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Predicting electronic energies, densities, and related chemical properties can facilitate
the discovery of novel catalysts, medicines, and battery materials. However, existing
machine learning techniques are challenged by the scarcity of training data when
exploring unknown chemical spaces. We overcome this barrier by systematically in-
corporating knowledge of molecular electronic structure into deep learning. By de-
veloping a physics-inspired equivariant neural network, we introduce a method to
learn molecular representations based on the electronic interactions among atomic
orbitals. Our method, OrbNet-Equi, leverages efficient tight-binding simulations and
learned mappings to recover high-fidelity physical quantities. OrbNet-Equi accurately
models a wide spectrum of target properties while being several orders of magnitude
faster than density functional theory. Despite only using training samples collected
from readily available small-molecule libraries, OrbNet-Equi outperforms traditional
semiempirical and machine learning–based methods on comprehensive downstream
benchmarks that encompass diverse main-group chemical processes. Our method also
describes interactions in challenging charge-transfer complexes and open-shell systems.
We anticipate that the strategy presented here will help to expand opportunities for
studies in chemistry and materials science, where the acquisition of experimental or
reference training data is costly.
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Discovering new molecules and materials is central to tackling contemporary challenges
in energy storage and drug discovery (1, 2). As the experimentally uninvestigated chemical
space for these applications is immense, large-scale computational design and screening
for new molecule candidates have the potential to vastly reduce the burden of laborious
experiments and to accelerate discovery (3–5). A crucial task is to model the quantum
chemical properties of molecules by solving the many-body Schrödinger equation, which
is commonly addressed by ab initio electronic structure methods (6, 7), such as density
functional theory (DFT) (Fig. 1A). While very successful, ab initio methods are laden
with punitive computational requirements that makes it difficult to achieve a throughput
on a scale of the unexplored chemical space.

In contrast, machine learning (ML) approaches are highly flexible as function ap-
proximators and thus, are promising for modeling molecular properties at a drastically
reduced computational cost. A large class of ML-based molecular property predictors
includes methods that use atomic coordinate–based input features, which closely resemble
molecular mechanics (MM) descriptors (8–18); these methods will be referred to as
Atomistic ML methods in the current work (Fig. 1B). Atomistic ML methods have been
employed to solve challenging problems in molecular sciences, such as RNA structure
prediction (19) and anomalous phase transitions (20). However, there remains a key
discrepancy between Atomistic ML and ab initio approaches regarding the modeling of
quantum chemical properties, as Atomistic ML approaches typically neglect the electronic
degrees of freedom that are central for the description of important phenomena, such as
electronic excitations, charge transfer, and long-range interactions. Moreover, recent work
shows that Atomistic ML can struggle with transferability on downstream tasks where the
molecules may chemically deviate from the training samples (21, 22) as is expected to be
common for underexplored chemical spaces.

Recent efforts to embody quantum mechanics (QM) into molecular representations
based on electronic structure theory have made breakthroughs in improving both the
chemical and electronic transferability of ML-based molecular modeling (23–29). Lever-
aging a physical feature space extracted from QM simulations, such QM-informed ML
methods have attained data efficiency that significantly surpasses Atomistic ML methods,
especially when extrapolated to systems with length scales or chemical compositions
unseen during training. Nevertheless, QM-informed ML methods still fall short in
terms of the flexibility of modeling diverse molecular properties unlike their atomistic
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counterparts, as they are typically implemented for a limited set
of learning targets, such as the electronic energy or the exchange–
correlation potential. A key bottleneck hampering the broader ap-
plicability of QM-informed approaches is the presence of unique
many-body symmetries necessitated by an explicit treatment on
electron–electron interactions. Heuristic schemes have been used
to enforce invariance (24, 26, 30–33) at a potential loss of infor-
mation in their input features or expressivity in their ML models.
Two objectives remain elusive for QM-informed ML: 1) incor-
porate the underlying physical symmetries with maximal data
efficiency and model flexibility and 2) accurately infer downstream
molecular properties for large chemical spaces at a computational
resource requirement on par with existing empirical and Atomistic
ML methods.

Herein, we introduce an end-to-end ML method for QM-
informed molecular representations, OrbNet-Equi, in fulfillment
of these two objectives. OrbNet-Equi featurizes a mean-field elec-
tronic structure via the atomic orbital basis and learns molecular
representations through an ML model that is equivariant with
respect to isometric basis transformations (Fig. 1 C–E). By the
virtue of equivariance, OrbNet-Equi respects essential physical
constraints of symmetry conservation so that the target quan-
tum chemistry properties are learned independent of a reference
frame. Underpinning OrbNet-Equi is a neural network designed
with insights from recent advances in geometric deep learning
(34–40) but with key architectural innovations to achieve equiv-
ariance based on the tensor-space algebraic structures entailed in
atomic orbital–based molecular representations.

We demonstrate the data efficiency of OrbNet-Equi on learn-
ing molecular properties using input features obtained from tight-
binding QM simulations, which are efficient and scalable to
systems with thousands of atoms (41). We find that OrbNet-Equi
consistently achieves lower prediction errors than existing Atom-
istic ML methods and our previous QM-informed ML method
(26) on diverse target properties, such as electronic energies, dipole
moments, electron densities, and frontier orbital energies. Specif-
ically, our study on learning frontier orbital energies illustrates an
effective strategy to improve the prediction of electronic properties
by incorporating molecular orbital space information.

To showcase its transferability to complex real-world chemical
spaces, we trained an OrbNet-Equi model on single-point energies
of ∼236,000 molecules curated from readily available small-
molecule libraries. The resulting model, OrbNet-Equi/Selected
Drug-Like and Biofragment Conformers (SDC21), achieves
a performance competitive to state-of-the-art composite DFT
methods when tested on a wide variety of main-group quantum
chemistry benchmarks while being up to 1,000-fold faster at
run time. As a particular case study, we found that OrbNet-
Equi/SDC21 substantially improved the prediction accuracy of
ionization potentials relative to semiempirical QM methods, even
though no radical species were included for training. Thus, our
method has the potential to accelerate simulations for challenging
problems in organic synthesis (42), battery design (43), and
molecular biology (44). Detailed data analysis pinpoints viable
future directions to systematically improve its chemical space
coverage, opening a plausible pathway toward a generic hybrid
physics–ML paradigm for the acceleration of molecular modeling
and discovery.

