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This study pertains to the new approach for the development of hybrid peptide LL-37Tα1

and its biomedical applications. A linear cationic hybrid peptide, LL-37Tα1 was derived

from two parental peptides (LL-37 and Tα1) recognized as potent anti-endotoxin without

any hemolytic or cytotoxic activity. We successfully cloned the gene of hybrid peptide

LL-37Tα1 in PpICZαA vector and expressed in the Pichia pastoris. The recombinant

peptide was purified by Ni-affinity column and reverse-phase high performance liquid

chromatography (RP-HPLC) with an estimated molecular mass of 3.9 kDa as determined

by SDS-PAGE and mass spectrometry. We analyzed the LPS neutralization by limulus

amebocyte lysate (LAL) activity and the results indicate that the hybrid peptide LL-37Tα1

directly binds endotoxin and significantly (p < 0.05) neutralizes the effect of LPS in a

dose-dependent manner. Lactate dehydrogenase (LDH) assay revealed that LL-37Tα1

successfully reduces the LPS-induced cytotoxicity in mouse RAW264.7 macrophages.

Moreover, it significantly (p < 0.05) decreased the levels of nitric oxide, proinflammatory

cytokines including TNF-α, IL-6, IL-1β, and diminished the number of apoptotic cells in

LPS-stimulated mouse RAW264.7 macrophages. Our results suggest that the P. pastoris

expression system is cost-effective for commercial production of the immunomodulatory

and anti-inflammatory hybrid peptide (IAHP) LL-37Tα1 and the peptide may serve as

effective anti-endotoxin/anti-inflammatory agent with minimal cytotoxicity.

Keywords: hybrid peptides, yeast expression, LPS neutralization, immunomodulatory, apoptosis

INTRODUCTION

Antimicrobial peptides (AMPs) are important components of the innate immune response against
microbes. Besides plants and animals, AMPs have been identified in many other organisms
including microorganisms (fungi, bacteria, archaea, algae, protozoa) (1–4). AMPs have secured
additional attention because of their small size, amphipathic nature, and having potent activity
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against bacterial, viral, and fungal infections (5). AMPs that
bind to LPS and neutralize its effect could have potential
clinical applications (6, 7). The development of bacterial
resistance toward conventional antibiotics has turned into a
critical therapeutic emergency (8, 9). Antibiotics have been
commonly used in the treatment of inflammation but they have
many sides effects (10). Antibiotics can increase the release
of bacterial LPS by killing bacteria and activate the immune
system to secrete cytokines and produce lethal shock (11).
LPS is an integral component of Gram-negative bacteria’s outer
membrane, that is released after lysis of bacteria and leads to a
number of pathophysiological conditions like fever, leukopenia,
intravascular coagulation, and sepsis (12, 13). Therefore, over
the past decades, there has been a dire need for new anti-
inflammatory peptides that have both antibacterial and LPS
neutralizing activities (10).

LL-37 is an α-helical peptide discovered in 1995 in human
leukocytes. It is comprised of 37-amino acid and attracts much
research consideration (14). The LL-37 peptide plays a significant
role as a primary line of defense against local and systemic
infection of the microbes while reducing the inflammation.
Besides antimicrobial activities, the LL-37 peptide also has the
ability to enhance immunity and bind with the host cell surface
molecules (11, 15). Additionally, LL-37 directly binds to LPS and
neutralize its biological activity because it suppresses interleukin-
6 (IL-6), interleukin 1β (IL-1β) and LPS-induced tumor necrosis
factor-α (TNF-α) (16, 17). Henceforth, LL-37 is a favorable
peptide for the control of inflammation and minimize the
influence of endotoxin (18, 19).

Thymosin α1 (Tα1) is another peptide which originates
from natural thymic peptide consisting of 28 amino acids
(20) and is derived through cleavage from its precursor
prothymosin α (proTα) (21). Tα1 has an important role
to control infectious diseases and it regulates the immune
response through a primary action on the cells of the innate
immune system (22, 23). Tα1 has several immunomodulatory
functions and it has been used in the treatment of immune
dysfunctions i.e., hepatitis B and C, cancer, and sepsis (24).
Importantly, it has been shown that Tα1 increases proteins
expression on the surface of tumor cells and arbitrate
antigen production such as major histocompatibility class
(MHC) I, II, beta-2 microglobulin (25), and tumor-specific
antigen (26, 27).

