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Abstract
Queueingmodels with vacations have drawn the attention of researchers over several decades
as a handy tool for tackling real-life congestion problems. Keeping this in mind, we pay
attention to an infinite buffer single server batch-size dependent batch service queue with
queue size (queue length) dependent vacation. The arrival pattern of the customers in the
system follows the Poisson process where they get the service in packets/group following
the general batch service (GBS) rule. An embedded Markov chain technique is used for the
mathematical analysis where service (vacation) completion epochs have been taken as an
embedded Markov point. We obtain the bivariate generating functions of the queue size and
vacation type (queue size at vacation initiation epoch) at vacation termination epoch, and
the bivariate generating function of the queue size and batch size with the server at service
completion epoch, and then we successfully extract the steady-state joint probabilities of the
queue size and batch size with the server and the joint probabilities of the queue size and
vacation type at various epochs. Finally, various performance measures are presented. Also,
the behavior of the considered model is presented by the graphs and tables.

Keywords Non Poisson queue · Infinite buffer · Single (Multiple) vacation · Bivariate
generating function

Introduction

Theory of the batch service queue with vacation has huge application in various congestion
situations, viz., telecommunication,manufacturing, transportation, etc. In telecommunication
system messages, data, digital signals are first broken into cells (packets) and are transmitted
over the common transmission line in batches with a minimum threshold and maximum
capacity and whenever the minimum number of packets is not available for the transmission,
the multiplexer enters into the predefined single vacation or multiple vacation. In the batch
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service queue, a single server operates the customers in the groups/batches with various
service rules, viz., general batch service (GBS) rule, arbitrary batch size service rule, fixed
batch size service rule, etc. Neuts [22] proposed the GBS rule which is themost popular batch
service rule in queueing literature in which the customers get serves in packets with lower
threshold a (≥ 1) and upper threshold b. For the specific analysis of batch service queue,
we mention Chaudhry and Templeton [5] and Medhi [21], and for the current status on the
literature of batch service queue, readers are invoked to see [1–3,10,24] and the references
therein. In the batch service queue, the idle period of the servermay be utilized in a customized
manner by entangling the server in some secondary job. This period of absence of the server
from the primary job facility is called the server vacation period.

In several queueing systems when no jobs (i.e., primary job) are available for the server,
then the server performs some secondary jobs, this type ofmodel is interpreted as the vacation
queueing model, and proposed by Levy and Yechiali [20]. Later many researchers ([9], [32],
[11], [15], [16] and the references therein) have been attracted to the queueing models with
vacation phenomena, and in this connection, an impressive survey is presented in the survey
papers byDoshi [8] andKe et al. [17]. For the quality literature on vacation theory, readers are
requested to see Takagi [29] and Tian and Zhang [31]. In vacation queue after one service, if
sufficient number of customer is available in the queue, then the server continues the service,
otherwise, it takes the vacation, and after the completion of vacation if the system contains
sufficient number of job to start a service, then it starts a service, otherwise, remains in the
dormant state ( single vacation, i.e., SV) or goes for another vacation (multiple vacation, i.e.,
MV).

Batch service queues with SV where the behavior of the system analyzed by the sup-
plementary variable technique (SVT), can be found in [12,13,19,26], in which authors have
obtained queue size distribution at various epochs. batch service queue with MV applies in
many real-life queues, viz., telecommunication, transportation, manufacturing, etc. In this
connection, many queue theorists have been attracted to analyze such models, Choi and Han
[6], Jeyakumar and Senthilnathan [14], etc. The batch service queues with SV as well as MV
analyzed by a few researchers, Lee et al. [18], Samanta et al. [25], Sikdar and Gupta [27],
Sikdar and Samanta [28], Gupta et al. [11], Tamrakar and Banerjee [30], and the references
therein.

Most of the above literature on batch service queuewith vacations dealswith the derivation
of the distribution of the queue size at various epochs only, in which the service time is
considered to be independent of the batch size with the server. Though, Gupta et al. [11]
considered M/G(a,b)

r /1 finite buffer queue with SV (MV). They obtained the required joint
distributions at various epoch. By using the embedded Markov chain technique, they first
derived transition probability matrix (TPM) to obtain the joint distribution of the queue size
and batch size with the server at the epoch of service completion and the queue size and
vacation type at vacation termination epoch. However, it seems difficult to handle TPM with
a considerably large buffer size or an infinite buffer queue (see e.g., Bar-Lev et al. [4]). To
address this difficulty, in this paper we present an analytical study of the batch service queue
with SV (MV) and infinite buffer. where the service time and vacation time depend on the
batch size with the server and queue size at the vacation initiation epoch, respectively. We
first use SVT and obtain the bivariate generating function for the joint probabilities of the
queue size and batch size with the server at service completion epoch and the queue size and
vacation type at vacation termination epoch. Then we successfully extract all the required
service (vacation) completion epoch joint probabilities which are eventually used to obtain
corresponding arbitrary epoch joint probabilities. The analytical study presented in this paper
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is completely different than that is presented in Gupta et al. [11] and our result cannot be
obtained as a special case of their result. The novelty of our work is that where the queueing
practitioners stuck with the results provided by Gupta et al. [11] while handling an infinite
buffer system, our results will definitely help them to find out the proper solution.

The practical motivation for the considered model comes up with the way of the sample
testing procedure in the pandemic situation (viz., COVID-19). An effective way of fighting
some dangerous virus (pandemic) such as the corona virus is to test all suspected people in
whom the virus is likely to be found.However, at the beginning of an epidemic, the shortage of
test kits causes major problems which aggravate the pandemic. To deal with such a situation
group testing may play a key role instead of an individual test. In a group test, samples of
multiple swabs are mixed to form a ‘mixed sample’, which is then tested. If the test result
is found to be negative, then all samples in the mixture are negative for the virus, however,
a positive test shows one or more samples infected with the virus in the mixture. Then that
particular sample will be further tested to identify the infected samples. Such group testing
process is already justified during the COVID-19 pandemic, see [7,23,33].

Our model may be helpful in policy-making for group testing methods to deal with a pan-
demic situation for a particular country. For better understanding let us consider an example
of group testing in which the samples are coming according to the Poisson stream and the
health worker test the samples in bulk (i.e., mixed sample) with a lower threshold ‘a’ to
upper threshold ‘b’ (following GBS rule). On completion of a test if the number of waiting
samples to be tested is r (≥ a) then a mixed sample of size min(r , b) is taken for the test.
The mixing time depends on the number of samples which is going to be tested, therefore,
batch size dependent service is justified. On the other hand, if at the completion of the test
the number of waiting samples to be tested is k (< a) then the health worker stops testing
and goes on vacation. During vacation, the health worker will be engaged in some additional
works (stocking of health care inventory, increase people’s awareness, visiting the quarantine
room, etc.). Before going for the vacation, the health worker always checks the queue size,
and depending on the queue size he set his vacation time which will increase the expected
number of samples tested per unit time.Hence, queue size dependent vacation is also justified.

The rest of the article is devoted as follows: Description of the consideredmodel presented
in Sect. 2. The steady-state joint probabilities is investigated at various epoch in Sect. 3.
Significant marginal probabilities are presented in Sect. 4. Some necessary performance
measures are reported in Sect. 5. Numerical results and their discussion are presented in
Sect. 6. In Sect. 7, we develop a cost model in order to obtain the optimum value of the lower
threshold a. The conclusion section ends the article.