Results

The OrbNet-Equi Methodology. OrbNet-Equi featurizes a molec-
ular system through mean-field QM simulations. Semiempirical
tight-binding models (41) are used through this study since
they can be solved rapidly for both small-molecule and
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Fig. 1. QM-informed ML for modeling molecular properties. (A) Conven-
tional ab initio quantum chemistry methods predict molecular properties
based on electronic structure theory through computing molecular wave
functions and interaction terms, with general applicability but at high com-
putational cost. (B) Atomistic ML approaches use geometric descriptors, such
as interatomic distances, angles, and directions, to bypass the procedure of
solving the electronic structure problem but often require vast amounts of
data to generalize toward new chemical species. (C) In our approach, features
are extracted from a highly coarse-grained QM simulation to capture essential
physical interactions. An equivariant neural network efficiently learns the
mapping, yielding improved transferability at an evaluation speed that is
competitive to Atomistic ML methods. (D) Characteristics of the atomic orbital
features considered in OrbNet-Equi. The features T are visualized by the
density matrix of the molecular system, with red color indicating positive
matrix elements and blue color indicating negative matrix elements. Every
pair of atoms (A, B) is mapped to a block in the feature matrix, with the
row dimension of the block matching the atomic orbitals of the source
atom A and the column dimension matching the atomic orbitals of the
destination atom B. (E) OrbNet-Equi is equivariant with respect to isometric
basis transformations on the atomic orbitals (Eqs. 3 and 4), yielding consistent
predictions (illustrated as the dipole moment vector of a thiohypofluorous
acid molecule) at different viewpoints. Pink and blue densities overlaying the
molecule illustrate an atomic orbital; upon viewpoint rotation R, the original
atomic orbital (semitransparent) is reexpressed as a linear combination of
atomic orbitals in the rotated frame, leading to a basis transformation that
changes the coefficients of feature matrices T.

extended systems, which enables deploying OrbNet-Equi to large
chemical spaces. In particular, we employ the recently reported
GFN (geometries [vibrational], frequencies, and noncovalent
interactions [NCIs])-xTB (extended tight-binding) (45) QM
model in which the mean-field electronic structure Ψ0 is obtained
through self-consistently solving a tight-binding model system
(Fig. 1C ). Built upon Ψ0, the inputs to the neural network
comprise a stack of matrices T[Ψ0] defined as single-electron
operators Ô[Ψ0] represented in the atomic orbitals (Fig. 1D),

(
T[Ψ0]

)n,l,m;n′,l′,m′

AB
= 〈Φn,l,m

A |Ô[Ψ0]|Φn′,l′,m′

B 〉, [1]

where A and B are both atom indices; (n, l ,m) and (n ′, l ′,m ′)
indicate a basis function in the set of atomic orbitals {Φ}
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Fig. 2. Schematic illustration of the OrbNet-Equi method. The input atomic orbital features T[Ψ0] are obtained from a low-fidelity QM simulation. A neural
network termed UNiTE first initializes atom-wise representations through the diagonal reduction module and then, updates the representations through stacks
of block convolution, message-passing, and point-wise interaction modules. A programmed pooling layer reads out high-fidelity property predictions ŷ based
on the final representations. Neural network architecture details are provided in Materials and Methods.

centered at each atom. Motivated by mean-field electronic energy
expressions, the input atomic orbital features are selected as
T= (F,P,H,S) using the Fock F, density P, core Hamilto-
nian H, and overlap S matrices of the tight-binding QM model
(Materials and Methods), unless otherwise specified.

OrbNet-Equi learns a map F to approximate the target molec-
ular property y of high-fidelity electronic structure simulations or
experimental measurements,

min
F

L
(
y,F

(
T[Ψ0]

))
, [2]

where L denotes a cost functional between the reference and
predicted targets over training data. The learning problem de-
scribed by Eq. 2 requires careful treatment on isometric coordinate
transformations imposed on the molecular system because the
coefficients of T[Ψ0] are defined up to a given viewpoint (Fig.
1E). Precisely, the atomic orbitals {Φn,l,m

A } undergo a unitary
linear recombination subject to three-dimensional (3D) rota-
tions: R · |Φn,l,m

A 〉=
∑

m′ Dl
m,m′(R)|Φn,l,m′

A 〉, where Dl(R)
denotes the Wigner-D matrix of degree l for a rotation operation
R. As a consequence of the basis changing induced by R, T[Ψ0]
is transformed block wise:(

R ·T[Ψ0]
)l;l′
AB

=Dl(R)
(
T[Ψ0]

)l;l′
AB

Dl′(R)†, [3]

where the dagger symbol denotes an Hermitian conjugate. To
account for the rototranslation symmetries, the neural network F
must be made equivariant with respect to all such isometric basis
rotations: that is,

R · F
(
T[Ψ0]

)
≡F

(
R ·T[Ψ0]

)
, [4]

which is fulfilled through our delicate design of the neural network
in OrbNet-Equi (Fig. 2). The neural network iteratively updates
a set of representations ht defined at each atom through its
neural network modules and reads out predictions using a pooling
layer located at the end of the network. During its forward pass,
diagonal blocks of the inputs T[Ψ0] are first transformed into
components that are isomorphic to orbital–angular–momentum
eigenstates, which are then cast to the initial representations
ht=0. Each subsequent module exploits off-diagonal blocks of
T[Ψ0] to propagate nonlocal information among atomic orbitals
and refine the representations ht , which resemble a process of
applying time-evolution operators on quantum states. We provide
a technical introduction to the neural network architecture in
Materials and Methods. We incorporate other constraints on
the learning task, such as size consistency solely through pro-
gramming the pooling layer (Materials and Methods), therefore
achieving task-agnostic modeling for diverse chemical proper-
ties. Additional details and theoretical results are provided in
SI Appendix, sections S1 and S2.

Performance on Benchmark Datasets. We begin with bench-
marking OrbNet-Equi on the QM9 (Quantum Machines 9)
dataset (46), which has been widely adopted for assessing ML-
based molecular property prediction methods. QM9 contains
133,885 small organic molecules at optimized geometries, with
target properties computed by DFT. Following previous works
(13, 14, 17, 18, 38, 47), we take 110,000 random samples as the
training set and 10,831 samples as the test set. We present results
for both the “direct-learning” training strategy, which corresponds
to training the model directly on the target property, and whenever
applicable, the “delta-learning” strategy (48), which corresponds
to training on the residual between output of the tight-binding
QM model and the target level of theory.