Hybridizing different AMPs is most effective method to
obtained hybrid peptide having elevated antibacterial, anti-
inflammatory, and less cytotoxic capabilities (28, 29). In the
previous report from our laboratory, two hybrid peptides
cecropin A (1-8)-LL37 (17-30) (30) and melittin (1-13)-
LL37 (17-30) (31) were designed and expressed in Escherichia
coli (E.coli) system. Antibacterial activities of both hybrid
peptides were also investigated. Although, E.coli is a relatively
easy expression system but its inability to fold the fusion
proteins and lack of proper post-translational modification (i.e.,
glycosylation, proline cis/trans isomerization, lipidation, and
sulphation) limit the expression of many proteins (32). Generally,
this system is not suitable for proteins that contain high

disulphide connectivity (33, 34). E. coli expressed protein also
retain amino-terminal methionine, which affects protein stability
(35). Whereas, Picha pastoris (P. pastoris) expression systems
offer significant advantages including tightly regulated alcohol
oxidase I promotor (AOX1) (36), a strong respiratory system
that facilitates high cell densities (37–39), post-transcriptional
modification and formation of disulfide bond. Another leading
end benefit is the easy and convenient separation and purification
of the target protein through the secretory yeast expression
system (40). P.pastoris expression system has been extensively
used to successful expression of many antimicrobial and anti-
inflammatory hybrid peptides such as CA-MA (41), CecropinAD
(42), and lunasin-4 (43).

In the present study, we hypothesized that the combination
of LL-37 (24 amino acid) and Tα1 (8 amino acid) may
have augmented LPS neutralization, its immunomodulatory,
anti-inflammatory activity along with least cytotoxic effects.
Therefore, we synthesized and expressed the hybrid peptide
LL-37Tα1, in methylotrophic yeast expression system and
investigated its bioactivities.

MATERIALS AND METHODS

Reagents, Strains, Vectors
The Gel Extraction kit, Plasmid Mini kit, and DNA extraction kit
for yeast were procured from Tiangen Biotech (Beijing, China).
The restriction enzyme Kpn I, Xba I, and Sac I were obtained
from TaKaRa Biotech Inc. (Dalian, China). PCR reagents, were
sourced from Tiangen Biotech (Beijing, China). ZeocinTM was
purchased from Invitrogen (Carlsbad, CA, USA). Pichia pastoris
(strain X-33), E. coli (strain DH5α), expression vectors pPICZαA
(Invitrogen, USA), protein markers (Thermo Fisher Scientific,
USA) and E.coli LPS (O55: B5, Sigma-Aldrich, USA) were
routinely available in our laboratory.

Construction of Expression Plasmid
pPICZαA-LL-37Tα1
The hybrid LL-37Tα1 peptide was optimized and rare codons
were removed according to the amino acid sequence by using
the JAVA codon adaptation tool (JCAT) http://www.jcat.de/Start.
jsp). The sequence coding LL-37Tα1 has combined accordingly
as per favored codon usage of P. pastoris by Tsingke Biological
Technology Co, Ltd Beijing. The 129 bp fragment of LL-37Tα1
was implanted at the restriction site Kpn I and Xba I with 6×
Histidine tag (6×His-tag) of the expression vector pPICZαA and
transformed to E.coli (Dhα5). Positive transformants were then
screened on Luria Bertani (LB) plates containing yeast extract (5
g/L), tryptone (10 g/L), and NaCl (10 g/L) and confirmed by PCR
using primers as Sense; 5′-TCGGTAAGGAATTCAAGAGA-3′

Antisense 5′-GATGATGTTCAACAACTTCC-3′ and sequencing
was carried out (Tsingke Biotech). PCR conditions were followed
as 35 cycles (95◦C/40 s; 55◦C/40 s; 72◦C/50 s) and final extension
at 72◦C/10min. The positive recombinant plasmid (pPICZαA-
LL-37Tα1) was extracted by Tianprep plasmid kit (Tiangen,
Beijing, China).
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Transformation and Expression of Hybrid
LL-37Tα1 Peptide
The expression plasmid (pPICZαA-LL-37Tα1) was linearized
with Sca I and transformed into P. pastoris (X-33) by
electroporation according to manufacturer’s directions
(Invitrogen, USA). All zeocin resistant colonies in yeast
extract peptone dextrose (YPDS) medium (1% yeast extract,
2% peptone, 2% dextrose, IM sorbitol, 2% agar, and zeocin
100µg/ml) were screened. The positive strains were verified by
PCR using 5′ alcohol oxidase 1 (AOX1) and 3′ AOX1 promoter
region primers and subsequent sequencing (Tsingke Biotech).
The positive recombinant (PpICZαA-LL-37Tα1) yeast cells were
cultured for 22 h in a shaker containing 50ml buffered glycerol
complex (BMGY) medium (1% yeast extract, 2% peptone, 1.34%
YNB, biotin 4 × 10−5%, 1% glycerol and 100mM potassium
phosphate, pH 6.0) to OD600 = 5.0. The yeast cells were
collected by centrifugation at 2,000 × g for 5min. At the room
temperature, the cells were resuspended in buffered methanol-
complex (BMMY) medium (1% yeast extract, 2% peptone, 1.34%
YNB, 4 × 10−5 % biotin, 1% methanol and 100mM potassium
phosphate, pH 5.0). 1% methanol was added every 24 h and
culture supernatant was analyzed for expression of a hybrid
peptide by Tricine-sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (Tricine-SDS-PAGE) till optimization was
obtained at 144 h. Protein concentration was detected by using
the Bio-Red dye agent with bovine serum albumin (BSA) as a
standard (44).