Model Description

The present article investigates infinite capacity single server batch service queue with SV
(MV) where the service time (Tr ) (1 ≤ a ≤ r ≤ b) and vacation time (Vk) (0 ≤ k ≤ a − 1),
respectively, depend on batch size with the server and queue size at vacation initiation epoch,
respectively. The customers reach one by one in the system following the Poison distribution
with a rate of λ, and are received the service in batches with a lower threshold a (≥ 1) and
upper threshold b (b ≥ a) as per the GBS rule. After service, if the queue size is ≥ a then
the server renders the service as per the GBS rule otherwise the server goes for the vacation.
The vacation time of the server depends on the size of the queue k (0 ≤ k ≤ a − 1) at the
vacation initiation epoch. Such a vacation that depends on the queue size k is known as kth
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vacation type. There will be no permission to join any customer in the running service even
if the server is serving the customers less than its maximum capacity. The service time (Tr )
(1 ≤ a ≤ r ≤ b) and the vacation time (Vk) (0 ≤ k ≤ a−1) are distributed generally. Some
other assumptions are as follows:

• sr (t) = probability density function (pdf) of Tr ,
• Sr (t) = distribution function (DF) of Tr ,
• S̃r (θ) = Laplace-Stieltjes transform (LST) of Tr ,
• Mean service time = 1

μr
= sr = −S̃(1)

r (0) = derivative of S̃r (θ) evaluated at θ=0,
• vk(t)= pdf of Vk ,
• Vk(t) = DF of Vk ,
• Ṽk(θ)= LST of Vk ,
• Mean vacation time = 1

νk
= xk = −Ṽ (1)

k (0) = derivative of Ṽk(θ) evaluated at θ=0.

After a kth (0 ≤ k ≤ a − 1) vacation type completion if the queue size ≥ a, then the server
renders the service as per the GBS rule, otherwise, following SV rule, the server remains in
the dormant state until the queue size reaches the lower threshold a, or under MV rule, takes
repeated vacation until it finds queue length≥ a at the end of the vacation. The condition that
ensures the system stability is λsb

b (< 1). In this article, we study both SV and MV queues
simultaneously. By substituting δ = 1 in the steady-state analysis, we obtain the results for
MV and by substituting δ = 0 we obtain the results for SV.

System Analysis

This section covers the analysis of the joint probabilities of the queue size and batch size
with the server at the service completion epoch, and the joint probabilities of queue size and
vacation type taken by the server at the vacation termination epoch. Then arbitrary epoch
joint probabilities are obtained by establishing the relation between the joint probabilities
of service (vacation) completion epoch and random epoch. For the mathematical analysis,
using probability law, we get the steady-state equations by defining the additional variable
for remaining service (vacation) time. To this end, the system state at time t is introduced by
random variables as follows:

• Nq(t) represents the queue size.
• Ns(t) represents the batch size with the server when the server is busy.
• C(t) represents the vacation type taken by the server, when the server is on vacation.
• X(t) represents remaining service time of the batch in service, if any.
• Y (t) represents remaining vacation time of a vacation period, if any.

Note that the dormant state of the server at time t will be represented by Ns(t) = 0.
For SV, {(Nq(t), Ns(t))} ∪ {(Nq(t), Ns(t), X(t)

) ∪ (
Nq(t),C(t), Y (t)

)} forms a Markov
process with state space {(n, 0); 0 ≤ n ≤ a − 1} ⋃{(n, r , u); n ≥ 0, a ≤ r ≤ b, u ≥
0}⋃{(n, k, u); 0 ≤ k ≤ a − 1, n ≥ k, u ≥ 0}.

For MV, {(Nq(t), Ns(t), X(t)
) ∪ (

Nq(t),C(t), Y (t)
)} forms a Markov process with state

space {(n, r , u); n ≥ 0, a ≤ r ≤ b, u ≥ 0} ⋃{(n, k, u); 0 ≤ k ≤ a − 1, n ≥ k, u ≥ 0}.
Further, we set out the state probabilities at time t as:

• fn(t) ≡ Pr{Nq(t) = n, Ns(t) = 0}, 0 ≤ n ≤ a − 1 (exist only for SV).
• αn,r (u, t)du ≡ Pr{Nq(t) = n, Ns(t) = r , u ≤ X(t) ≤ u + du}, n ≥ 0 , a ≤ r ≤ b.

• β
[k]
n (u, t)du ≡ Pr{Nq(t) = n,C(t) = k, u ≤ Y (t) ≤ u + du}, n ≥ k , 0 ≤ k ≤

a − 1.
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In steady state, as t → ∞, we have,
fn = lim

t→∞ fn(t) (0 ≤ n ≤ a − 1) (exist only for SV),

αn,r (u) = lim
t→∞ αn,r (u, t), n ≥ 0, a ≤ r ≤ b,

β
[k]
n (u) = lim

t→∞ β[k]
n (u, t), n ≥ k, 0 ≤ k ≤ a − 1.

Now we obtain the system equation that governs the system behavior. Analyzing the model
at time t and t + dt , the governing equations in steady-state are as follows:

0 = (1 − δ)

(
− λ f0 + β

[0]
0 (0)

)
, (1)

0 = (1 − δ)

(
− λ fn + λ fn−1 +

n∑

k=0

β[k]
n (0)

)
,

1 ≤ n ≤ a − 1, (2)

− d

du
α0,a(u) = −λα0,a(u) + (1 − δ)λ fa−1sa(u)

+
( a−1∑

k=0

β[k]
a (0) +

b∑

r=a

αa,r (0)

)
sa(u), (3)

− d

du
α0,r (u) = −λα0,r (u) +

( a−1∑

k=0

β[k]
r (0) +

b∑

j=a

αr , j (0)

)
sr (u),

a + 1 ≤ r ≤ b, (4)

− d

du
αn,r (u) = −λαn,r (u) + λαn−1,r (u), a ≤ r ≤ b − 1, n ≥ 1, (5)

− d

du
αn,b(u) = −λαn,b(u) + λαn−1,b(u)

+
( a−1∑

k=0

β
[k]
n+b(0) +

b∑

r=a

αn+b,r (0)

)
sb(u), n ≥ 1, (6)

− d

du
β

[k]
k (u) = −λβ

[k]
k (u) +

( b∑

r=a

αk,r (0) + δ

k∑

j=0

β
[ j]
k (0)

)
νk(u),

0 ≤ k ≤ a − 1, (7)

− d

du
β[k]
n (u) = −λβ[k]

n (u) + λβ
[k]
n−1(u), n ≥ k + 1, 0 ≤ k ≤ a − 1. (8)

Further, we define for Re θ ≥ 0,

S̃r (θ) =
∫ ∞

0
e−θudSr (u) =

∫ ∞

0
e−θusr (u)du, a ≤ r ≤ b, (9)

α̃n,r (θ) =
∫ ∞

0
e−θuαn,r (u)du, a ≤ r ≤ b, n ≥ 0, (10)

αn,r ≡ α̃n,r (0) =
∫ ∞

0
αn,r (u)du, a ≤ r ≤ b, n ≥ 0, (11)

Ṽk(θ) =
∫ ∞

0
e−θudVk(u) =

∫ ∞

0
e−θuvk(u)du, 0 ≤ k ≤ a − 1, (12)

β̃[k]
n (θ) =

∫ ∞

0
e−θuβ[k]

n (u)du, 0 ≤ k ≤ a − 1, n ≥ k, (13)
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β[k]
n ≡ β̃[k]

n (0) =
∫ ∞

0
β[k]
n (u)du, 0 ≤ k ≤ a − 1, n ≥ k. (14)

One may note here that ( fn) {αn,r } [β[k]
n ] denotes the probability of (queue size is n and the

sever is dormant, 0 ≤ n ≤ a− 1) {queue size is n and batch size with server is r , a ≤ r ≤ b,
n ≥ 0} [queue size is n and the server is on kth vacation type, 0 ≤ k ≤ a − 1, n ≥ k] at
arbitrary epoch.

