardless of whether they are very
close together or far apart. (B) A superposition of CENP-A foci
from a microscopy image with a 3D genome structure calculated
from Hi-C data from the same imaged cell. Pericentromeric ends
of the chromosomes are labelled in red. CENP-A foci from the
microscopy image depicted as a point cloud are colored yellow.
The scale bar in the microscopy image is 5 mm. Figure adapted
from Stevens et al. [9].
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produced (either best-fit or deconvolved) cannot be
expected to provide realistic 3D structures that could
be found in any individual cell.

In this paper, we utilise the NucProcess computa-
tional pipeline [11] to evaluate the data provided by
different single cell Hi-C protocols, all of which
involve in-nucleus digestion [9,12¡14]. In brief, both
Stevens et al. [9] and Flyamer et al. [12] have devel-
oped protocols where all the Hi-C processing steps
and library preparation are carried out on a single
nucleus (Figs. 2A and B). This is necessary if one is to
first image and then biochemically process the same
single cell, because the biochemical steps increase the
fluorescence background and degrade the image [11].
Flyamer et al. [12] additionally removed the biotin
end-filling step that is used to purify ligated junctions
away from non-ligated DNA, and they also replaced
PCR with Multiple Displacement Amplification
(MDA) when preparing the libraries for sequencing.
Nagano et al. [13] took the original protocol, where
the biochemical steps are carried out on a population
of nuclei prior to the selection of individual nuclei for
the preparation of libraries for sequencing [4], and
replaced the multi-enzyme adaptor ligation steps with
a single transposase reaction (Fig. 2C). This proce-
dure, which was also tested with less success by Ste-
vens et al. [9], significantly improves the efficiency of
preparing the libraries. Finally, Ramani et al. [14]
implemented an ingenious two-step barcoding system

into the original protocol that vastly improves the
throughput, allowing the processing of thousands of
nuclei in a single experiment (Fig. 2D).

Here we carry out a systematic evaluation of the
data sets generated by these different second-genera-
tion single-cell Hi-C protocols, with a focus on assess-
ing which approaches can generate high quality
contact data that can subsequently be used to compute
realistic 3D genome structures, which may then be
compared with data from different imaging methods.

Results

Comparative analysis of the sequence data

We used the NucProcess software (available at https://
github.com/tjs23/nuc_processing) to process data sets
generated using the four different protocols in a con-
sistent, comparable way. NucProcess takes the paired-
end sequence reads, maps the fragment ends back
onto a reference genome sequence and then filters the
paired fragments to determine which ones represent
valid and useful contacts [9,11]. Read pairs that pass
or fail any of the filtering steps are recorded, and these
results are compiled into a report, but naturally only
those pairs that pass all filters are used for the creation
of the output contact maps. A summary of the key
findings from NucProcess is presented in Table 1 and
the results from the individual cells studied are avail-
able in the supplementary online data Table S1. The

Figure 2. Schematic overview of the four different single-cell Hi-C protocols. Key steps in the procedures to make Hi-C libraries are
highlighted for: (A) Stevens et al. [9], (B) Flyamer et al. [12], (C) Nagano et al. [13] and (D) Ramani et al. [14].
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protocol developed by Flyamer et al. [12] generated
the largest number of contacts, with an average yield
of over 480,000 per cell. The protocols developed by
both Nagano et al. [13] and Stevens et al. [9] yielded
lower but similar numbers of between 70,000 and
80,000 contacts per cell (for equivalent G1 phase hap-
loid data). Analysis of the largest 20 single-cell mouse
data sets, of 500 processed from Ramani et al. [14],
yielded an average of only 724 contacts per cell. The
average input read pairs for the Ramani et al. [14]
data was »26,000, around 100-fold less sequence data
than any of the other three protocols (Table 1). By
increasing the sequencing depth it is very likely that
more contacts can be identified. However, due to the
large number of cells processed and sequenced in each
run (many thousands), it may not be easy to
determine similar numbers of contacts to the other
methods.