Purification and Analysis of Hybrid
LL-37Tα1 Peptide
Purification of the recombinant LL-37Tα1 peptide was done
according to the procedure described hitherto (45) with slight
modification. After 144 h of 1% methanol induction, the culture
supernatant was collected by centrifuge at 12,000 × g for
20min. The supernatant comprising LL-37Tα1 peptide attached
with 6×His-tag was filtered and loaded to 1ml His Trap
Chelating Ni-affinity column (Bio-Beads TM, Sweden). The
column was equilibrated with 1× phosphate buffer (PB) and
10mM imidazole. The recombinant peptide was eluted by using
a different concentration linear gradient of imidazole (50–
500mM). The eluted proteins were analyzed by Tricine- SDS-
PAGE and the protein concentration was determined by using
the Bio-Red reagent with BSA standard (44).

After initial purification, the recombinant LL-37Tα1 peptide
was further purified by using reversed phase-high performance
liquid chromatographic method (RP-HPLC) comprised of C18
column (4.6 × 250mm, 5µm) with a linear gradient of
acetonitrile (0–100% for 30min) containing 0.1% Trifluoroacetic
acid (TFA) at a flow rate of 1.0 ml/min. The elution peaks of
recombinant peptide were monitored at 220 nm. The activity
of the fraction containing recombinant LL-37Tα1 peptide was
collected and verified by using LPS neutralization assay (46). The
purified hybrid LL-37Tα1 peptide was diluted with milli-Q water
and filtered through 0.22µm and passed through electrospray
ionization mass spectrometry ESI-MS/MS.

Activity Assay of Recombinant LL-37Tα1
Peptide
Determination of LPS Neutralization
The neutralization of endotoxin by the parental (LL-37)
and hybrid peptide (LL-37Tα1) was evaluated using a
Chromogenic limulus amebocyte lysate (LAL) assay according to
manufacturer’s instructions with some modification. A constant
deliberation of endotoxin (1 EU/ml) was incubated with a varied
concentration of the parental and hybrid peptide (0 to 50µg/ml)
in the wells of a pyrogenic sterile microtiter plate at 37◦C. The 50
µL aliquots concentrate of LAL reagent was added and incubated
for 10min at 37◦C. On the addition of 100 µL chromogenic
substrate, yellow color appeared. The reaction was stopped
by adding 25% HCl and the absorbance was measured at 545
nm (46).

Hemolytic Activity
Heparinized mouse red blood cells (RBCs) were used to
determine the hemolytic activity of the parental (LL-37) and
hybrid peptide (LL-37Tα1) with slight modification (47, 48).
Fresh mouse RBCs (4mL) were collected at 1,500 rpm for
10min at 4◦C. The cells were diluted to 10% hematocrit after
subsequent washing with phosphate buffer saline. After that
cells were incubated with the parental and hybrid peptide with
concentrations ranging from 10 to 50 µl for 1 h at 37◦C,
then centrifuged at 3,500 rpm for 5min. The absorbance of
supernatant wasmeasured at 414 nm. PBS and Triton X-100 were
used as negative and positive controls, respectively.

Cell Culture
Themouse RAW 264.7 macrophages were cultured in Dulbecco’s
modified eagle’s medium (DMEM) supplemented with
antibiotics (100µg/ml streptomycin and 100 U/ml penicillin)
and 10% fetal bovine serum in a humid, 5% CO2 chamber
at 37◦C.