Our main objective is to obtain fn, αn,r and β
[k]
n using (1)–(8). Keeping this in mind we

multiply (3)–(8) by e−θu and integrate with respect to u over the limits 0 to ∞, we get,

(λ − θ)α̃0,a(θ) = (1 − δ)λ fa−1 S̃a(θ) +
( a−1∑

k=0

β[k]
a (0) +

b∑

r=a

αa,r (0)

)
S̃a(θ)

−α0,a(0), (15)

(λ − θ)α̃0,r (θ) =
( a−1∑

k=0

β[k]
r (0) +

b∑

j=a

αr , j (0)

)
S̃r (θ)

−α0,r (0), a + 1 ≤ r ≤ b, (16)

(λ − θ)α̃n,r (θ) = λα̃n−1,r (θ) − αn,r (0), n ≥ 1, a ≤ r ≤ b − 1, (17)

(λ − θ)α̃n,b(θ) = λα̃n−1,b(θ) +
( a−1∑

k=0

β
[k]
n+b(0) +

b∑

r=a

αn+b,r (0)

)
S̃b(θ)

−αn,b(0), n ≥ 1, (18)

(λ − θ)β̃
[k]
k (θ) =

( b∑

r=a

αk,r (0) + δ

k∑

j=0

β
[ j]
k (0)

)
Ṽk(θ)

−β
[k]
k (0), 0 ≤ k ≤ a − 1, (19)

(λ − θ)β̃[k]
n (θ) = λβ̃

[k]
n−1(θ) − β[k]

n (0) n ≥ k + 1, 0 ≤ k ≤ a − 1. (20)

As our primary aim is to find the joint probabilities of the queue size as well as the batch
size with the server (queue size and the vacation type of server) at an arbitrary epoch, which
seems to be difficult to obtain directly from (15)–(20). Hence,we characterize the system state
at service (vacation) completion epoch which reduces the continuous time Markov process
into an embedded Markov chain where embedded Markov points are defined as service
completion epoch and vacation termination epoch. The approach of finding an embedded
Markov chain reduces the complexity of the system for mathematical evaluation. Towards
this end, we set out the following probabilities at service (vacation) completion epoch as
follows:

α+
n,r = Pr{queue size is n at service completion epoch of a batch size r}, n ≥ 0, a ≤ r ≤ b,

α+
n = Pr{queue size is n at service completion epoch of a batch}

=
b∑

r=a

α+
n,r , n ≥ 0, (21)

β[k]+
n = Pr{queue size is n at kth vacation type

termination epoch}, 0 ≤ k ≤ a − 1, n ≥ k, (22)

β+
n = Pr{queue size is n at the vacation termination epoch}
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=
min(n,a−1)∑

k=0

β[k]+
n , n ≥ 0. (23)

Joint Probabilities at Service (Vacation) Completion Epoch

In this section, our objective is to find α+
n,r (a ≤ r ≤ b, n ≥ 0, ) and β

[k]+
n (0 ≤ k ≤

a − 1, n ≥ k), In this connection we define few generating functions are as follows:

P(z, y, θ) =
∞∑

n=0

b∑

r=a

α̃n,r (θ)zn yr , |z| ≤ 1, |y| ≤ 1, (24)

P+(z, y) =
∞∑

n=0

b∑

r=a

α+
n,r z

n yr , |z| ≤ 1, |y| ≤ 1, (25)

P+(z) =
∞∑

n=0

b∑

r=a

α+
n,r z

n =
∞∑

n=0

α+
n z

n, |z| ≤ 1, (26)

Q(z, y, θ) =
a−1∑

k=0

∞∑

n=k

β̃[k]
n (θ)zn yk, |z| ≤ 1, |y| ≤ 1, (27)

Q+(z, y) =
a−1∑

k=0

∞∑

n=k

β[k]+
n zn yk, |z| ≤ 1, |y| ≤ 1, (28)

Q+(z) =
a−1∑

k=0

∞∑

n=k

β[k]+
n zn =

∞∑

n=0

min(n,a−1)∑

k=0

β[k]+
n zn

=
∞∑

n=0

β+
n zn, |z| ≤ 1. (29)

Further, we set out the following probabilities

m(r)
j = Pr{ j customers arrive during the service of the batch size r}, j ≥ 0, a ≤ r ≤ b,

=
∫ ∞

0

e−λt (λt) j

j ! sr (t)dt, (30)

w
(k)
j = Pr{ j customers arrive during the kth vacation type}, j ≥ 0, 0 ≤ k ≤ a − 1,

=
∫ ∞

0

e−λt (λt) j

j ! vk(t)dt, (31)

such that
∞∑
j=0

m(r)
j = 1,

∞∑
j=0

w
(k)
j = 1.

The PGF (probability generating function) of m(r)
j and w

(k)
j are defined as follows:

M (r)(z) =
∞∑

j=0

m(r)
j z j = S̃r (λ − λz), a ≤ r ≤ b, |z| ≤ 1, (32)

N (k)(z) =
∞∑

j=0

w
(k)
j z j = Ṽk(λ − λz), 0 ≤ k ≤ a − 1, |z| ≤ 1. (33)
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Lemma 1 The joint probabilitiesα+
n,r , β

[k]+
n , αn,r (0) andβ

[k]
n (0) (a ≤ r ≤ b, 0 ≤ k ≤ a−1)

are associated with the following relation

α+
n,r = σαn,r (0), n ≥ 0, (34)

β[k]+
n = σβ[k]

n (0), n ≥ k, (35)

where σ−1 = ∑∞
m=0

∑b
r=a αm,r (0) + ∑∞

m=0
∑min(m,a−1)

k=0 β
[k]
m (0).

Proof Since α+
n,r and β

[k]+
n are proportional to αn,r (0) and β

[k]
n (0), respectively, using the

concept of Bayes’ theorem and
∑∞

n=0
∑b

r=a α+
n,r + ∑∞

n=0
∑min(n,a−1)

k=0 β
[k]+
n =1 we get the

desired outcome. �	
Lemma 2 The value σ−1 is given by

σ−1 = 1 − (1 − δ)
∑a−1

n=0 fn

sb
∑∞

n=b+1

(
α+
n + β+

n
) + ∑b

n=a

(
α+
n + β+

n
)
sn + ∑a−1

n=0

(
α+
n xn + (1 − δ)β+

n sa + δβ+
n xn

) .

(36)

Proof Using (1) and (2), we obtain

λ fn =
n∑

m=0

m∑

k=0

β[k]
m (0), 0 ≤ n ≤ a − 1. (37)

Using (37) in (15), we get

(λ − θ)α̃0,a(θ) =
a−1∑

n=0

n∑

k=0

β[k]
n (0)S̃a(θ) +

( a−1∑

k=0

β[k]
a (0) +

b∑

r=a

αa,r (0)

)
S̃a(θ) − α0,a(0).

(38)

Summing (38) and (16)–(20), we get

∞∑

m=0

b∑

r=a

αm,r (θ) +
∞∑

m=0

min(m,a−1)∑

k=0

β[k]
m (θ) = 1 − S̃b(θ)

θ

∞∑

n=b+1

( b∑

r=a

αn,r (0) +
a−1∑

k=0

β[k]
n (0)

)

+
b∑

n=a

( b∑

r=a

αn,r (0) +
a−1∑

k=0

β[k]
n (0)

)
1 − S̃n(θ)

θ

+
a−1∑

n=0

( b∑

r=a

αn,r (0) + δ

n∑

k=0

β[k]
n (0)

)
1 − Ṽn(θ)

θ

+(1 − δ)
1 − S̃a(θ)

θ

a−1∑

n=0

n∑

k=0

β[k]
n (0). (39)

Taking θ → 0 in (39) and using L’Hôspital’s rule, the normalization condition (1 −
δ)

∑a−1
n=0 fn + ∑∞

n=0
∑b

r=a αn,r + ∑∞
n=0

∑min(n,a−1)
k=0 β

[k]
n =1, after few algebraic calcula-

tion we get the desired outcome. �	
Lemma 3

Q+(z) =
a−1∑

k=0

∞∑

n=k

β[k]+
n zn =

a−1∑

k=0

(α+
k + δβ+

k )N (k)(z)zk (40)
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Proof Multiplying (19) and (20) by the appropriate power of z and y, and adding them over
the range of n and k, we get

(λ − θ − λz)Q(z, y, θ) =
a−1∑

k=0

( b∑

r=a

αk,r (0) + δ

k∑

j=0

β
[k]
j (0)

)
Ṽk(θ)zk yk

−
a−1∑

k=0

∞∑

n=k

β[k]
n (0)zn yk . (41)

Now substituting θ=λ − λz in (41) and using Lemma 1, (21) and (23) we obtain

a−1∑

k=0

∞∑

n=k

β[k]+
n zn yk =

a−1∑

k=0

(
α+
k + δβ+

k

)
N (k)(z)zk yk . (42)

Substituting y = 1 in (42) we acquire the desired outcome. �	

Lemma 4

β[k]+
n =

(
α+
k + δ

k∑

j=0

β
[ j]+
k

)
w

(k)
n−k, 0 ≤ k ≤ a − 1, n ≥ k. (43)

Proof From (42) collecting the coefficients of yk (0 ≤ k ≤ a − 1) we obtain,

∞∑

n=k

β[k]+
n zn = (α+

k + δβ+
k )N (k)(z)zk . (44)

Now using (33) and (23), in (44) and collecting the coefficients of zn (n ≥ k) we obtain
desired result (43). �	

Hence from Lemma 4 it is clear that once α+
k (0 ≤ k ≤ a − 1) are known, the joint

probabilities β
[k]+
n (0 ≤ k ≤ a − 1, n ≥ k) are all known.