We first trained OrbNet-Equi on two representative targets,
the total electronic energy U0 and the molecular dipole moment
vector �μ (Fig. 3 A and B), for which a plethora of task-specific
ML models has previously been developed (26, 49–53). The total
energy U0 is predicted through a sum over atom-wise energy
contributions, and the dipole moment �μ is predicted through a
combination of atomic partial charges and dipoles (SI Appendix,
section S1.E). For U0 (Fig. 3A), the direct-learning results of
OrbNet-Equi match the state-of-the-art kernel-based ML method
[Faber–Christensen–Huang–Lilienfeld (FCHL)18/GPR (Gaus-
sian Process Regression) (49) in terms of the test mean absolute
error (MAE) while being scalable to large data regimes (Fig. 3A,
training data size >20,000), where no competitive result has been
reported before. With delta learning, OrbNet-Equi outperforms
our previous QM-informed ML approach OrbNet (26) by
∼45% in the test MAE. Because OrbNet also uses the GFN-
xTB QM model for featurization and the delta-learning strategy
for training, this improvement underscores the strength of our
neural network design, which seamlessly integrates the underlying
physical symmetries. Moreover, for dipole moments �μ (Fig. 3B),
OrbNet-Equi exhibits steep learning curve slopes regardless of the
training strategy, highlighting its capability of learning rotational-
covariant quantities at no sacrifice of data efficiency.

We then targeted the learning task of frontier molecular orbital
(FMO) properties, in particular energies of the highest occupied
molecular orbital (HOMO), the lowest unoccupied molecular or-
bital (LUMO), and the HOMO–LUMO gaps, which are impor-
tant in the prediction of chemical reactivity and optical properties
(54, 55). Because the FMOs are inherently defined in the electron
energy space and are often spatially localized, it is expected to
be challenging to predict FMO properties based on molecular
representations in which a notion of electronic energy levels
is absent. OrbNet-Equi overcame this obstacle by breaking the
orbital filling degeneracy of its input features to encode plausible
electron excitations near the FMO energy levels: that is, adding
energy-weighted density matrices of “hole-excitation” Dβ

h and
that of “particle-excitation” Dβ

p :
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Fig. 3. Model performance on the QM9 dataset. (A and B) Test MAE of OrbNet-Equi is shown as functions of the number of training samples along with
previously reported results from task-specific ML methods [FCHL18 (49), FCHL19 (51), Spectrum of London and Axilrod-Teller-Muto (ATM) potential (98), Smooth
Overlap of Atomic Positions (50), FCHL18* (51), MuML (52)] and deep learning–based methods [SchNet (13), PhysNet (14), OrbNet (26)] for targets (A) electronic
energy U0 and (B) molecular dipole moment vector �μ on the QM9 dataset. Results for OrbNet-Equi models trained with direct learning and delta learning
are shown as dashed and solid lines, respectively. (C) Incorporating energy-weighted density matrices to improve data efficiency on learning frontier orbital
properties. The HOMO, LUMO, and HOMO–LUMO gap energy test MAEs of OrbNet-Equi are shown as functions of the number of training samples. For models
with the default feature set (red curves), the reduction in test MAE for delta-learning models over direct-learning models gradually diminishes as the training data
size grows. The LUMO and gap energy MAE curves exhibit a cross-over around 32,000 to 64,000 training samples; thereafter, direct-learning models outperform
delta-learning models. In contrast, when the energy-weighted density matrix features are supplied (blue curves), the test MAE curves between direct-learning
and delta-learning models remain gapped when the training data size is varied. The black stars indicate the lowest test MAEs achieved by Atomistic ML methods
[SphereNet (17)] trained with 110,000 samples.

(Dβ
h )μν =

∑
i

C ∗
μiCνi · exp

(
− β(εHOMO − εi)

)
· ni [5]

(Dβ
p )μν =

∑
i

C ∗
μiCνi · exp

(
β(εLUMO − εi)

)
·(1− ni), [6]

where εi and ni are the orbital energy and occupation number of
the ith molecular orbital from tight-binding QM and Cμi ,Cνi

denotes the molecular orbital coefficients with μ and ν indexing
the atomic orbital basis. Here, the effective temperature param-
eters β are chosen as β = [4, 16, 64, 256] (atomic units), and
a global attention-based pooling is used to ensure size-intensive
predictions (SI Appendix, section S1.E.4). Fig. 3C shows that the
inclusion of energy-weighted density matrices (Dβ

h ,D
β
p ) indeed

greatly enhanced model generalization on FMO energies, as ev-
ident from the drastic test MAE reduction against the model
with default ground-state features (F,P,S,H) as well as the best
result from Atomistic ML methods. Remarkably, for models using
default ground-state features (Fig. 3C, red lines), we noticed a
rank reversal behavior between direct-learning and delta-learning

models as more training samples became available, mirroring
similar observations from a recent Atomistic ML study (56). The
absence of this cross-over when (Dβ

h ,D
β
p ) are provided (Fig. 3C,

blue) suggests that the origin of such a learning slowdown is the
incompleteness of spatially degenerate descriptors, and the gap
between delta-learning and direct-learning curves can be restored
by breaking the energy-space degeneracy. This analysis reaffirms
the role of identifying the dominant physical degrees of freedom
in the context of the ML-based prediction of quantum chemical
properties and is expected to benefit the modeling of relevant
electrochemical and optical properties, such as redox potentials.

Furthermore, OrbNet-Equi is benchmarked on 12 targets of
QM9 using the 110,000 full training set (SI Appendix, Table S1),
for which we programmed its pooling layer to reflect the symmetry
constraint of each target property (SI Appendix, section S1.E).
We observed top-ranked performance on all targets with
average test MAE around twofold lower than atomistic deep
learning methods. In addition, we tested OrbNet-Equi on fitting
molecular potential energy surfaces by training on multiple
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configurations of a molecule (SI Appendix, section S3.B). Results
(SI Appendix, Tables S2 and S3) showed that OrbNet-Equi
obtained energy and force prediction errors that match state-
of-the-art ML potential methods (57, 58) on the Molecular
Dynamics 17 dataset (57, 59), suggesting that our method also
efficiently generalizes over the conformation degrees of freedom
apart from being transferable across the chemical space. These
extensive benchmarking studies confirm that our strategy is
consistently applicable to a wide range of molecular properties.