Lactate Dehydrogenase Activity (LDH) Assay
LDH assay was employed to evaluate the cytotoxic effect of LL-
37Tα1 peptide on mouse RAW264.7 macrophages treated with
or without LPS as defined previously with slight modification
(49, 50). LPS (1µg/ml) treated and untreated cells (1 × 105

cells/mL) were exposed to LL-37Tα1 (10 to 50µg/ml), while only
LPS treated cells were exposed with parental peptide to check
the comparative effect with hybrid peptide and incubated for
24 h. The cell supernatants were collected and LDH activity was
measured according to the LDH assay kit’s instruction (Dojingdo
Laboratories, Kumamoto, Japan).

Inhibition of Nitric Oxide (NO) Production in

LPS-induced Mouse RAW264.7 Macrophages
LPS (1µg/ml) treated mouse RAW264.7 macrophages were
incubated with various concentration of parental LL-37 and
hybrid LL-37Tα1 peptide (20–50µg/ml). After incubation of
24 h, the culture supernatant was collected and NO assay was
performed. The same volume of Griess reagent (1% sulfanilamide
in 5% phosphoric acid and 0.1% naphthylethylene diamine
dihydrochloride) was interspersed with 100 µL of the culture
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medium and further incubated for 15min (47). The absorbance
of the sample was measured at 550 nm.

Determination of Pro-inflammatory Cytokines in

LPS-induced Mouse RAW264.7 Macrophages
The levels of TNFα, IL-6, and IL-1β in the culture supernatant
were assessed after the addition of LPS (1µg/ml) to mouse
RAW264.7 macrophages (5 × 105 cells /well) in the absence
and presence of LL-37 and LL-37Tα1 peptide (10–50µg/ml).
The cells were incubated for 24 h at 37◦C with 5% CO2.
The secretion of pro-inflammatory cytokines was measured
in the culture supernatants by using mouse cloud-clone corp
protein antibodies enzyme-linked immunosorbet assay (ELISA)
kit (Houston, USA). The levels were quantified and analyzed at
450 nm absorbance.

Flow Cytometry
LPS-stimulated apoptosis in mouse RAW264.7 macrophages
was determined by using (Propidium iodide) PI and annexin

(V conjugated to green-fluorescent FITC dye) V-FITC staining
method. The mouse RAW264.7 macrophages were cultured as
described above and challenged with LPS (10µg/ml) with the
absence and presence of the LL-37 and LL-37Tα1 peptide for 4,
12, and 24 h. The cells were washed with ice-cold PBS three times
and stained with FITC annexin V and PI following apoptosis
detection kit (Becton Dickinson Fraklin Lakes, NJ, USA) as
described earlier (48). Apoptosis rate was articulated by using
FACSA via flow cytometry (Becton Dickinson, USA).

Statistical Analysis
The data were shown as mean ± standard deviation (SD) of
the three independent experiments. The data were statistical
evaluated by the one-way analysis of variance (ANOVA)
followed by least significant difference (LSD) test for multiple
comparisons, and post hoc test using SPSS 19.0 (SPSS, Inc.,
Chicago, IL, USA). Moreover, p < 0.05 and p < 0.01 represent
the significance and highly significance differences.

FIGURE 1 | Construction of recombinant plasmid pPICZαA-LL-37Tα1.
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RESULTS

Construction and Expression of
pPICZαA-LL-37Tα1
Hybrid peptide gene was amplified through PCR and 129 bp
DNA fragment encoding a C-terminal 6× His tag which was
attached with Kpn I and Xba I restriction enzyme site at it’s
5′ and 3′ end, respectively, was inserted into pUC57 vector.
This fragment was double-digested with restriction enzymes
(Kpn I and Xba I) and was a frame clone to attach to the
3′ end of the α-factor secretion signal, downstream AOX1
promoter of the expression plasmid pPICZαA to result in a
recombinant vector named pPICZαA-LL-37Tα1. The insertion
was then verified by restriction enzyme digestion analysis and
sequencing. The construction procedure of pPICZαA-LL-37Tα1
is shown in (Figure 1). The expression vector pPICZαA-LL-
37Tα1 was treated with Sac I and linearized fragment was
later transformed into P. pastoris X-33 competent cells by
electroporation. The ten zeocin (100µg/ml) resistant colonies
were selected and confirmed by LL-37Tα1 and PpICZAαA

specific primers by PCR. Our result revealed that target
pPICZαA-LL-37Tα1 sequence successfully integrated into the
host cells. The positive transformed colonies were then induced
by 1% pure methanol (v/v) at 144 h after optimization of
methanol concentration. After induction of methanol, the
culture supernatant was collected and analyzed by Tricine-
SDS-PAGE and silver staining. As expected, the 3.9 kDa
molecular weight recombinant hybrid LL-37Tα1 peptide was
observed (Figure 2A).