Now we turn our focus is to find the bivariate generating function for the queue size
and batch size with the server at service completion epoch. Towards this end, multiplying
(15)–(18) by appropriate power of z and y and adding them over the range of n and r we
obtain,

(λ − θ − λz)P(z, y, θ) = (1 − δ)

a−1∑

n=0

n∑

k=0

β[k]
n (0)S̃a(θ)ya

+
b∑

r=a

( a−1∑

k=0

β[k]
r (0) +

b∑

j=a

αr , j (0)

)
S̃r (θ)yr

+
∞∑

n=b+1

( a−1∑

k=0

β[k]
n (0) +

b∑

r=a

αn,r (0)

)
S̃b(θ)zn−b yb

−
∞∑

n=0

b∑

r=a

αn,r (0)z
n yr . (45)
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Substituting θ = (λ − λz) in the above expression and using Lemma 1, (21), (23) and (25),
we get

P+(z, y) = (1 − δ)yaM (a)(z)
a−1∑

n=0

β+
n +

b∑

r=a

(
β+
r + α+

r

)
M (r)(z)yr

+
∞∑

n=b+1

(
β+
n + α+

n

)
M (b)(z)zn−b yb. (46)

substituting y = 1 in (46) and using Lemma 3 and (26), we get the following result,

P+(z) =

{
∑a−1

n=0

[
M (b)(z)(α+

n + δβ+
n )

(
N (n)(z) − 1

)
zn + (1 − δ)β+

n

(
M (a)(z)zb − M (b)(z)zn

)]

+∑b−1
n=a(β

+
n + α+

n )
(
M (n)(z)zb − M (b)(z)zn

)
}

zb − M (b)(z)
.

(47)

Finally, using (47) in (46) after some algebraic manipulation we obtain,

P+(z, y) =

∑a−1
n=0

[
(1 − δ)β+

n

(
zb yaM (a)(z) − ybM (b)(z)zn

) + (1 − δ)M (a)(z)M (b)(z)
(
yb − ya

)
β+
n

+yb(α+
n + δβ+

n )
(
N (n)(z) − 1

)
M (b)(z)zn

]

+ ∑b−1
n=a

(
β+
n + α+

n

)(
zb ynM (n)(z) + (

yb − yn
)
M (n)(z)M (b)(z) − ybM (b)(z)zn

)

zb − M (b)(z)
.

(48)

Remark 1 The bivariate generation function (44) of the queue size and the vacation type at
vacation termination epoch, and the bivariate generating function of the queue size and batch
size with the server at service completion epoch, i.e., (48) have not analyzed in the literature
so far.

It may be observed from (48) that the generating function P+(z, y) is in the compact form,
excluding the the b unknowns {α+

n }b−1
n=0. One may further note from Lemma 4 that once α+

k

(0 ≤ k ≤ a−1) are known then the joint probabilities β
[k]+
n (0 ≤ k ≤ a−1) are completely

known.Hence, in order to findα+
n,r (a ≤ r ≤ b, n ≥ 0) andβ

[k]+
n (0 ≤ k ≤ a−1, n ≥ k), one

should first find the unknowns {α+
n }b−1

n=0. Next section is dedicated in getting these unknowns
{α+

n }b−1
n=0.

Procedure of Getting the Unknowns˛+
n (0 ≤ n ≤ b − 1)

Note that the unknowns α+
n (0 ≤ n ≤ b − 1), as appeared in (48), are the same as the

unknowns which are appeared in (47). Using the Rouche’s theorem one may conclude that,
for ρ < 1, zb − M (b)(z) has (b − 1) zeros, say ê1, ê2, ..., êl , with multiplicity r1, r2, ..., rl ,
respectively, inside the unit circle |z| = 1 (where (l ≤ b − 1) and

∑l
i=1 ri = (b − 1)) and

one simple zero, say, zb = 1, on the unit circle |z| = 1. Due to analyticity of (47) in |z| ≤ 1
these zeros are also the zeros of numerator of (47). Hence, from (47) we have (b−1) linearly
independent equations,

[
di−1

dzi−1

( a−1∑

n=0

{
M(b)(z)(α+

n + δβ+
n )

(
N (n)(z) − 1

)
zn + (1 − δ)β+

n
(
M(a)(z)zb − M(b)(z)zn

)}
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+
b−1∑

n=a
(β+

n + α+
n )

(
M(n)(z)zb − M(b)(z)zn

)
)]

z=ê j
= 0, 1 ≤ j ≤ l & 1 ≤ i ≤ r j , (49)

where d0

dz0
h(z) ≡ h(z).

Now using (47), Lemma 3 and the normalization condition P+(1) + Q+(1) = 1, applying
L’Hôspital’s rule, we get

a−1∑

n=0

[
(α+

n + δβ+
n )(λxn + b − bρ) + (1 − δ)β+

n (b − n)

]

+
b−1∑

n=a

[(
β+
n + α+

n

)(
b − n + λ(sn − sb)

)]
= b − bρ. (50)

Hence, (49) and (50) together forms non-homogenous system of b linearly independent
equations in b unknowns α+

n (0 ≤ n ≤ b − 1), solving them we uniquely determine α+
n

(0 ≤ n ≤ b − 1).

Theorem 1 The joint probabilities α+
n,r (1 ≤ a ≤ r ≤ b − 1, n ≥ 0) are given by

α+
n,a =

(
(1 − δ)

a−1∑

m=0

β+
m + β+

a + α+
a

)
m(a)

n , (51)

α+
n,r =

(
β+
r + α+

r

)
m(r)

n , a + 1 ≤ r ≤ b − 1. (52)

Proof Using (25) in (48) and then accumulating the coefficients of yr (1 ≤ a ≤ r ≤ b − 1),
we obtain

coefficient of ya :
∞∑

n=0

α+
n,az

n =
(

(1 − δ)

a−1∑

m=0

β+
m + β+

a + α+
a

)
M (a)(z). (53)

coefficient of yr :
∞∑

n=0

α+
n,r z

n =
(

β+
r + α+

r

)
M (r)(z), a + 1 ≤ r ≤ b − 1. (54)

Using (32) in (53) and (54), and then accumulating the coefficients of zn , we readily obtain
the desired result (51) and (52). �	
We now proceed with our mathematical analysis to achieve the remaining joint probabilities
α+
n,b (n ≥ 0). To get these, we use (25) in (48), and then accumulating the coefficient of yb,

we obtain

∞∑

n=0

α+
n,bz

n =

M (b)(z)

{
a−1∑

n=0

[
(α+

n + δβ+
n )(N (n)(z) − 1)zn + (1 − δ)β+

n (M (a)(z) − zn)

]

+∑b−1
n=a(β

+
n + α+

n )(M (n)(z) − zn)

}

zb − M (b)(z)
.

(55)

Now to derive α+
n,b (n ≥ 0) completely we need to invert the right hand side of (55) and

towards this direction we consider LST of service time and the vacation time distribution as
S̃r (θ) = Pr (θ)

Qr (θ)
, a ≤ r ≤ b, and Ṽk(θ) = Pk (θ)

Qk (θ)
, 0 ≤ k ≤ a − 1, respectively. Here one
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should note that the logic behind the consideration of S̃r (θ) and Ṽk(θ) in rational form is
that, in most of real life queueing model service (vacation) time distribution can be expressed
as rational function. However, the transcendental LST (for example LST of deterministic
distribution) can be handle using Padé approximation.