Accurate Modeling for Electron Densities. We next focus on
the task of predicting the electron density ρ(�r) : R3 → R, which
plays an essential role in both the formulation of DFT and
in the interpretation of molecular interactions. It is also more
challenging than predicting the energetic properties from an ML
perspective due to the need of preserving its real-space continuity
and rotational covariance. OrbNet-Equi learns to output a set of
expansion coefficients d̂nlm

A to represent the predicted electron
density ρ̂(�r) through a density-fitting basis set {χ} (Materials and
Methods and SI Appendix, section S1.E.6),

ρ̂(�r) =

Natom∑
A

lmax(zA)∑
l

l∑
m=−l

nmax(zA,l)∑
n

d̂nlm
A χnlm

A (�r), [7]

where lmax(zA) is the maximum angular momentum in the
density-fitting basis set for atom type zA and nmax(zA, l) denotes
the cardinality of basis functions with angular momentum l. We
train OrbNet-Equi to learn DFT electron densities on the QM9
dataset of small organic molecules and the BfDB-SSI (Biofrag-
ment Database-sidechain-sidechain interactions) (60) dataset of
amino acid side-chain dimers (Fig. 4) using the direct-learning
strategy. OrbNet-Equi results are substantially better than Atom-
istic ML baselines in terms of the average L1 density error ερ =∫
|ρ(�r)−ρ̂(�r)|d�r∫

|ρ(�r)|d�r (Materials and Methods); specifically, OrbNet-
Equi achieves an average ερ of 0.191 ± 0.003% on BfDB-SSI
using 2,000 training samples compared with 0.29% of Symmetry-
Adapted Gaussian Process Regression (61) and an average ερ of
0.206 ± 0.001% on QM9 using 123,835 training samples as
compared with 0.28 to 0.36% of DeepDFT (62). Fig. 4A confirms
that OrbNet-Equi predicts densities at consistently low errors
across the real space and maintains a robust asymptotic decay
behavior within low-density [ρ(�r)< 10−4 a−3

0 ] regions that are
far from the molecular system. Furthermore, analysis of elec-
tric multipole moments derived from the predicted charge den-
sities (SI Appendix, S3.C and Figs. S3 and S4) suggests that the
OrbNet-Equi–predicted density yields multipole errors compara-
ble with the deviations between different DFT functionals.

To understand whether the model generalizes to cases where
charge transfer is significant, as in donor–acceptor systems, we
introduce a simple baseline predictor termed monomer density
superposition (MDS). The MDS electron density of a dimeric
system is taken as the sum of independently computed DFT elec-
tron densities of the two monomers. OrbNet-Equi yields accurate
predictions in the presence of charge redistribution induced by
noncovalent effects, as identified by dimeric examples from the
BfDB-SSI test set for which the MDS density (Fig. 4B, x axis)
largely deviates from the DFT reference density of the dimer due
to intermolecular interactions. One representative example is a
strongly interacting glutamic acid–lysine system (Fig. 4 C and
D) whose salt-bridge formation is known to be essential for the
helical stabilization in protein folding (63), for which OrbNet-
Equi predicts ρ(�r)with ερ = 0.211± 0.001% significantly lower
than that of MDS (ερ = 1.47± 0.02%). The accurate modeling

A

B

C MDS - reference

OrbNet-Equi - referenceD

BFDb-SSI
QM9

Fig. 4. Learning electron charge densities for organic and biological motif
systems. (A) Two-dimensional heat maps of the log-scale reference density
ρ(�r) and the log-scale OrbNet-Equi density prediction error |ρ̂(�r) − ρ(�r)|
(both in a−3

0 ). The heat maps are calculated by sampling real-space query
points �r ∈ R

3 for all molecules in the (red) BfDB-SSI test set and the (blue)
QM9 test set. The nearly linear relationship for log10(ρ(�r)) < −4 low-density
regions reveals that OrbNet-Equi–predicted densities possess a physical long-
range decay behavior. Distributions of log10(ρ(�r)) and log10(|ρ̂(�r) − ρ(�r)|) are
plotted within the marginal charts. (B) The L1 density errors ερ of OrbNet-
Equi are plotted against the ερ of densities obtained through MDS across the
BfDB-SSI test set. Error bars mark the 99% CIs of ερ for individual samples.
Inset shows the average ερ for MDS, an Atomistic ML method (61), and
OrbNet-Equi predictions on the BfDB-SSI test set. OrbNet-Equi yields the
lowest average prediction error and consistently, produces accurate electron
densities for cases where intermolecular charge transfer is substantial. (C
and D) Visualization of density deviation maps for (C) MDS and (D) OrbNet-
Equi–predicted densities on the Glu−/Lys+ system (SSI-139GLU-144LYS-1), a
challenging example from the BfDB-SSI test set. Red isosurfaces correspond
to Δρ = −0.001 a−3

0 , and blue isosurfaces correspond to Δρ = +0.001 a−3
0 ,

where Δρ is the model density subtracted by the DFT reference density.

of ρ(�r) offers an opportunity for constructing transferable DFT
models for extended systems by learning on both energetics and
densities while at a small fraction of expense relative to solving the
Kohn–Sham equations from scratch.

Transferability on Downstream Tasks. Beyond data efficiency
on established datasets in train–test split settings, a crucial but
highly challenging aspect is whether the model accurately infers
downstream properties after being trained on data that are feasible
to obtain. To comprehensively evaluate whether OrbNet-Equi can
be transferred to unseen chemical spaces without any additional
supervision, we have trained an OrbNet-Equi model on a dataset
curated from readily available small-molecule databases (Materials
and Methods). The training dataset contains 235,834 samples
with chemical space coverage for drug-like molecules and biolog-
ical motifs containing chemical elements C, O, N, F, S, Cl, Br, I,
P, Si, B, Na, K, Li, Ca, and Mg and thermalized geometries. The
resulting OrbNet-Equi/SDC21 potential energy model is solely
trained on DFT single-point energies using the delta-learning
strategy. Without any fine-tuning, we directly apply OrbNet-
Equi/SDC21 to downstream benchmarks that are recognized
for assessing the accuracy of physics-based molecular modeling
methods.