Purification, RP-HPLC, and Mass
Spectrometry Analysis of Hybrid LL-37Tα1
Peptide
The LL-37Tα1 peptide was purified by Ni-NTA affinity
chromatography column after centrifugation of culture medium.
The pure hybrid peptide was eluted with 400 and 500mM
imidazole. As shown in (Figure 2B), SDS-PAGE of the purified
peptide indicated single band conforming to the estimated 3.9
kDa size. (Figure 2C), which yielded 5mg of pure recombinant

FIGURE 2 | Tricine-SDS-PAGE and analysis of recombinant peptide, (A) Tricine-SDS-PAGE of the cell culture media from P.pastoris expressing secreted LL-37Tα1.

Lane M, molecular weight markers; Lane C, control (supernatant of X33/PpICZαA); Lane 1 and 2 (supernatant X33/PpICZαA-LL-37Tα1) peptide expression after

methanol (144 h) induction and arrow in the lane indicated 3.9 kDa polypeptide. (B) Tricine-SDS-PAGE of recombinant purified LL-37Tα1. Lane M, molecular weight

markers; Lane C, control (X33/PpICZαA); Lane 1, a sample of the purified recombinant peptide and arrow indicated LL-37Tα1 (3.9 kDa) expression. (C) The elution

pattern of RP-HPLC C18 column of the purified recombinant LL-37Tα1 and the high peak indicates fraction that contains LL-37Tα1. (D) ESI-MS analysis of purified

recombinant LL-37Tα1 peptide.
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peptide. After purification, the hybrid peptide was diluted in
milli-Q water and filtered through a 0.22µM filter and then
adjusted to ESI-MS/MS. Mass spectrometry of the purified
LL-37Tα1 displayed a single non-dispersed signal (Figure 2D).
The average mass of the molecular ion [M+5H+]5+ was
786 Da, [M+4H+]4+ 983 Da, and [M+3H+]3+ 1310 Da
which corresponds to the molecular mass of 3927 Da for the
recombinant LL-37Tα1. This result indicated that recombinant
peptide was removed from the N-terminus successfully.

Immunomodulatory and Anti-inflammatory
Response of Hybrid LL-37Tα1 Peptide
Recombinant LL-37Tα1 Neutralize LPS
Under the physiological conditions, The LL-37Tα1 peptide has
a net charge of +7 and we predicted that it would bind
and neutralizes the LPS. LAL test is an extremely sensitive
indicator of the presence of free non-neutralized LPS as described
previously (51–53), we determined the capability of the parental
and hybrid peptide to neutralize LPS in vitro by using this
test. Our result exhibited that LL-37 (40 and 50µg/ml) was
capable of neutralizing LPS (75.241% ±2.100, 87.361% ±3.210,
respectively) and LL-37Tα1 (93.231% ± 2.3828, 99.131% ±

3.284, respectively) in a dose-dependentmannerWhereas, hybrid
peptide significantly increased the neutralization of LPS in
comparison to parental peptide (Figure 3A).

Cytotoxicity and Hemolytic Activity of Recombinant

LL-37Tα1 Peptide
The toxicity of the hybrid peptide was determined by using LDH
assay with and without LPS in mouse RAW 264.7 macrophages.
Data indicate that LPS infection in the absence of hybrid
peptide induced higher release of LDH at 24 h (3.2 ± 0.051)
as compared to the combined treatment of LPS and LL-37Tα1
peptide (10 to 50µg/ml). This indicates that LPS damaged

the mouse RAW264.7 macrophage’s cell membrane but LL-
37Tα1 peptide significantly (p < 0.001) neutralized the LPS and
decreased the LDH level (2.38 ± 0.066) at 40µg/ml and (2.16
± 0.037) at 50µg/ml, respectively (Figure 3B). Furthermore,
the recombinant hybrid peptide also reduced LPS-induced
cytotoxicity as compared with parental peptide. The hemolytic
activity of hybrid peptide was examined by lysing mouse RBCs
(Figure 3C). As compared with the control group 0% (p< 0.001)
hemolysis was observed in the treated cells and hybrid peptide
caused significantly less hemolysis than LL-37. Altogether, these
findings provide evidence that the hybrid LL-37Tα1 peptide does
not have cytotoxic and hemolytic properties.