Now substituting M (r)(z) = S̃r (λ − λz) = Pr (λ−λz)
Qr (λ−λz) , a ≤ r ≤ b and N (k)(z) =

Ṽk(λ−λz) = Pk (λ−λz)
Qk (λ−λz) , 0 ≤ k ≤ a−1, in the right hand side of (55), after some simplification

(55) can be converted as,

∞∑

n=0

α+
n,bz

n = U (z)

D(z)
, (56)

where U (z) and D(z) are polynomials of degree ū and d , respectively, and D(z) is a monic
polynomial (i.e., the coefficient of zd in D(z) is 1). To extract the joint probabilities α+

n,b
(n ≥ 0) the zeros of D(z) of modules greater than one must be known. Due to analyticity of
(56), in |z| ≤ 1, the zeros of D(z) which lie inside and on the unit circle are also the zeros of
U (z), therefore, they can not play any role in extracting α+

n,b (n ≥ 0). Towards this end, let
γ1, γ2, ..., γl be the zeros of D(z) of modules greater than one with multiplicity τ1, τ2, ..., τl ,
respectively, such that

∑l
j=1 τ j ≤ d . Now two cases may arise depending on d and ū. We

address these two cases as follows:
Case A: d ≤ ū
Applying the method of partial fraction on (56),

∑∞
n=0 α+

n,bz
n is given by„

∞∑

n=0

α+
n,bz

n =
ū−d∑

i=0

�i z
i +

l∑

j=1

τ j∑

i=1

Bi, j
(z − γ j )

τ j−i+1 , (57)

where

Bi, j = 1

(i − 1)!
[
di−1

dzi−1

(U (z) dτ j

dzτ j
(z − γ j )

τ j

dτ j

dzτ j
(D(z))

)]

z=γ j

, j = 1, 2, ..., l, i = 1, 2, ..., τ j .

(58)

Accumulating the coefficients of zn (n ≥ 0) from (57) we get,

α+
n,b =

⎧
⎪⎨

⎪⎩

�n + ∑l
j=1

∑τ j
i=1

Bi, j

(−1)τ j−i+1
γ

τ j+n−i+1

j

(τ j−i+n
τ j−i

)
, 0 ≤ n ≤ ū − d,

∑l
j=1

∑τ j
i=1

Bi, j

(−1)τ j−i+1
γ

τ j+n−i+1

j

(τ j−i+n
τ j−i

)
, n > ū − d.

Case B: d > ū
We eliminate first summation of the right-hand side of (57) and hence α+

n,b is given by,

α+
n,b =

l∑

j=1

τ j∑

i=1

Bi, j

(−1)τ j−i+1γ
τ j+n−i+1
j

(
τ j − i + n

τ j − i

)
, n ≥ 0. (59)

Thus, we have completed the analysis of the joint probabilities α+
n,r (a ≤ r ≤ b, n ≥ 0) at

service completion epoch and β
[k]+
n (0 ≤ k ≤ a − 1, n ≥ k) at the vacation termination

epoch. Now we turn our objective for getting these probabilities at arbitrary epoch.

Remark 2 By inverting the PGF M (r)(z) and N (k)(z) we can easily compute m(r)
j , a ≤ r ≤

b, j ≥ 0 and w
(k)
j , 0 ≤ k ≤ a − 1, j ≥ 0.
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Theorem 2 The probabilities fn (0 ≤ n ≤ a − 1), αn,r (n ≥ 0, a ≤ r ≤ b) and β
[k]
n

(n ≥ k, 0 ≤ k ≤ a − 1) are given by,

fn =
∑n

m=0 β+
m

E
, 0 ≤ n ≤ a − 1 ( f or SV ) (60)

αn,a = (1 − δ)
∑a−1

m=0 β+
m + β+

a − ∑n
j=0 α+

j,a + α+
a

E
, n ≥ 0, (61)

αn,r = β+
r + α+

r − ∑n
j=0 α+

j,r

E
, n ≥ 0, a + 1 ≤ r ≤ b − 1, (62)

αn,b =
∑n

j=0

(
β+
b+ j + α+

b+ j − α+
j,b

)

E
, n ≥ 0, (63)

β[k]
n = α+

k + δβ+
k − ∑n

j=k β
[k]+
j

E
, n ≥ k, 0 ≤ k ≤ a − 1, (64)

where E = λg + (1 − δ)
∑a−1

i=0 (a − i)β+
i ,

g = sb
∞∑

n=b+1

(
α+
n + β+

n

) +
b∑

n=a

(
α+
n + β+

n

)
sn +

a−1∑

n=0

(
α+
n xn + (1 − δ)β+

n sa + δβ+
n xn

)
.

Proof Dividing (1) by σ−1 and using Lemma 1, Lemma 2 and (23), we obtain

f0 =
(
1 − ∑a−1

n=0 fn
)

β+
0

λg
. (65)

Similarly, from (37), we obtain

fn =
(
1 − ∑a−1

i=0 fi
) ∑n

m=0 β+
m

λg
, 0 ≤ n ≤ a − 1. (66)

Using (65) in (66), we obtain

fn = f0
β+
0

∑n

m=0
β+
m , 0 ≤ n ≤ a − 1. (67)

Using (67) in (65) after some algebraic manipulation, we obtain

f0 = β+
0

λg + ∑a−1
i=0 (a − i)β+

i

. (68)

Using (68) in (67), we obtain

fn =
∑n

m=0 β+
m

λg +
a−1∑

i=0
(a − i)β+

i

, 0 ≤ n ≤ a − 1. (69)

Setting θ=0 in (15)–(20), we get

λα0,a = (1 − δ)
∑a−1

m=0

∑m

k=0
β[k]
m (0) +

∑a−1

k=0
β[k]
a (0) +

∑b

r=a
αa,r (0) − α0,a(0),

(70)

λα0,r =
a−1∑

k=0

β[k]
r (0) +

b∑

j=a

αr , j (0) − α0,r (0), a + 1 ≤ r ≤ b, (71)
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λαn,r = λαn−1,r − αn,r (0), n ≥ 1, a ≤ r ≤ b − 1, (72)

λαn,b = λαn−1,b +
a−1∑

k=0

β
[k]
n+b(0) +

b∑

r=a

αn+b,r (0) − αn,b(0), n ≥ 1, (73)

λβ
[k]
k =

b∑

r=a

αk,r (0) + δ

k∑

j=0

β
[ j]
k (0) − β

[k]
k (0), 0 ≤ k ≤ a − 1, (74)

λβ[k]
n = λβ

[k]
n−1 − β[k]

n (0), n ≥ k + 1, 0 ≤ k ≤ a − 1. (75)

Dividing (70) and (71) by σ−1, respectively, and then using Lemma 1, Lemma 2, (21) and
(23), we obtain

α0,a =
(
1 − (1 − δ)

∑a−1
i=0 fi

)
(

(1 − δ)
∑a−1

m=0 β+
m + β+

a + α+
a − α+

0,a

)

λg
, (76)

α0,r =
(
1 − (1 − δ)

∑a−1
i=0 fi

)(
β+
r + α+

r − α+
0,r

)

λg
. (77)

Using (65) and (68) in (76)–(77), respectively, we obtain

α0,a =
(
(1 − δ)

∑a−1
m=0 β+

m + β+
a + α+

a − α+
0,a

)

λg + (1 − δ)
a−1∑

i=0
(a − i)β+

i

, (78)

α0,r =
(
β+
r + α+

r − α+
0,r

)

λg + (1 − δ)
∑a−1

i=0 (a − i)β+
i

, a + 1 ≤ r ≤ b. (79)

Applying similar process for (72)–(73) and using (78) and (79), we obtain

αn,a =

(
(1 − δ)

∑a−1
m=0 β+

m + β+
a + α+

a − ∑n
j=0 α+

j,a

)

λg + (1 − δ)
∑a−1

i=0 (a − i)β+
i

, n ≥ 1, (80)

αn,r =

(
β+
r + α+

r −
n∑

j=0
α+
j,r

)

λg + (1 − δ)
a−1∑

i=0
(a − i)β+

i

, n ≥ 1, a + 1 ≤ r ≤ b − 1, (81)

αn,b =
∑n

j=0(β
+
b+ j + α+

b+ j − α+
j,b)

λg + (1 − δ)
∑a−1

i=0 (a − i)β+
i

, n ≥ 1. (82)

Combining (78) and (80) we obtain (61). Combining (79) and (81) over the range r , we
obtain (62) and (63).