A high number of contacts is often a good indicator
of a useful DNA library for further analysis. However,
the quality of the contact data, in terms of useful signal
compared to both unwanted sequence pairs and ille-
gitimate contacts, is also critical. Certainly some seem-
ingly random, unwanted ‘noise’ contacts represent
genome mapping problems (clearly seen in cells that
are missing entire chromosomes [8) which could arise
from sequencing errors and genetic drift from the ref-
erence genome. However, there are clearly also experi-
mental sources of illegitimate contacts from spurious
ligation events, which can potentially arise at various
stages during the processing of the sample. For exam-
ple, in the Stevens et al. [9] protocol it was found that
spurious contacts occur when insufficient washing is
carried out during the steps to add adaptor barcodes
to the biotin purified ligated junctions [11] (Fig. 2A).
Therefore, a more in-depth analysis of the processing
results is needed to help identify and troubleshoot
poor quality libraries. For example, the best single-cell
data sets tend to contain a high proportion of reads
(typically >50%) that map to unique locations in the
reference genome sequence. The data sets from
Flyamer et al. [12], Nagano et al. [13], and Stevens

et al. [9] all passed this benchmark. In data sets pro-
duced using the protocol from Ramani et al. [14] an
average of »33% of the reads mapped uniquely
(Table 1). This indicates that the libraries from the
Ramani et al. [14] protocol contain a lower proportion
of useful contact data. This may be due to several rea-
sons, such as species cross-over (given that a mixture
of mouse and human cells were processed together) or
over-amplification of primer or barcode sequences
that can result from the handling of small amounts of
DNA.

Useful libraries also contain a high proportion of
read pairs with ligated junctions. We observe that
when filtering the mapped reads (to identify valid con-
tacts), the best single cell libraries tend to contain at
least 50% of accepted read pairs. An analysis of the fil-
tered read-pairs revealed that only »32% of the con-
tacts were accepted as valid using the Flyamer et al.
[12] protocol, showing that a large number of read
pairs lacked a ligation junction between two desired
primary restriction enzyme (RE1) sites. Subsequent
analysis of the filtering results showed that this proto-
col generates a large proportion, nearly 50 to 60% of
read pairs, that map to either the same or adjacent
RE1 restriction fragments (see the report on the
Flyamer et al. [12] data in Table S1). Mapping of
read pairs to the same RE1 fragment indicates that
a read pair does not span a ligated junction. Mapping
of read pairs to adjacent RE1 sites may or may not
represent a ligation event, but either way they do not
represent a useful contact. There is no specific purifi-
cation step for ligated junctions in the Flyamer et al.
[12] protocol, and this may explain why so many
reads map back to close positions in the reference
genome and why the libraries need to be sequenced to
a much greater depth than the other three protocols
(Table 1). In addition, the filtering of the contacts
revealed that this protocol produced an average of
34% promiscuous contact pairs, 10-fold more than
any of the other protocols (Table 1). A promiscuous
contact refers to the situation when one of the restric-
tion fragment ends occurs in more sequence pairs

Table 1. Summary of the analysis of the sequence data for the different single cell Hi-C protocols.
Read pairs Filtered unique pairs Identified contacts

Average input % Unique % Accepted % Promiscuous Average number % Cis<10kb % Cis>10kb % Trans

Stevens 2,087,953 58.7 87.06 3.0 70,262 41.7 49.4 8.9
Flyamer 22,992,434 60.6 31.63 34.0 481,797 58.7 34.6 6.7
Nagano 8,346,671 54.3 69.67 3.8 77,584 42.2 51.2 6.6
Ramani 26426 33.1 97.67 0.1 724 33.4 48.3 18.3
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than would be expected, given the ploidy of the cell.
On a large scale, this may arise either when multiple
cells are accidently processed together, or when the
processing of nuclei generates spurious read pairs
between genomic loci that are not genuine contacts.