The task of ranking conformer energies of drug-like molecules
is benchmarked via the Hutchison dataset of conformers of ∼700
molecules (21) (Fig. 5A and SI Appendix, Table S5, rows 1 and 2).
On this task, OrbNet-Equi/SDC21 achieves a median R2 score of
0.87 ± 0.02 and R2 distributions closely matching the reference
DFT theory on both neutral and charged systems. On the other
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Fig. 5. OrbNet-Equi/SDC21 infers diverse downstream properties at an ef-
ficiency of semiempirical tight-binding calculations. (A) Conformer energy
ranking on the Hutchison dataset of drug-like molecules. The horizontal axis
is labeled with acronyms indicating each method (O, OrbNet-Equi/SDC21 [this
work]; G, GFN-xTB; G2, GFN2-xTB; A, ANI(Accurate NeurAl networK engINe
for Molecular Energies)-2x; B, B97-3c; ω, ωB97X-D3/def2-TZVP). The y axis
corresponds to the molecule-wise R2 between predictions and the reference
[DLPNO-CCSD(T)] conformer energies. Violin plots display the distribution of
R2 scores for each method over the (Left) neutral, (Middle) charged, and (Right)
all molecules from the Hutchison dataset. Medians and first/third quantiles
are shown as black dots and vertical bars, respectively. (B) A torsion profile
example from the TorsionNet500 benchmark. All predicted torsion scans
surfaces are aligned to the true global minima of the highest level of theory
(ω B97X-D3/def2-TZVP) results, with spline interpolations. (C) A uracil–uracil
base pair example for NCIs. The dimer binding energy curves are shown
as functions of the intermolecular axis (re), where re = 1.0 corresponds to
the distance of optimal binding energy. (D) Geometry optimization results on
the (Left) ROT34 and (Right) MCONF datasets. Histograms and kernel density
estimations of the symmetry-corrected rmsd scores (Materials and Methods)
with respect to the reference DFT geometries are shown for each test dataset.
(E) Evidence of zero-shot model generalization on radical systems. OrbNet-
Equi/SDC21 yields prediction errors drastically lower than semiempirical QM
methods for adiabatic ionization potential on the G21IP dataset, achieving
accuracy comparable with DFT on 7 of 21 test cases.

hand, we notice that the medianR2 of OrbNet-Equi/SDC21 with
respect to the reference DFT theory (ωB97X-D3/def2-TZVP) is
0.96 ± 0.01, suggesting that the current performance on this task
is saturated by the accuracy of DFT and can be systematically
improved by applying fine-tuning techniques on higher-fidelity
labels (64, 65). Timing results on the Hutchison dataset
(SI Appendix, Table S4) confirm that the neural network inference
time of OrbNet-Equi/SDC21 is on par with the GFN-xTB QM
featurizer, resulting in an overall computational speed that is 100-
to 1000-fold faster relative to existing cost-efficient composite

DFT methods (21, 66, 67). To understand the model’s ability to
describe dihedral energetics, which are crucial for virtual screening
tasks, we benchmark OrbNet-Equi on the prediction of in-
tramolecular torsion energy profiles using the TorsionNet500 (68)
dataset, the most diverse benchmark set available for this problem
(SI Appendix, Table S5, row 3). Although no explicit torsion
angle sampling was performed during training data generation,
OrbNet-Equi/SDC21 exhibits a barrier MAE of 0.173 ± 0.003
kcal/mol, much lower than the 1-kcal/mol threshold commonly
considered for chemical accuracy. On the other hand, we notice
an MAE of 0.7 kcal/mol for the TorsionNet model (68), which
was trained on ∼1 million torsion energy samples. As shown
in Fig. 5B, OrbNet-Equi/SDC21 robustly captures the torsion
sectors of potential energy surface on an example challenging for
both semiempirical QM (45, 69) and cost-efficient composite
DFT (66) methods, precisely resolving both the suboptimal
energy minima location at an ∼30◦ dihedral angle as well as the
barrier energy between two local minimas within a 1-kcal/mol
chemical accuracy. Next, the ability to characterize noncovalent
interactions (NCIs) is assessed on the S66X10 dataset (70) of
intermolecular dissociation curves (SI Appendix, Table S6), on
which OrbNet-Equi achieves an equilibrium-distance binding
energy MAE of 0.35± 0.09 kcal/mol with respect to the reference
DFT theory compared against 1.55± 0.17 kcal/mol of the GFN-
xTB baseline. As shown from a uracil–uracil base pair example
(Fig. 5C ) for which high-fidelity wave function–based reference
calculations have been reported, the binding energy curve along
the intermolecular axis predicted by OrbNet-Equi/SDC21 agrees
well with both DFT and the high-level CCSD(T) (Coupled Clus-
ter single-double and perturbative triple) results. To further under-
stand the accuracy and smoothness of the energy surfaces and the
applicability on dynamics tasks, we perform geometry optimiza-
tions on the ROT34 dataset of 12 small organic molecules and the
MCONF (Melatonin Conformer Space) dataset of 52 conformers
of melatonin (71, 72) (Fig. 5D and SI Appendix, Table S5, rows 4
and 5). Remarkably, OrbNet-Equi/SDC21 consistently exhibits
the lowest average rmsd among all physics-based and ML-based
approaches (SI Appendix, Table S5), including the popular cost-
efficient DFT method B97-3c (66). Further details regarding the
numerical experiments and error metrics are provided in Materials
and Methods.

Remarkably, on the G21IP dataset (73) of adiabatic ioniza-
tion potentials, we find that the OrbNet-Equi/SDC21 model
achieves prediction errors substantially lower than semiempirical
QM methods (Fig. 5E and SI Appendix, Table S7), even though
samples of open-shell signatures are expected to be rare from
the training set (Materials and Methods). Such an improvement
cannot be solely attributed to structure-based corrections since
there are no or negligible geometrical changes between the neutral
and ionized species for both the single-atom systems and several
polyatomic systems (e.g., IP 66, a Phosphanide anion) in the
G21IP dataset. This reveals that our method has the potential to
be transferred to unseen electronic states in a zero-shot manner,
which represents early evidence that a hybrid physics–ML strat-
egy may unravel under-investigated chemical processes, such as
unknown electron-catalyzed reactions (74).