LL-37Tα1 Down Regulates LPS-stimulated

Inflammatory Response in Mouse RAW264.7

Macrophages
The ability of LL-37Tα1 to neutralize LPS prompted us that
it could suppress the inflammatory response induced by LPS.
To address this query, we appraised the effect of hybrid
LL-37Tα1 peptide on LPS-induced secretion of NO and the
proinflammatory cytokines including TNF-α, IL-6, and IL-1β
in mouse RAW264.7 macrophages. Our results suggested that
LPS significantly increased the NO level from mouse RAW264.7
cells as compared to control group (55 vs. 9µM), and this
NO level was reduced (33 and 28µM) after treatment with
LL-37Tα1(40–50µg/ml) as shown in (Figure 4A). Similarly,
the analysis of TNF-α, IL-6, and IL-1β by ELISA to depict
that LL-37Tα1 significantly decreased the secretion of TNF-
α, IL-6 and IL-1β in mouse RAW264.7 macrophages (868.93,
903.88, and 878.69 pg/ml, respectively) as compared with
secretion in cells infected with LPS only (Figures 4B–D). LL-
37Tα1 treatment (40 and 50µg/ml) significantly (p < 0.001)
reduced TNF-α concentration550.93 pg/ml and 437.41 pg/ml,
respectively (Figure 4B), IL-6 reduced 615.73 pg/ml, 517.25

FIGURE 3 | LPS neutralization, cytotoxicity, and hemolytic activity of parental and recombinant LL-37Tα1 peptide. (A) LPS neutralization by LL-37 and LL-37Tα1

determined using an endotoxin quantitation kit. Mean values presented; n = 3 ± SD (#p < 0.05 and ##p < 0.01 showed comparison of LL-37 vs. LL-37Tα1).

(B) LL-37αT1 peptide decreased cytotoxicity in the cultured medium of LPS-infected mouse RAW264.7 macrophages. Data represented as mean ± standard

deviation (SDs) of independent experiments. *p < 0.05,**p < 0.01,***p < 0.001, vs. LPS. Whereas, #p < 0.05 and ##p < 0.01 indicates significant difference

compared with parental LL-37 peptide. (C) Hemolytic activities of LL-37Tα1 against mouse RBCs. The data correspond to the mean values of three independent

experiments and are expressed as a percentage of hemolysis ± standard deviation (***p < 0.001 vs. Triton X-100). While, #p < 0.05 and ##p < 0.01 indicates

significant difference compared with parental LL-37 peptide.
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FIGURE 4 | Effect of LL-37 and recombinant LL-37Tα1 peptide on LPS-induced inflammatory response in mouse RAW264.7 macrophages. (A) Nitric oxide (NO)

production, (B) level of TNF-α, (C) IL-6, and (D) IL-1β, Cell were infected by LPS to stimulate inflammation and treated with various concentration of LL-37 and

LL-37Tα1. After 24 h incubation, culture media were collected and inflammatory cytokines level were determined. Values are means ± SD of three independent

experiments. *p < 0.05, **p < 0.01, ***p < 0.001, vs. LPS. While, #p < 0.05 and ##p < 0.01 indicates significant difference compared with parental LL-37 peptide.

pg/ml (Figure 4C), and IL-1β showed a reduction of 601, 527
pg/ml, respectively (Figure 4D). The results of the current study
reveal that our hybrid peptide LL-37Tα1 has significant anti-
inflammatory activity. Moreover, the hybrid peptide LL-37Tα1
exhibited more anti-inflammatory activities as compared to
parental peptide LL-37 (Figures 4A–D).

LPS-stimulated Apoptosis in Mouse RAW264.7

Macrophages
To investigate the effect of LL-37 and LL-37Tα1 peptide on
LPS-induced apoptosis, mouse RAW264.7 macrophages were
cultured and infected with LPS alone and with LPS plus
parental and hybrid peptides for 4, 12, and 24 h. Then mouse
RAW264.7 cells were stained with annexin V-FITC and PI as
per manufacturer’s instructions and analyzed by flow cytometry.
As shown in Figure 5A, LPS increased the number of both
early and late apoptotic cells at 4, 12, 24 h as compared
with control and treated group. However, LL-37Tα1 and LPS
combined treatment significantly reduced (p < 0.01) the number
of apoptotic cells as compared to both LPS and LL-37 plus

LPS group (Figure 5B). Our results depicted that our designed
peptide neutralizes LPS and ultimately reduces apoptosis in
mouse RAW264.7 macrophages.