In addition to the reports, to provide another way
to assess the quality of the single cell Hi-C libraries,
NucProcess allows one to plot the filtered contacts on
a genome-wide map (Fig. 3). A good contact map con-
tains a large number of long-range cis-chromosomal
interactions near the diagonal of the map, with dis-
crete clusters of trans-chromosomal interactions
between distinct pairs of chromosomes; a feature
resulting from the chromosomes occupying distinct
nuclear territories. Visual inspection of the contact
maps illustrating both the Nagano et al. [13] and

Stevens et al. [9] data reveals significant numbers of
long-range cis-chromosomal contacts and obvious
clusters of trans-chromosomal contacts between a
restricted number of pairs of chromosomes (Figs. 3A
and 3B). Contact maps illustrating the Flyamer et al.
[12] data also show enrichment of long-range cis- and
trans-chromosomal contacts (Fig. 3C), but they
reveal a noticeable number of seemingly random con-
tacts with much less clustering between particular
chromosomes. This higher level of random contacts
suggests that the Flyamer et al. [12] protocol is gener-
ating proportionately more spurious contacts than
either the Nagano et al. [13] or Stevens et al. [9] proto-
cols. The low number of contacts identified per
cell using the Ramani et al. [14] protocol results
in contact maps that are too sparse to see any

Figure 3. Genome wide contact maps from the different single-cell Hi-C protocols. The total identified contacts were plotted as an all-
vs-all matrix of genomic positions for: (A) Cell 6 from Stevens et al. [9]; (B) NXT-103 from Nagano et al. [13]; (C) Zygote Mat 71 from
Flyamer et al. [12] and (D) MMHiC_TGGAGAGG_ACAGACTG from Ramani et al. [14]. Each blue pixel represents contacts mapped within
a bin size of 5 £ 5 Mb. The total number of contacts, along with the breakdown between Cis and Trans within and between chromo-
somes, are shown above each map.
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trans-chromosomal clustering, although there is evi-
dence of an enrichment in long-range cis-contacts.
This suggests that the main problem when using this
protocol for the analysis of individual cells is a lack of
data (Fig. 3D).

Differences in genomic contact sequence separation

In the original 3C experiments, examination of the
data revealed that the contact probability between
two loci decreases as a function of genomic distance.
This rate of decrease supported a polymer model for
chromosome folding [1]. More recently Hi-C data
has suggested that chromosome structure can be
described by a non-equilibrium, fractal-like globule
[2]. To examine whether similar distributions of
contact probability are observed using the new sin-
gle-cell protocols we pooled the contact data sets for
each protocol, which were carefully selected (where
possible) to be haploid and to avoid condensed,
mitotic nuclei. For each set of data we then plotted
the contact probability against sequence separation
(Fig. 4). While the overall slope of the sequence sep-
aration curve for the four protocols was similar
to that measured previously by other 3C based tech-
niques, the results did reveal some differences.
Some of these are minor. For example, with the

Nagano et al. [13] protocol shorter range contacts
(separations from 0.1 to 1.0 Mb; 105.0 to 106.0 bp)
are slightly enriched and longer-range contacts (sep-
arations >3.0 Mb; 106.5 bp) are slightly depleted,
when compared with the Ramani et al. [14] and Ste-
vens et al. [9] datasets. These differences clearly
arise from the way the nuclei are processed. Indeed,
both Nagano et al. [13] and Stevens et al. [9] used
the same haploid mouse ES cell line in their studies
and so the slight enrichment of shorter over longer
range contacts detected by Nagano et al. [13] likely
stems from the protocols. Here, the use of a trans-
posase enzyme to add the adaptors by Nagano et al.
[13], or variations in the way in which the in-
nucleus digestion, end-fill and ligation steps are per-
formed may explain these differences. The most
striking difference, however, was seen with the
(MDA based) Flyamer et al. [12] data. Compared to
the other three protocols the Flyamer et al. [12] pro-
tocol yields notably fewer long-range cis-contacts
with separations greater than 10 Mb (107.0 bp) and
consequently the data is enriched with contacts hav-
ing separations less than this.

Comparison of 3D genome structures

As discussed, a major advantage of single-cell Hi-C,
compared to the multi-cell population equivalent, is
that the contacts between genomic sites can be used as
restraints in calculations to compute 3D genome
structures, e.g. involving simulated annealing of a
particle-on-a-string representation of chromosome
structure. The simulated annealing approach to chro-
mosome structure calculation is discussed in detail in
the supporting material for previous publications
[4,9]. However, the general notion is that mildly repul-
sive particles (which cannot superimpose) are con-
nected into chromosome backbones and the single-
cell Hi-C contacts, represented by short distance
restraints, pull contacting particles together during the
calculation so that they touch. The interpretation of
single cell Hi-C contacts as particles within a close,
touching distance is very straightforward compared to
population Hi-C. Repeat calculations from different
random starting coordinates generates a family of
alternative models for each cell, but with sufficient
data (> 60,000 contacts, of which > 5% are trans) the
expectation is that the models will be highly similar
and thus represent a single folded genome structure,