To comprehensively study the transferability of OrbNet-Equi
on complex underexplored main-group chemical spaces, we
evaluate OrbNet-Equi/SDC21 on the challenging, community-
recognized benchmark collection of the General Thermochem-
istry, Kinetics, and Noncovalent Interactions (GMTKN55) (75)
datasets (Fig. 6). Prediction error statistics on the GMTKN55
benchmark are reported with three filtration schemes. First, we
evaluate the WTMAD (weighted mean absolute deviation) error
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Fig. 6. Assessing model performance on tasks from the GMTKN55 challenge. Box plots depict the distributions of task difficulty WTADs (Materials and
Methods) filtered by chemical elements and electronic states (A) supported by the ANI-2x model, (B) those that appeared in the dataset used for training
OrbNet-Equi/SDC21, and (C) all reactions. Statistics are categorized by each class of tasks in the GMTKN55 benchmark as shown in y-axis labels. Inter. mol.
NCI, intermolecular noncovalent interactions; Intra. mol. NCI, intramolecular noncovalent interactions; Prop. large, reaction energies for large systems and
isomerization reactions; Prop. small, basic properties and reaction energies for small systems; React. barriers, reaction barrier heights; Total, total statistics of
all tasks.

metrics (Materials and Methods) on reactions that only consist
of neutral and closed-shell molecules with chemical elements
CHONFSCl (Fig. 6A), as is supported by an Atomistic ML–
based potential method, ANI-2x (76), which is trained on large-
scale DFT data. OrbNet-Equi/SDC21 predictions are found to
be highly accurate on this subset, as seen from the WTMAD with
respect to CCSD(T) being on par with the DFT methods on
all five reaction classes and significantly outperforming ANI-2x
and the GFN family of semiempirical QM methods (45, 69). It
is worth noting that OrbNet-Equi/SDC21 uses a much smaller
number of training samples than the ANI-2x training set, which
signifies the effectiveness of combining physics-based and ML-
based modeling.

The second filtration scheme includes reactions that consist
of closed-shell (but can be charged) molecules with chemical
elements that have appeared in the SDC21 training dataset (Fig.
6B). Although all chemical elements and electronic configurations
in this subset are contained in the training dataset, we note
that unseen types of physical interactions or bonding types are
included, such as in alkali metal clusters from the ALK8 subset
(75) and short strong hydrogen bonds in the AHB21 subset (77).
Therefore, assessments of OrbNet-Equi with this filtration strategy

reflect its performance on cases where examples of atom-level
physics are provided, but the chemical compositions are largely
unknown. Despite this fact, the median WTMADs of OrbNet-
Equi/SDC21 are still competitive with DFT methods on the
tasks of small-system properties, large-system properties, and in-
tramolecular interactions. On reaction barriers and intermolecular
NCIs, OrbNet-Equi/SDC21 results fall behind DFT, but they still
show improvements against the GFN-xTB baseline and match the
accuracy of GFN2-xTB, which is developed with physic-based
schemes to improve the descriptions on NCI properties against
its predecessor GFN-xTB.

The last scheme includes all reactions in the GMTKN55
benchmarks containing chemical elements and spin states
never seen during training (Fig. 6C ), which represents on the
most stringent test and reflects the performance of OrbNet-
Equi/SDC21 when being indiscriminately deployed as a quantum
chemistry method. When evaluated on the collection of all
GMTKN55 tasks (Fig. 6, total panel), OrbNet-Equi/SDC21
maintains the lowest median WTMAD among methods
considered here that can be executed at the computational cost
of semiempirical QM calculations. Moreover, we note that failure
modes on a few highly extrapolative subsets can be identified
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to diagnose cases that are challenging for the QM model used
for featurization (SI Appendix, Table S7). For example, the fact
that predictions are inaccurate on the W4 (Weizmann-4)-11
subset of atomization energies (78) and the G21EA subset of
electron affinities (73) parallels the absence of an explicit treatment
of triplet or higher-spin species within the formulation of the
GFN family of tight-binding models. On the population level,
the distribution of prediction WTMADs across GMTKN55
tasks also differs from that of GFN2-xTB, which implies that
further incorporating physics-based approximations into the QM
featurizer can complement the ML model, and thus, the accuracy
boundary of semiempirical methods can be pushed to a regime
where no known physical approximation is feasible.

Discussion

We have introduced OrbNet-Equi, a QM-informed geometric
deep learning framework for learning molecular or material prop-
erties using representations in the atomic orbital basis. OrbNet-
Equi shows excellent data efficiency for learning related to both
energy-space and real-space properties, expanding the diversity
of molecular properties that can be modeled by QM-informed
ML. Despite only using readily available small-molecule libraries
as training data, OrbNet-Equi offers an accuracy alternative to
DFT methods on comprehensive main-group quantum chemistry
benchmarks at a computation speed on par with semiempirical
methods, thus offering a possible replacement for conventional ab
initio simulations for general-purpose downstream applications.
For example, OrbNet-Equi could immediately facilitate applica-
tions, such as screening electrochemical properties of electrolytes
for the design of flow batteries (43) and performing accurate direct
or hybrid QM/MM simulations for reactions in transition-metal
catalysis (42, 79). The method can also improve the modeling
for complex reactive biochemical processes (80) using multiscale
strategies that have been demonstrated in our previous study
(44), while conventional ab initio reference calculations can be
prohibitively expensive even on a minimal subsystem.

The demonstrated transferability of OrbNet-Equi to seemingly
dissimilar chemical species identifies a promising future direction
of improving the accuracy and chemical space coverage through
adding simple model systems of the absent types of physical
interactions to the training data, a strategy that is consistent
with using synthetic data to improve ML models (81), which
has been demonstrated for improving the accuracy of DFT func-
tionals (29). Additionally, OrbNet-Equi may provide valuable
perspectives for the development of physics-based QM models by
relieving the burden of parameterizing Hamiltonian parameters
against specific target systems, potentially expanding their design
space to higher-energy scales without sacrificing model accuracy.
Because the framework presented here can be readily extended
to alternative quantum chemistry models for either molecular
or material systems, we expect OrbNet-Equi to broadly benefit
studies in chemistry, materials science, and biotechnology.