DISCUSSION

The emergence of microbial resistance to antibiotics has
become a major issue worldwide. AMPs are new and effective
antibacterial agents as they serve as a natural defense against
harmful pathogens of vertebrates (54, 55). AMPs are deliberated
one of the rare preferences to use as an alternative or in
combination with traditional antibiotics that tend to lead a
variety of resistant bacteria. AMPs have a positive net charge
that permits them to interrelate with bacterial membrane and
LPS which have negative charge (56, 57). The binding with LPS
not only stimulates the mechanism by which AMPs kill bacteria
but also neutralize LPS in certain cases. Therefore, AMPs can be
considered instantaneously antimicrobial and anti-inflammatory
candidate drugs for the diseases (56). In the recent years, the
scientists have endeavored to modify the amino acid sequence
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FIGURE 5 | Apoptosis of mouse RAW264.7 macrophages treated with LPS alone and co-infection with parental and our hybrid peptide. Mouse RAW264.7

macrophages were treated with LPS and without LL-37 and LL-37Tα1+LPS at 4, 12, and 24 h with FITC-conjugated annexin-V (Green) and PI (Red). (A) The stained

mouse RAW264.7 macrophages were examined by flow cytometry, Control represents normal cells, the middle panel LPS representative mouse RAW 264.7

macrophages treated with LPS only, and right panel LL-37+LPS, LPS+LL-37Tα1 reveals mouse RAW64.7 macrophages treated with LPS and peptide. (B) Percentile

value of apoptotic cells after treatment of LPS alone or with a hybrid peptide with mouse RAW64.7 macrophages. *p < 0.05 and **p < 0.01 vs. LPS indicate the

significance and highly significance difference. #p < 0.05 and ##p < 0.01 indicates significant difference in hybrid peptide compared with parental LL-37 peptide.

of the parental peptides in order to improve the expression
and obtain the best bacteriostatic, immunomodulatory, and
anti-inflammatory activities. Furthermore, the conserved amino
acid sequence of the peptides have great impact on the above
stated activities and also the proper replacement of some
conserved sequence does not affect its activity but some suitable
substitutions could improve the response of hybrid peptides (58).
Hybridizing dissimilar parental peptides is an effective method to
enhance the antibacterial and anti-inflammatory activities with
minimum adverse effects (31, 59) such as cecropin, cathelicidin,
magainin II, LL-37, and melititin (41, 60, 61).

There are different methods for the production of hybrid
peptides i.e., extraction from natural resources, chemical
synthesis, and recombinant expression (62). Due to high cost of
chemical peptide synthesis, the methylotrophic yeast expression
system provides an opportunity for the production of hybrid
peptides in large aggregates (63). In the present study, hybrid
peptide LL-37Tα1 was successfully expressed in P. pastoris
in optimized expression conditions such as temperature, pH,
and methanol induction. Comparatively, P. pastoris system is
more operative in promoting disulfide bonding than bacterial
expression system (64), which would be expected important for
the activation of disulfide-containing LL-37Tα1 and recombinant
peptide expression and secretion into the medium. The P.
pastoris system has successfully expressed heterogenous peptides
at high yields (65) while AOX1 promoter is responsible for
transcription and alcohol oxidase activity in cells (66, 67). In the
present study, After 144 h methanol (1%) induction, we obtained
40 mg/L peptide in the culture medium and our SDS-PAGE

results showed that the size of recombinant LL-37Tα1 peptide is
3.9 kDa. The expression yield is higher than previously reported
such as T-catesbeianin-1 (62), ceropinAD (42), and CA-MA (41).
Moreover, the recombinant peptide was purified for functional
and structural studies. For purification, we used the Ni-NTA
affinity chromatography column (45) and RP-HPLC method as
described earlier (42) and identified on SDS-gel profile. After two
steps of purification, the 5mg pure peptide was obtained from
200ml medium. The result of ESI-MS analysis of pure peptide
showed calculated molecular weight of 3927 Da.

In the present study, purified LL-37Tα1 peptide was subjected
to LPS neutralization, cytotoxicity, and hemolytic activity assay,
considered as important features of a hybrid peptide to be used as
proficient antibiotic. LPS to constitute of three parts, lipid A, O-
antigen and polysaccharide core. Lipid A is part of endotoxin that
is responsible for the activation of LAL reagent (68, 69). In the
present study, LAL test to depict that LL-37Tα1 peptide utilizes
its antiendotoxin activity by binding lipid A portion of LPS and
consequently blocking the biological effect of endotoxin.