Figure 4. Analysis of contact probability with sequence separa-
tion for data produced with each of the single-cell Hi-C protocols.
Log-scale plots of contact probability against sequence separa-
tion for combined single-cell Hi-C contact data, binned at 100 kb.
The number of single cells analysed for each protocol are shown
in brackets. The slopes for a power law relationship (Contact
probability for sequence separationa) in which a is either ¡1.0
(fractal globule polymer) or ¡1.5 (equilibrium globule polymer)
are indicated as grey dashed lines.
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with unmappable (highly repetitive) sequence regions
differing the most.

The resulting 3D genome structures may then be
directly compared and superposed with 3D images
from fluorescence microscopy [9]. They can also
be inspected to identify where in the nuclear volume
(within the resolution of the model) all loci lie relative
to one another. In turn, this allows many types of anal-
yses, including those that look at distances, spatial clus-
tering, backbone conformation etc [9,15]. Also,
computing structures provides a means to assess sin-
gle-cell Hi-C data and remove spurious contacts
because it readily identifies those that are inconsistent
with the otherwise self-consistent 3D network. To
compare the applicability of the protocols to produce
data for 3D whole-genome structure calculations,
we took a sample data set produced by each of the
three protocols producing the highest numbers of con-
tacts (from Flyamer et al. [12]; Nagano et al. [13] and
Stevens et al. [9]) that contained well defined clusters
of trans-chromosomal contacts (Fig. 5). We then calcu-
lated 10 independent models, starting from different
random starting coordinates, for each data set. [Cur-
rently, the data sets produced by Ramani et al. [14] are
too sparse to contain sufficient long-range cis and/or
trans-chromosomal contacts to compute structures.]

For all the test datasets we employed the NucDy-
namics software (available at https://github.com/tjs23/
nuc_dynamics) in the same way, using its default
parameters, and in Fig. 5 an overlay of five models
(chosen at random) of each computed whole genome
structure is shown. In these calculations each particle
represents 100 kb of chromatin. By calculating multi-
ple models, it is possible to gauge the precision of the
computed structures – in other words how well deter-
mined they are by the experimental data – by measur-
ing the root-mean-square deviation (RMSD) value
between the different models. While the dataset from
Stevens et al. [9] contained the fewest contacts, analy-
sis of the RMSD values revealed that structure had the
lowest range of model-model RMSD values: 0.47
to 0.66 particle radii. This likely results from the
increased proportion of longer range (>10 Mb) con-
tacts produced by this protocol compared with
the data from Nagano et al. [13]. Notably, the struc-
ture computed from the Flyamer et al. [12] data had
the highest RMSD values (1.65-2.14 radii), despite
having five times more contacts than the data sets
from either Nagano et al. [13] or Stevens et al. [9]

This difference in precision, which likely stems from a
relative paucity of longer-range contacts combined
with a large number of spurious contacts, can be
clearly seen when viewing the structures of multiple
models of a particular chromosome (Fig. S1). In addi-
tion, whilst the chromosomes in the structures com-
puted from either the Nagano et al. [13] or Stevens
et al. [9] data form discrete (yet intermingling) territo-
ries, this is not the case for all the chromosomes com-
puted from the Flyamer et al. [12] data. Here,
chromosomes are often entangled and some regions
adopt extended conformations (Fig. S1). Further
work is necessary to understand how much of this is
due to the different cell-type rather than problems
with the data.