Materials and Methods

The Unitary N-Body Tensor Equivariant Network Neural Network. This
section introduces Unitary N-Body Tensor Equivariant Network (UNiTE), the neural
network model developed for the OrbNet-Equi method to enable learning equiv-
ariant maps between the input atomic orbital features T[Ψ0] and the property
predictions ŷ[Ψ0]. Given the inputs T, UNiTE first generates initial representa-
tions ht=0 through its diagonal reduction module (Materials and Methods). Then,
UNiTE updates the representations ht=0 �→ ht=1 �→ · · · �→ ht=tf with t1 stacks
of block convolution (Materials and Methods), message-passing (Materials and
Methods), and point-wise interaction (Materials and Methods) modules, followed

by t2 stacks of point-wise interaction modules. A pooling layer (Materials and
Methods) outputs predictions ŷ using the final representations ht=tf at tf =
t1 + t2 as inputs.

ht is a stack of atom-wise representations (i.e., for a molecular system
containing d atoms, ht := [ht

1, ht
2, · · · , ht

d]). The representation for the Ath
atom, ht

A, is a concatenation of neurons that are associated with irreducible
representations of group O(3). Each neuron in ht

A is identified by a channel
index n ∈ {1, 2, · · · , nmax}, a “degree” index l ∈ {0, 1, 2, · · · , lmax}, and a
“parity” index p ∈ {+1, −1}. The neuron ht

A,nlp is a vector of length 2l + 1
and transforms as the lth irreducible representation of group SO(3) (i.e.,
ht

A,nlp =
⊕

m ht
A,nlpm, where ⊕ denotes a vector concatenation operation and

m ∈ {−l, −l + 1, · · · , l − 1, l}). We use Nlp to denote the number of neurons
with degree l and parity p in ht and N :=

∑
l,p Nlp to denote the total number of

neurons in ht .
For a molecular/material system with atomic coordinates x ∈ R

d×3, the fol-
lowing equivariance properties with respect to isometric Euclidean transforma-
tions are fulfilled for any input gauge-invariant and Hermitian operator O[Ψ0];
for all allowed indices A, n, l, p, m,

• translation invariance:

ht
A,nlpm �→ ht

A,nlpm for x �→ x + x0, [8]

where x0 ∈ R
3 is an arbitrary global shift vector;

• rotation equivariance:

ht
A,nlpm �→

∑
m′

ht
A,nlpm′Dl

m,m′(α, β, γ) [9]

for x �→ x · R(α, β, γ), where R(α, β, γ) denotes a rotation matrix corre-
sponding to standard Euler angles α, β, γ; and

• parity inversion equivariance:

ht
A,nlpm �→ (−1)l · p · ht

A,nlpm for x �→ −x. [10]

The initial vector representations ht=0 are generated by decomposing diagonal
subtensors of the input T into a spherical-tensor representation without explicitly
solving tensor factorization based on the tensor product property of group SO(3).
The intuition behind this operation is that the diagonal subtensors of T can be
viewed as isolated systems interacting with an effective external field whose
rotational symmetries are described by the Wigner–Eckart Theorem (82), which
links tensor operators to their spherical counterparts and applies here within
a natural generalization. Each update step ht �→ ht+1 is composed of 1) block
convolution, 2) message passing, and 3) point-wise interaction modules, which
are all equivariant with respect to index permutations and basis transformations.
In an update step ht �→ ht+1, each off-diagonal block of T corresponding to a
pair of atoms is contracted with ht . This block-wise contraction operation can be
interpreted as performing local convolutions using the blocks of T as convolution
kernels and therefore, is called the block convolution module. The output block-
wise representations are then passed into a message-passing module, which is
analogous to a message-passing operation on edges in graph neural networks
(83). The message-passing outputs are then fed into a point-wise interaction
module with the previous step representation ht to finish the update ht �→
ht+1. The point-wise interaction modules are constructed as a stack of multilayer
perceptrons (MLPs), Clebsch–Gordan product operations, and skip connections.
Within those modules, a matching layer assigns the channel indices of ht to
indices of the atomic orbital basis.

We also introduce a normalization layer termed equivariant normalization
(EvNorm) (Materials and Methods) to improve training and generalization of
the neural network. EvNorm normalizes scales of the representations h while
recording the direction-like information to be recovered afterward. EvNorm is
fused with a point-wise interaction module through first applying EvNorm to the
module inputs, then using an MLP to transform the normalized frame-invariant
scale information, and finally, multiplying the recorded direction vector to the
MLP’s output. Using EvNorm within the point-wise interaction modules is found
to stabilize training and eliminate the need for tuning weight initializations and
learning rates across different tasks.

The explicit expressions for the neural network modules are provided for
quantum operators O being one-electron operators, and therefore, the input
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tensors T are a stack of matrices (i.e., order 2 tensors). Without loss of generality,
we also assume that T contains only one feature matrix. Additional technical
aspects regarding the case of multiple input features, the inclusion of geometric
descriptors, and implementation details are discussed in SI Appendix, section S1.
The proofs regarding equivariance and theoretical generalizations to order N
tensors are provided in SI Appendix, section S2.
The diagonal reduction module. We define the shorthand notations μ :=
(n1, l1, m1) and ν := (n2, l2, m2) to index atomic orbitals. The initialization
scheme for ht=0 is based on the following proposition; for each diagonal block
of T, TAA, defined for an on-site atom pair (A, A),

Tμ,ν
AA := 〈Φμ

A |Ô|Φν
A 〉, [11]

there exists a set of T-independent coefficients Qμ,ν
nlpm such that the following linear

transformation ψ,
ψ(TAA)nlpm :=

∑
μ,ν

Tμ,ν
AA Qμ,ν

nlpm, [12]

is injective and yields hA := ψ(TAA) that satisfies equivariance (Eqs. 8–10).
The existence of Q is discussed in SI Appendix, Corollary S3. For the sake of

computational feasibility, a physically motivated scheme is employed to tabulate
Q and produce order 1 equivariant embeddings hA using on-site three-index
overlap integrals Q̃:

Q̃μ,ν
nlm := Q̃n1,l1,m1;n2,l2,m2

nlm

=

∫
r∈R3

(Φ
n1,l1,m1
A (r))∗Φn2,l2,m2

A (r)Φ̃n,l,m
A (r)dr, [13]

where ΦA are the atomic orbital basis and Φ̃A are auxiliary Gaussian-type basis
functions defined as (for conciseness, at xA = 0)

Φ̃n,l,m(r) := cn,l · exp(−γn,l · r2) rl Ylm

( r
r

)
, [14]

where cn,l is a normalization constant such that
∫

r||Φ̃
n,l,m
A (r))||2dr = 1 following

standard conventions (84). For numerical experiments considered in this work,
the scale parameters γ are chosen as (in atomic units)

γn,l=0 := 128 · (0.5)n−1 where n ∈ {1, 2, · · · , 16}
γn,l=1 := 32 · (0.25)n−1 where n ∈ {1, 2, · · · , 8}
γn,l=2 := 4.0 · (0.25)n−1 where n ∈ {1, 2, 3, 4}.