Dividing (74) by σ−1 and using Lemma 1, Lemma 2 and (21), we obtain

β
[k]
k =

(
1 − (1 − δ)

∑a−1
i=0 fi

)
(α+

k + δβ+
k − β

[k]+
k )

λg
, 0 ≤ k ≤ a − 1. (83)

Using (66) and (68) in (83), we obtain

β
[k]
k = (α+

k + δβ+
k − β

[k]+
k )

λg + (1 − δ)
∑a−1

i=0 (a − i)β+
i

, 0 ≤ k ≤ a − 1. (84)
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Applying similar process for (75) after some algebraic manipulation, we obtain

β[k]
n = (α+

k + δβ+
k − ∑n

j=k β
[k]+
j )

λg + (1 − δ)
∑a−1

i=0 (a − i)β+
i

, n ≥ k + 1, 0 ≤ k ≤ a − 1. (85)

Combining (84)–(85) we get (64). Now by back substitution method we simply obtain the
joint probabilities β

[k]
n (0 ≤ k ≤ a − 1, n ≥ k) from (64). �	

Marginal Probabilities

Marginal probabilities that can be found from the earlier results are as follows:

1. Queue size distribution is

Pqueue
n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − δ) fn +
b∑

r=a
αn,r +

min(n,a−1)∑

k=0
β

[k]
n , 0 ≤ n ≤ a − 1,

b∑

r=a
αn,r +

min(n,a−1)∑

k=0
β

[k]
n , n ≥ a.

2. Probability that the server is in a dormant state (= Pdor ) = (1 − δ)
∑a−1

n=0 fn .
3. Probability of the batch size with the server is r (= Pser

r ) = ∑∞
n=0 αn,r , a ≤ r ≤ b.

4. Probability that the server is in kth vacation type (= Q[k]
vac)= ∑∞

n=k β
[k]
n , 0 ≤ k ≤ a−1.

5. Probability that the server is busy (= Pbusy) = ∑b
r=a

∑∞
n=0 αn,r .

6. Probability that the server is on vacation (= Qvac) = ∑a−1
k=0

∑∞
n=k β

[k]
n .

7. Probability that the server is idle (= Pidle) = (1 − δ)Pdor + Qvac.

Some New Results as Particular Cases

In this section, we present some useful results which seem to be new in the literature. These
results derive from the results obtained for the considered queuing model as particular cases.

• The present paper analyzes the batch size-dependent service M/G(a,b)
r /1 queue and

queue size dependent SV (MV). Hence, If we consider μi = μ, a ≤ i ≤ b; νi = ν,
0 ≤ i ≤ a − 1 then the considered model is reduces to batch size independent service
M/G(a,b)/1 queue with SV and MV where the vacation time is not dependent to queue
size at vacation initiation epoch. This reduced model is analyzed by Sikdar and Gupta
[26] for SV only, and they obtained only queue size distributions at various epoch. For
verification if we substitute δ = 0, M (r)(z) = M̃(z), (a ≤ r ≤ b) and N (k)(z) = Ñ (z)
(0 ≤ k ≤ a − 1) in (47) and (40) we obtain the service completion epoch (vacation
completion epoch) generating function for queue size distribution as follows,

P+(z) =

M̃(z)

[
∑a−1

n=0

(
α+
n

(
Ñ (z) − 1

)
zn + β+

n (zb − zn)
)

+∑b−1
n=a(β

+
n + α+

n )
(
zb − zn

)]

zb − M̃(z)
, (86)

Q+(z) = Ñ (z)
a−1∑

k=0

α+
k z

k, (87)
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which matches exactly with the results obtained by Sikdar and Gupta [26, eq(43), eq(44),
page 953]. Further, from (42) and (48) we obtain

Q+(z, y) = Ñ (z)
a−1∑

k=0

(α+
k + δβ+

k )zk yk, (88)

P+(z, y) =

M̃(z)
∑a−1

n=0

[
(1 − δ)β+

n

(
zb ya − ybzn

) + (1 − δ)M̃(z)
(
yb − ya

)
β+
n

+yb(α+
n + δβ+

n )
(
Ñ (z) − 1

)
zn

]

+M̃(z)
∑b−1

n=a

(
β+
n + α+

n

)(
zb yn + (

yb − yn
)
M̃(z) − ybzn

)

zb − M̃(z)
,

(89)

which are bivariate generating functions at vacation termination epoch, and service com-
pletion epoch, respectively, and is not available so far in the literature. From these bivariate
generating functions ((88) and (89)), applying similar procedure as presented in this paper,
one can obtain the complete joint probabilities of the queue size and batch size with the
server ; also, the joint probabilities of the queue size and vacation type at any time point.

• If we consider a = 1 then the presented model converts in M/G(1,b)
r /1 queue with SV

(MV). According to the analysis done in this paper, we can extract joint probabilities at
different epochs. Such results are also new contributions to the literature.

• If we take a = b then the present model reduces to M/Gb/1 queue with queue size
dependent SV and MV.

PerformanceMeasure

The performance measure is the procedure that collects the information of the system and
helps the manager to run the system smoothly. The present section covers significant perfor-
mance measures of the considered model.

1. Expected queue size (Lq ) is given by

Lq = (1 − δ)
∑a−1

n=0 n fn + ∑∞
n=0

∑b
r=a nαn,r + ∑a−1

k=0
∑∞

n=k nβ
[k]
n = (1 − δ)

∑a−1
n=0 nP

queue
n + ∑∞

n=a−δa nP
queue
n .

2. Expected system size (Ls) is given by

Ls = (1 − δ)
∑a−1

n=0 n fn + ∑∞
n=0

∑b
r=a(n + r)αn,r + ∑a−1

k=0

∞∑
n=k

nβ
[k]
n .

3. Expected waiting time of a customer in the queue (Wq ) is given by

Wq = Lq
λ
.

4. Expected waiting time of a customer in the system (Ws) is given by
Ws = Ls

λ
.

5. Expected batch size with the server when server is busy (Lser ) is given by
Lser =

∑b
r=a(r P

ser
r /Pbusy).

6. Expected vacation type taken by server when server is in vacation ( Lvac) is given by
Lvac = ∑a−1

k=0(kQ
[k]
vac/Qvac).
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Numerical Results

In this section, we present a variety of numerical results to show the behavior of the perfor-
mancemeasures of themodel under study, using graphs and tables. In this connection, we first
consider the example of a sugarcane mill, which is presented by Tamrakar and Banerjee [30],
however, with proper modifications as per our considered model. This example will reflect
the more original scenario of the sugarcane mill example and also the real-life applicability
of our considered model. Let us consider that the sugarcane machine takes 3 to 6 packets of
sugarcane for producing juice. After a production if the machine finds 3 or more packets in
the queue then it produces juice as per GBS rule, i.e., machine takes l = min(r , 6) packets
for producing the juice with service rateμl , (μ3 = 5.16666,μ4 = 3.87500,μ5 = 3.100000,
andμ6 = 2.583333) otherwise, themachine performs either 0th vacation type or 1th vacation
type or 2th vacation type. The service (juice producing) time and the vacation time follow E3

distribution and exponential distribution, respectively. In the 0th vacation type, the machine
removes waste, checks the machinery parts, and purifies the extracted juice assembled in the
containers, However, in 1th or 2th vacation type, it checks the machinery parts. We assume
that the packets are arrivingwith rate λ = 4.5 following the Poissonmanner. Thenwe observe
the following results, where ν0 = 1.3, ν1 = 1.7, and ν2 = 1.9. (i.e., for the case of queue
size dependent vacation (QSDV)).

Average packet (customer) size in the queue 2.817 (for the case of SV) 3.373 (for the case of MV)
Average waiting time of a packet in the queue 0.626 (for the case of SV) 0.749 (for the case of MV)

We observe the following results, where ν0 = ν1 = ν2 = 1.3. (i.e., for the case of queue
size independent vacation (QSIV)).