Discussion

In this study we have implemented a computational
pipeline for the evaluation of single-cell Hi-C data.
We also wanted to carry out a first comparative analy-
sis of the four recently published protocols, with a
view to evaluating which may be most useful for calcu-
lating 3D genome structures. Ultimately, the aim is to
produce the best quality chromatin contact data sets
that can then be used to compute genome structures
at the finest possible resolution. We find that three of
the four protocols by Stevens et al. [9], Flyamer et al.
[12] and Nagano et al. [13] generate sufficient num-
bers of useful contacts to compute genome structures
at 100 kb resolution. The fourth protocol by Ramani
et al. [14] allows the study of many more cells but cur-
rently yields too few contacts for 3D genome structure
determination, although it is of course useful as a low-
input Hi-C variant for statistical analyses. The proto-
cols by Stevens et al. [9] and Nagano et al. [13] yielded
on average a comparable number of genomic contacts,
70,000 and 77,000 respectively (Table 1), to produced
genome structures with good precision (RMSD < 1.5
radii) at 100 kb resolution. This yield represents an
average recovery of 2.3-2.5% of the total possible liga-
tion junctions, and it is likely that these two protocols
have yet to reach their contact capture limit. The
incorporation of a large bulky biotin dATP nucleotide
at ligated junctions, which has been reported to be
inefficient [16], may be a reason for the low yield in
these two protocols. Indeed, the protocol by Flyamer
et al. [12] which omits biotin labelling generated on
average over 6 fold more contacts (481,000) than the
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protocols developed by either Nagano et al. [13] or
Stevens et al. [9] (Table 1). However, we discovered
that the computed structures from these data sets are
of poorer precision than those from either the Nagano
et al. [13] or Stevens et al. [9] data (Fig. 5). This

probably results from a smaller proportion of long-
range contacts and the presence of illegitimate con-
tacts – the latter being identifiable as uniformly dis-
persed contacts in the contact map. Some differences
in contact probability can naturally be expected due to

Figure 5. Comparison of 3D genome structures calculated from different single-cell Hi-C contact data-sets. Shown are five superimposed
structures derived from repeat calculations using 100 kb particles, along with the corresponding contact map (see Fig. 3 for details), for:
(A) Cell 1 from Stevens et al. [9]; (B) NXT-117 from Nagano et al. [13]; and (C) Zygote Pat 63 from Flyamer et al. [12]. Contacts represent
the number of contacts used to generate the structural models after removing any contacts that are not supported by others within a
genomic window of 2 Mb (to reduce noise). The RMSD values are represented as a range derived from the 100 kb all-particle values
between all the model pairs. Each of the 20 chromosomes (Chr1-19 & ChrX) is coloured differently.
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differences in cell type (where chromosome folding
may be different). The Flyamer [12] protocol was
applied to mouse oocyte and zygote samples, which
are both found in the early stages of development,
whereas Stevens et al. [9] and Nagano et al. [13] stud-
ied mouse ES cells. A recent population Hi-C study
carried out with mouse oocytes reported that the con-
tact maps contain less well-defined TADs and com-
partments compared to ES cells [17]. Therefore, the
different cell types could be responsible for some of
the differences in the distribution of Hi-C contacts.
However, the differences in the levels of random,
unclustered contacts seem to stem from the Flyamer
et al. [12] protocol. Our analysis of the processed
sequence data reveals substantially more promiscuous
reads (i.e. reads that are involved in more contacts
than is formally possible for a single cell), compared
to the data from either Nagano et al. [13] or Stevens
et al. [9] (Table 1). This suggests that the Flyamer
et al. [12] protocol generates more random, illegiti-
mate contacts. In this context it is noteworthy that the
Flyamer et al. [12] protocol is the only one to use the
strand displacement Phi 29 DNA polymerase for
library amplification, whereas all the other protocols
use a thermally stable DNA polymerase and PCR for
DNA amplification. It has been reported that multiple
displacement amplification can generate chimeric
DNA rearrangements between two different DNA
molecules complicating genome assembly [18]. Analy-
sis of these types of rearrangement have revealed that
they probably occur when the displaced polymerase
3 0-termini are freed and prime to nearby displaced 5 0-
strands to create a chimeric molecule [19]. An increase
in such chimeric products may help explain the large
number of illegitimate trans-chromosomal contacts
observed in the genome wide contact maps obtained
with this protocol. To overcome these problems an
alternative strategy might be to employ a different sin-
gle cell WGA method such as linear amplification via
transposon insertion (LIANTI) [20]. This procedure
does not use a strand displacement polymerase, but
instead combines Tn5 transposition and T7 in-vitro
transcription to linearly amplify DNA. Interestingly,
the protocol developed by Nagano et al. [13] success-
fully employed the Tn5 transposase to introduce
primer sequences for PCR amplification, suggesting
that Hi-C ligated DNA is permissive to DNA insertion
by transposition and that a LIANTI approach could

potentially be used to make Hi-C libraries from single
cells.