Furthermore, the parental antimicrobial peptides have
effective activities against both Gram-positive and negative
bacteria but also reveal cytotoxic and hemolytic effect toward
mammalian cells (68, 70). Our peptide efficiently neutralized
LPS that comprises of a N-terminal region along with polar
amino acids (net charge +7) and a C-terminal region with
reduced hydrophobic amino acids as reported in previous study
(71–73). It supported our hypothesis that this combination
conferred strong anti-inflammatory activity with minimal
cytotoxicity and significantly increased the LPS binding affinity
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these findings are in line with other studies (53, 62, 72, 74, 75).
These features are assumed to reflect the robust electrostatic
interaction between LL-37Tα1 peptide and LPS. Besides, LL-
37Tα1 peptide showed more potent endotoxin neutralizing
activity than that of parent peptides without cytotoxic and
hemolytic activity.

In the current study, we also observed LPS-stimulated
production of NO, TNF-α, IL-6, IL-1β in mouse RAW264.7
macrophages. Endotoxin is released when Gram-negative
bacteria are killed or multiply in the host (76, 77) and
induce inflammation, septic shock and sepsis (77, 78). As
in inflammation, macrophages are activated and secrete NO
at sites of injury to heal the damaged tissues and eliminate
the cause (79). However, the over secretion of NO leads
to variable inflammatory responses (80). Therefore, reducing
the production of NO could be a new strategy against
inflammatory disorders. The stimulated macrophages also
produce a large number of proinflammatory cytokines which
are involved in up-regulation of inflammation and might
cause diseases such as hemorrhagic shock, multiple sclerosis,
rheumatoid arthritis, ulcerative colitis, and atherosclerosis
(81). Consequently, minimizing proinflammatory response is
important to reduce inflammatory diseases. As compared to

recombinant protein SPHF1 (82) and lunasin-4 (43), we found
that LL-37Tα1 more efficiently inhibited the production of
proinflammatory cytokines.

Previously, it has been reported that cationic peptides bind to
the cell surface CD14 receptor on RAW264.7 macrophages and
inhibit the LPS binding to the CD14 cell (17, 83–85). The finding
of the present study to depict that hybrid LL-37Tα1 peptide
suppressed cytokines expression induced by LPS in RAW264.7
macrophages. These features contemplate that LL-37Tα1 peptide
is an attractive drug candidate for the treatment of endotoxin
shock caused by Gram-negative bacterial infection.

Furthermore, LPS up-regulates adhesion molecules (86)
coagulation factors (87, 88), and induces apoptosis (89, 90).
In the case of the septic syndrome, macrophages play a
major role to identify harmful components like LPS and
release proinflammatory cytokines. Subsequently, apoptosis of
macrophages leads to shock (91). In this regard, therapeutic
approaches reducing macrophages activity are considered as
useful tool against severe inflammatory conditions. In the present
study, we investigated the effect of LL-37Tα1 on the LPS-induced
apoptosis in mouse RAW264.7 macrophages by flow cytometry.
Our findings specified that LL-37Tα1 hybrid peptide neutralizes
LPS and reduces both early and late apoptosis as compared

FIGURE 6 | Schematic diagram of the potential mechanism by which LL-37Tα1 suppresses LPS-induced inflammatory responses in mouse RAW264.7

macrophages. Left, LPS alone; right LPS plus LL-37Tα1. The LL-37Tα1 binds with LPS and neutralizing it. (↑), activation; (⊣), no activation; (↑), upper regulate

responses; (↓), lower regulate responses.
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with LPS infected cells. Overall, these observations indicate that
LL-37Tα1 is a auspicious peptide that could be developed for
application in the medicine industry.

CONCLUSIONS

In this study, we successfully expressed and purified the hybrid
peptide LL-37Tα1 in the P. pastoris systemwith expression vector
PpICZαA. The recombinant peptide showed anti-endotoxin,
immunomodulatory, and anti-inflammatory activities by binding
with E. coli LPS. It inhibits NO and proinflammatory cytokines
and reducing the number of apoptotic cells in LPS-induced
mouse RAW264.7 macrophages with reduced cytotoxic and
hemolytic activities, as graphical modeled in Figure 6. These
results provide a strategy for recombinant production of hybrid
LL-37Tα1 and also suggests that LL-37Tα1 could be a potential
therapeutic agent for infectious diseases.
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