Average packet (customer) size in the queue 3.334 (for the case of SV) 4.036 (for the case of MV)
Average waiting time of a packet in the queue 0.740 (for the case of SV) 0.897 (for the case of MV)

From the above findings we can conclude that, for this particular example, the average
queue size (waiting time) for QSDV is less than the average queue size (waiting time) for
QSIV. Hence, the consideration of QSDV makes the model more efficient than QSIV.

For further justification of our considered model graphically, we have introduced a com-
parison between QSDV and QSIV (see, Figs. 1, 2, 3, 4, 5, 6 and 7).

For the comparison purpose we consider the following two cases:

Case 1. The QSDV rates are taken as νk = (k + 1)20.85, 0 ≤ k ≤ a − 1.
Case 2. The QSIV rates are taken as νk = ν0, 0 ≤ k ≤ a− 1. In case 1, the vacation rates

are chosen in such a way that as queue size at vacation initiation epoch increases
the vacation time decreases accordingly. However, for case 2, the vacation time
remains constant irrespective of the queue size at vacation initiation epoch. In
Figs. 1, 2, 3, 4, 5, 6 and 7 we present the comparison between QSDV and QSIV
for the M/G(4,9)

r /1 queue with SV (MV). Figures 1, 2, 3 and 4 represent the
influence of the arrival rate λ on Lq and Wq . The service time follows Erlang
(E2) distribution with batch size-dependent service rate μr = μ

r , 4 ≤ r ≤ 9
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Fig. 1 Effect of λ on Lq

Fig. 2 Effect of λ on Lq

Fig. 3 Effect of λ on Wq
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Fig. 4 Effect of λ on Wq

Fig. 5 Effect of λ on Pdor

Fig. 6 Effect of λ on Qvac
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Fig. 7 Effect of λ on Qvac

where μ = 12.5, and the vacation time distributed exponentially. The above
consideration holds for both the cases, i.e., Case 1 and Case 2. It is observed from
Figs. 1, 2, 3, 4 that as λ increases from 5.5 to 11.5 (i.e., ρ varies from 0.32 to
0.92) the performance measures Lq and Wq increases in both the cases. Also, it
is noted that for a fixed λ, Lq (Wq) is lower in Case 1 as compared to Case 2.
Hence, the above studies reveals that assumption of QSDV policy in the batch
size-dependent service model is more efficient, as QSDV is minimizing Lq and
Wq , in comparison to the QSIV policy.

In Fig. 5, Pdor is depicted versus λ for SV. It is observed that as λ increases from 5.5 to
11.5, i.e., ρ varies from 0.32 to 0.92, Pdor decreases for both the cases. This is because the
mean vacation time of the server is longer for Case 2 than in Case 1, which means that the
returning time (from vacation) of the server in the system from the vacation is shorter in Case
1 as compared to Case 2. Hence, the reflexion in Fig. 5 is on the expected direction in the
sense that for a fixed value of λ, Pdor is greater for Case 1 in comparison to Case 2.

In Fisg. 6 and 7 we present the effect of λ on Qvac for SV and MV, respectively. It is
observed that the increase in λ from 5.5 to 11.5, results in a decrease in Qvac for both the
cases, which is on the expected line.

In Fig. 8 we have plotted the effect of λ versus Qvac for SV (Case1) and MV (Case 1).
The input parameters and the service (vacation) time distributions are taken exactly as we
have taken for Figs. 1, 2, 3, 4, 5, 6 and 7. From Fig. 8 it is observed that as λ increases
from 5.5 to 11.5, Qvac decreases. Since increase in value of ρ from 0.32 to 0.92 results in
increase in Lq significantly, i.e., the probability that the server is busy should also increase.
The influence of λ on Qvac presented in Fig. 8 is on the expected direction, as for the case
of SV, Qvac = Pidle − Pdor and for the case of MV Qvac = Pidle.

In Figs. 9 and 10 we present the effect of λ on Lq and Qvac, respectively, for M/G(3,7)
r /1

queue with SV for different vacation time distribution, e.g., (Exponential (M), Erlang (E2)
and Deterministic (D)) with rate νk = (k + 1)20.95 (0 ≤ k ≤ 2). Service time of each
batch distributed exponentially with rate μr = μ

r , 3 ≤ r ≤ 7 where μ = 7.5, irrespective of
vacation time distribution. From Figs. 9 and 10, as λ increases from 3 to 7, i.e., ρ increases
from 0.4 to 0.93, Lq increases and Qvac decreases. All the numerical experiments that
are presented here in the form of graphs (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) helps us
to understand that whether our main objective of studying the proposed model is actually
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Fig. 8 Effect of λ on Qvac

Fig. 9 Effect of λ on Lq

Fig. 10 Effect of λ on Qvac
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achieved or not. Actually, we can conclude from the explanation presented above that our
model helps reducing congestion in the real-life queues because of QSDV.

Cost Model

In this section, we present a cost model which may help in deciding the optimal values
of the system parameters to minimize the total system cost. This type of cost model may
be applicable in the example of group testing (viz., for sample of testing COVID-19) that
has been discussed in introduction section. For this purpose, we consider the following cost
parameters:

Cs ≡ Startup cost (i.e., cost that bring the sample to the system) per sample per unit
time.

Cb ≡ Holding cost (i.e., cost to preserve the sample waiting in the queue for test, during
health worker’s busy period) per sample per unit time.

Cv ≡ Holding cost (i.e., cost to preserve the sample waiting in the queue for test, during
health worker’s vacation period) per sample per unit time.

Cd ≡ Holding cost (i.e., cost to preserve the sample waiting in the queue for test, during
health worker’s dormant period) per sample per unit time (exists only for SV).

Co ≡ Testing cost (i.e., cost when sample is taken for testing by health worker) per
sample per unit time. Thus in long run,

total system cost (TSC) = λCs + Cb
∑∞

n=0
∑b

r=a n
αn,r
Pbusy

+Cv

∑∞
n=0

∑min(n,a−1)
k=0 n β

[k]
n

Qvac
+

(1 − δ)Cd
∑a−1

n=0 n
fn

Pdor
+ CoLser .

Here, we present a numerical result by considering particular values of the system parameters.
We vary the value of a from 1 to 12 and fix the value of b at 12. In Table 1 we present the
values of TSC for MV (see column 2–5 of Table 1) and for SV (see column 6–9 of Table 1)
and for different values of λ = 7, 10, 13, 18. The service time distribution is considered to
be E2 with batch size dependent service rate μr = rμ (μ = 0.15) and the vacation time
distribution is considered to be exponential distribution with queue size dependent vacation
rate νk = νk−1+1 (1 ≤ k ≤ a−1, ν0 = 1.5). The TSC are obtained under the consideration
Cs = 0.1, Cb = 1.0, Cv = 1.5, Cd = 1.7, and Co = 3.5.

By considering this type of numerical experimentwith desired values of systemparameters
and service time distribution (vacation time distribution) system analysts may easily achieve
the minimum TSC by considering an optimal value of a. For fixed λ the minimum values of
TSC are indicated in bold letters and the corresponding values of a are the desired optimum
values of the lower threshold. For example for λ = 10 (MV), the minimum TSC is 46.8892
which is achieved at a = 4, hence, a = 4 is the corresponding optimum value. A similar
conclusion may be drawn for all other values of λ and for SV and MV.

Conclusion

In this article, we dealt with an infinite capacity batch service queue with single and multiple
vacations where the service time of the batches depend on the size of the batch under service,
and the vacation time of the server depends on the queue size at vacation initiation epoch.
Steady-state joint probabilities have been achieved at various epochs by using the supple-
mentary variable approach and the bivariate generating function method. Finally, various
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performance measures have been discussed to appraise the applicability of the considered
model in the numerical section. In the present model interarrival time has been considered to
be exponentially distributed, however, in computer communication and telecommunication
system the arrivals of the data are bursty in nature and hence cannot be model using expo-
nential interarrival time. To model these type of real-life system, the analysis of the present
model may motivate researchers to analyze a more complex model for the steady-state joint
probabilities for different service rules (different vacation policies) with more general arrival
(service) process, viz., MAP (MSP) or BMAP (BMSP).