In conclusion, single-cell genomic methods are
developing rapidly and we hope that the computa-
tional pipeline described here will provide a useful
tool to suggest how the current protocols might be
improved. They should also be useful to assess new
single-cell Hi-C protocols as they are developed and
to troubleshoot experiments as these protocols are
utilized in practice.

Materials and methods

Software

Unless otherwise stated, all Python scripts for process-
ing and analysis are available at: https://github.com/
tjs23/nuc_processing and https://github.com/tjs23/
nuc_dynamics.

Single-cell Hi-C sequence data

Sequencing data corresponding to the four single-cell
Hi-C protocols were downloaded from the Gene
Expression Omnibus (GEO) entries with the following
accession codes: GSE8000612, GSE9448913, GSE8492014

and GSE802809. Corresponding SRA entries, as listed
in Table S1 were then used as the source of sequence
data for single-cell samples (haploid where possible).
The SRA files were downloaded and automatically con-
verted into FASTQ format file using the “fastq-dump
–split-files” command from the NCBI SRA toolkit.

The various sequence data sets were then processed,
as required, to extract sequences for separate, individ-
ual cells. The SRA data sets from Flyamer et al. [12]
and Stevens et al. [9] were already separated into indi-
vidual cells and so these reads could be used directly
after downloading in FASTQ format.

Data from Nagano et al. [13] was in the form of
separate cell-barcode and main-read sequence FASTQ
files. Corresponding barcode and main-read files, rep-
resenting the same paired-end group for the
sequenced library (i.e. R1 or R2), were spliced together
using the splice_fastqs.py script and then de-multi-
plexed, according to the barcode sequences, into sepa-
rated paired FASTQ files for each cell using the
following script and command line options:

python split_fastq_barcodes.py comb_seqs.fq -b barcodes.
txt -s 8
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Data for the massively-multiplex method of Ram-
ani et al. [14] was initially processed using the first
stages of the method described at https://github.com/
VRam142/combinatorialHiC and its corresponding
Python scripts. The SigPrep (https://github.com/
jstjohn/SeqPrep) command was used to remove
adapter sequences and the inline_splitter.py script was
used to trim and record outer barcodes for the reads:
SeqPrep -A AGATCGGAAGAGCGATCGG -B AGAT
CGGAAGAGCGTCGTG -f in_r1.fq -r in_r2.fq -1
ad_clip_r1.fq -2 ad_clip_r2.fq

python inline_splitter.py ad_clip_r1.fq ad_clip_r2.fq out-
er_barcodes.txt split_r1.fq split_r2.fq 2> splitting_stats.
html

The clipped files were then passed on to the ana-
lyze_scDHC_V2design.py script to find and remove
inner barcode sequences:

python analyze_scDHC_V2design.py inner_barcodes.txt
split_r1.fq split_r2.fq bc_clip_r1.fq bc_clip_r2.fq > bc_as-
soc.txt

Next, a custom written Python script “split_mmhic.
py” was used to separate the files into individual sin-
gle-cell FASTQ files according to their barcode associ-
ations – the original paper mapped reads from all cells
together. The largest of these were then selected for
further processing analysis. These single-cell datasets
were filtered according to species (i.e. selecting
mouse rather than human) at a later stage. During the
sequence processing mapping human reads to the
mouse genome gives detectably poor results.

Sequence processing and analysis

All genome sequence mapping, processing and
analysis was performed using the NucProcess soft-
ware using the same parameters where possible,
but with key adjustments appropriate to each data-
set’s protocol, e.g. accounting for whether frag-
ments were released randomly or using a second
restriction enzyme. In each case, the inputs were
paired-end FASTQ format read files and the out-
puts were filtered contact lists, contact maps and
statistical reports, all for each cell separately. It is
notable that this procedure performs somewhat
more stringent checks for aberrant contacts than
was described by Flyamer et al. [12], where a rela-
tively simple binning and de-duplication procedure
was employed.