Author Contributions Mr. GKT analyzed the model mathematically. Dr. AB was a major contributor in
programming and writing the manuscript.

Funding This work was supported by the Council of Scientific & Industrial Research (CSIR), India.
(09/1217(0026)/2017-EMR-I)

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Data availability: Not applicable.

References

1. Gupta, U.C., Pradhan, S.: Queue length and server content distribution in an infinite-buffer batch-service
queue with batch-size-dependent service. Adv. Opera. Res. 2015, 1–12 (2015)

2. Pradhan, S., Gupta, U.C., Samanta, S.K.: Analyzing an infinite buffer batch arrival and batch service
queue under batch-size-dependent service policy. J. Korean Stat. Soc. 45(1), 137–148 (2016)

3. Bank, B., Samanta, S.K.: Analytical and computational studies of the BMAP/G(a,Y )/1 queue. Commun.
Stat. Theor. Methods 50(15), 3586–3614, (2020). https://doi.org/10.1080/03610926.2019.1708941

4. Bar-Lev, S.K., Parlar, M., Perry, D., Stadje,W., Van der Duyn Schouten, F.A.: Applications of bulk queues
to group testing models with incomplete identification. Eur. J. Oper. Res. 183(1), 226–237 (2007)

5. Chaudhry, M.L., Templeton, J.G.: First Course in Bulk Queues. AWiley-interscience publication, Hobo-
ken (1983)

6. Choi, B.D., Han, D.H.: G/M(a,b)/1 queues with server vacations. J. Oper. Res. Soc. Jpn. 37(3), 171–181
(1994)

7. Chow, W.K., Chow, C.L.: A discussion on implementing pooling detection tests of novel coronavirus
(SARS-CoV-2) for a large population. Epidemiol. Infect. 149(e17), 1–6 (2021). https://doi.org/10.1017/
S0950268820003155

8. Doshi, B.T.: Queueing systems with vacations: a survey. Queueing Syst. 1(1), 29–66 (1986)
9. Frey, A., Takahashi, Y.: An explicit solution for an M/GI/1/N queue with vacation time and exhaustive

service discipline. J. Oper. Res. Soc. Jpn. 41(3), 430–441 (1998)
10. Gupta, G.K., Banerjee, A.: On finite buffer bulk arrival bulk service queue with queue length and batch

size dependent service. Int. J. Appl. Comput. Math. 5(2), 32 (2019)
11. Gupta, G.K., Banerjee, A., Gupta, U.C.: On finite-buffer batch-size-dependent bulk service queue with

queue-length dependent vacation. Qual. Technol. Quant. Manag. 17(5), 501–527 (2020). https://doi.org/
10.1080/16843703.2019.1675568

12. Gupta,U.C., Sikdar,K.: Thefinite-bufferM/G/1queuewith general bulk-service rule and single vacation.
Perform. Eval. 57(2), 199–219 (2004)

13. Haridass, M., Arumuganathan, R.: Analysis of a MX /G(a, b)/1 queueing system with vacation inter-
ruption. RAIRO Oper. Res. 46(4), 305–334 (2012)

14. Jeyakumar, S., Senthilnathan, B.: Modelling and analysis of a MX /G(a,b)/1 queue with multiple vaca-
tions, setup time, closedown time and server breakdown without interruption. Int. J. Oper. Res. 19(1),
114–139 (2014)

123

https://doi.org/10.1080/03610926.2019.1708941
https://doi.org/10.1017/S0950268820003155
https://doi.org/10.1017/S0950268820003155
https://doi.org/10.1080/16843703.2019.1675568
https://doi.org/10.1080/16843703.2019.1675568


Int. J. Appl. Comput. Math (2021) 7 :252 Page 25 of 25 252

15. Kalita, C.R., Choudhury, G.: Analysis of an unreliable MX /G1 G2 /1 repeated service queue with
delayed repair under randomized vacation policy. Commun. Stat. Theory Methods 48(21), 5336–5369
(2019)

16. Karpagam, S., Ayyappan, G., Somasundaram, B.: A bulk queueing system with rework in manufacturing
industry with starting failure and single vacation. Int. J. Appl. Comput. Math. 6(6), 1–22 (2020)

17. Ke, J.C., Wu, C.H., Zhang, Z.G.: Recent developments in vacation queueing models: a short survey. Int.
J. Oper. Res. 7(4), 3–8 (2010)

18. Lee, H.W., Lee, S.S., Chae, K.C.: A fixed-size batch service queue with vacations. Int. J. Stoch. Anal.
9(2), 205–219 (1996)

19. Lee, H.W., Lee, S.S., Chae, K.C., Nadarajan, R.: On a batch service queue with single vacation. Appl.
Math. Model. 16(1), 36–42 (1992)

20. Levy, Y., Yechiali, U.: Utilization of idle time in anM/G/1 queueing system.Manag. Sci. 22(2), 202–211
(1975)

21. Medhi, J.: Stochastic Models in Queueing Theory. Academic Press, Cambridge (2002)
22. Neuts, M.F.: A general class of bulk queues with Poisson input. Ann. Math. Stat. 38(3), 759–770 (1967)
23. Pool testing of SARS-CoV-02 samples increases worldwide test capacities many times

over. Retrieved from https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-
increases-worldwide-test-capacities-many-times-over/. (2020)

24. Pradhan, S., Gupta, U.C.: Stationary queue and server content distribution of a batch-size-dependent

service queue with batch Markovian arrival process: BMAP/G(a,b)
n /1. Commun. Stat. Theory Methods

(2020). https://doi.org/10.1080/03610926.2020.1813304
25. Samanta, S.K., Chaudhry, M.L., Gupta, U.C.: Discrete-time GeoX /G(a,b)/1/N queues with single and

multiple vacations. Math. Comput. Model. 45(1–2), 93–108 (2007)
26. Sikdar, K., Gupta, U.C.: Analytic and numerical aspects of batch service queues with single vacation.

Comput. Oper. Res. 32(4), 943–966 (2005)
27. Sikdar, K., Gupta, U.C.: On the batch arrival batch service queue with finite buffer under servers vacation:

MX /GY /1/N queue. Comput. Math. Appl. 56(11), 2861–2873 (2008)
28. Sikdar, K., Samanta, S.K.: Analysis of a finite buffer variable batch service queue with batch Markovian

arrival process and servers vacation. OPSEARCH 53(3), 553–583 (2016)
29. Takagi, H.: Queueing analysis: A foundation of performance evaluation. Vol. 1, Vacation and Priority,

North-Holland, New York. (1991)
30. Tamrakar, G.K., Banerjee, A.: On steady-state joint distribution of an infinite buffer batch service Poisson

queuewith single andmultiple vacation. OPSEARCH, 57(4), 1337–1373 (2020). https://doi.org/10.1007/
s12597-020-00446-9

31. Tian, N., Zhang, Z.G.: Vacation Queueing Models: Theory and Applications, vol. 93. Springer Science
& Business Media, New York (2006)

32. Vadivu, A.S., Arumuganathan, R.: Cost analysis of MAP/G(a,b)/1/N queue with multiple vacations
and closedown times. Qual. Technol. Quant. Manag. 12(4), 605–626 (2015)

33. Yelin, I., Aharony, N., Shaer-Tamar, E., Argoetti, A., Messer, E., Berenbaum, D., et al.: Evaluation of
Covid-19 RT-qPCR test in multi sample pools. Clin. Infect. Dis. 71(16), 2073–2078 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-increases-worldwide-test-capacities-many-times-over/
https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-increases-worldwide-test-capacities-many-times-over/
https://doi.org/10.1080/03610926.2020.1813304
https://doi.org/10.1007/s12597-020-00446-9
https://doi.org/10.1007/s12597-020-00446-9

	Study on Infinite Buffer Batch Size Dependent Bulk Service Queue with Queue Length Dependent Vacation
	Abstract
	Introduction
	Model Description
	System Analysis
	Joint Probabilities at Service (Vacation) Completion Epoch
	Procedure of Getting the Unknowns αn+ (0leqnleqb-1)

	Marginal Probabilities
	Some New Results as Particular Cases

	Performance Measure
	Numerical Results
	Cost Model
	Conclusion
	References