NucProcess, as described in Stevens et al. [9] and
Lando et al. [11], performed the following steps: 1)
Reads that go through a ligation junction were clipped
at the junction to remove any unnatural sequence that
should not be mapped to the reference genome. 2)
The clipped reads for each molecule end (R1 or R2)
were mapped separately to the mouse genome
build (GRCm38/mm10) using the Bowtie2 program
{PMID:19261174} [21] with options corresponding to
‘bowtie2 –very-sensitive -k 2’. 3) Reads were then
paired and those where both ends mapped to unique/
unambiguous genome positions were kept. 4) The
mapped read pair positions were allocated to specific
RE1-RE1 restriction digest fragments and these were
filtered to remove any aberrant molecular events (e.g.
circularisation) and pairs that convey no spatial infor-
mation; mostly re-ligation of adjacent fragments and
pairs internal to the same RE1 fragment. 5) Read pairs
were grouped according to whether they represent the
same ligation event, i.e. between the same restriction
fragment ends. Unsupported ligation events, repre-
sented by only a single read pair, were discarded while
the remaining, supported ligations (i.e. with two or
more read pairs) were simplified into single non-
redundant contacts. 6) Promiscuous contacts, where
an end is also involved in another, different contact,
are excluded (given that this should generally not be
possible in a haploid cell).

The general command parameters used for process-
ing all the sequence data was:

nuc_process -i in_r1.fq in_r2.fq -g genome_mm10 -v -re1
MboI -s 50–5000

It should be noted that that MboI and DpnII
restriction endoculeases are isoschizomers, and so this
command is also appropriate for the Flyamer et al.
[12] and Ramani et al. [14] data where DpnII was
used. For Stevens et al. [9] the option -re2 AluI was
also added, except in the case of the “Cell 3” sample. A
selection of the output processing statistics from the
individual cells were then aggregated for each experi-
mental protocol, as presented in Table 1.

The contact maps for each data set were automati-
cally generated using the NucProcess software, along
with scores for identifying the genome content
(ploidy) and data sets with condensed, mitotic chro-
mosomes (see Lando et al. [11]). These scores were
used to identify haploid cells that were likely in the
G1 phase of the cell cycle, i.e. non-condensed and
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without a doubled genome content, indicative of G2.
In practice, the Stevens et al. [9] and Flyamer et al.
[12]. data sets did not require G1 phase selection as
they were already selected/separated according to cell
cycle. For the Nagano et al. [13] data sets 20 good
G1 candidates were readily identified from the “Hap-
loid3” subset. For the Ramani et al. [14] data there
were too few contacts for individual cells to make an
assessment of cell cycle stage, so no selection was
made and the 500 most populous data sets were
used for analysis.

The distribution of contact probability according to
sequence separation (i.e. within the same chromo-
some) was plotted for aggregated data sets for each
experimental protocol using the “nuc_contact_prob-
ability” program.

Structure calculation

The best data set from each of the Flyamer et al.
[12], Nagano et al. [13] and Stevens et al. [9] cells
were identified by inspection of the sequence proc-
essing reports and contact maps. In each case we
selected the cells with the most contacts that were
likely to be in G1 phase, and also showed clear
clustering of inter-chromosomal contacts and,
where possible, low random/dispersed nose. The
contact list for each cell (in the NCC text format,
as output by NucProcess) was input to the NucDy-
namics program (https://github.com/tjs23/nuc_dy
namics) and used to calculate 10 independent coor-
dinate models for each genome, using the same,
default parameters for each cell:

nuc_dynamics -m 10 -cpu 10 input.ncc -o output.n3d

Accordingly, the genome structures were calculated
using a hierarchical simulated annealing procedure,
which starts from random coordinates (in a sphere)
and subsequently solves structures at ever higher reso-
lution (8.0, 4.0, 2.0, 0.4, 0.2 Mb particle sizes) until a
final resolution with 100 kb particles. It should be
noted that as standard, to reduce isolated contact
noise, the software discards any contacts that are
deemed unsupported; where there is no other contact
within 2 Mb of both ends.

For each single cell, the coordinates were output
and the separate models were aligned with an iterative,
weighted singular-value decomposition approach, as
described in Stevens et al. [9] so that the all-particle

RMDs values could be computed between the various
different models that derive from each cell/protocol.
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