Q̃ adheres to equivariance constraints due to its relation to SO(3) Clebsch–
Gordan coefficients Clm

l1m1;l2m2
∝

∫
r∈S2 Yl1 m1(r)Yl2 m2(r)(Ylm(r))∗dr (82). Note

that the auxiliary basis Φ̃A is independent of the atomic numbers; thus, the
resulting hA are of equal length for all chemical elements. Q̃ can be efficiently
generated using electronic structure programs, here done with ref. 85. The re-
sulting hA in explicit form are

hA :=
⊕
n,l,p,m

hA,nlpm where

hA,nl(p=+1)m =
∑
μ,ν

Tμ,ν
AA Q̃μ,ν

nlm

hA,nl(p=−1)m = 0.

hA are then projected by learnable linear weight matrices such that the number
of channels for each (l, p) matches the model specifications. The outputs are
regarded as the initial representations ht=0 to be passed into other modules.
The block convolution module. In an update step ht �→ ht+1, subblocks of T
are first contracted with a stack of linearly transformed order 1 representations ht :

mt,i
AB,ν =

∑
μ

(
ρi(ht

A)
)
μ

Tμ,ν
AB , [15]

which can be viewed as a one-dimensional convolution between each block
TAB (as convolution kernels) and the ρ(ht

A) (as the signal) in the ith channel
where i ∈ {1, 2, · · · , I} is the convolution channel index. The block convolution

produces block-wise representations mt
AB for each block index (A, B).ρi is called

a matching layer at atom A and channel i, defined as(
ρi(ht

A)
)
μ
= Gather

(
Wi

l · (ht
A)l(p=+1)m, n[μ, zA]

)
. [16]

Wi
l ∈ R

Ml×Nl,+1 are learnable linear weight matrices specific to each degree
index l, where Ml is the maximum principle quantum number for shells of
angular momentum l within the atomic orbital basis used for featurization. The
Gather operation maps the feature dimension to valid atomic orbitals by indexing
Wi

l · (ht
A)l(p=+1)m using n[μ, zA], the principle quantum numbers of atomic

orbitals μ for atom type zA.
The message-passing module. Block-wise representations mt

AB are then aggre-
gated into each atom index A by summing over the indices B, analogous to a
“message passing” between nodes and edges in common realizations of graph
neural networks (83),

m̃t
A =

∑
B

⊕
i,j

mt,i
BA · α

t,j
AB, [17]

up to a nonessential symmetrization and inclusion of point-cloud geometrical
terms (SI Appendix, Eq. S5). αt,j

AB in Eq. 17 are scalar-valued weights parameter-
ized as SE(3) (the Special Euclidean Group in 3 dimensions)-invariant multihead
attentions:

αt
AB = MLP

(
(zt

AB · Wt
α)	 κ(||TAB||)/

√
N
)

, [18]

where 	 denotes an element-wise (Hadamard) product, and

zt
AB =

⊕
n,l,p

l∑
m=−l

ht
A,nlpm · ht

B,nlpm, [19]

where MLP denotes a two-layer MLP, Wt
α are learnable linear functions, and j ∈

{1, 2, · · · , J} denotes an attention head (one value in αt
AB).κ(·) is chosen as

Morlet wavelet basis functions:

κ(||TAB||) := Wκ

( ⊕
k

∑
n,l

∑
n′,l′

ξk(log
(
||Tn,l;n′,l′

AB ||)
))

[20]

ξk(x) := exp(−γk · x2) · cos(πγk · x), [21]

where Wt
κ are learnable linear functions and γk are learnable frequency coef-

ficients initialized as γk = 0.3 · (1.08)k , where k ∈ {0, 1, · · · , 15}. Similar to
the scheme proposed in SE(3) transformers (40), the attention mechanism Eq.
18 improves the network capacity without increasing memory costs as opposed
to explicitly expanding T.

The aggregated message m̃t
A is combined with the representation of current

step ht
A through a point-wise interaction module φ (Materials and Methods) to

complete the update ht
A �→ ht+1

A .
EvNorm. We define EvNorm : h �→ (h̄, ĥ), where h̄ and ĥ are given by

h̄nlp :=
‖hnlp‖ − μh

nlp

σh
nlp

and ĥnlpm :=
hnlpm

‖hnlp‖+ 1/βnlp + ε
, [22]

where ‖·‖ denotes taking a neuron-wise regularized L2 norm:

‖hnlp‖ :=
√∑

m

h2
nlpm + ε2 − ε. [23]

μh
klp and σh

klp are mean and variance estimates of the invariant content ‖h‖ that
can be obtained from either batch or layer statistics as in normalization schemes
developed for scalar neural networks (86, 87); βklp are positive, learnable scalars
controlling the fraction of vector scale information from h to be retained in ĥ, and
ε is a numerical stability factor. The EvNorm operation Eq. 22 decouples h to the
normalized frame-invariant representation h̄ suitable for being transformed by
an MLP and a “pure-direction” ĥ that is later multiplied to the MLP-transformed
normalized invariant content to finish updating h. Note that in Eq. 22, h = 0 is
always a fixed point of the map h �→ ĥ, and the vector directions information h
is always preserved.
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The point-wise interaction module and representation updates. A point-
wise interaction module φ (Eqs. 24–26) nonlinearly updates the atom-wise
representations through ht+1 = φ(ht , g), which consist of coupling another
O(3)-equivariant representation g with ht and performing normalizations. In
Eqs. 24–26, Clm

l1 m1;l2m2
are Clebsch–Gordan coefficients of group SO(3), δj

i is
a Kronecker delta function, and MLP1 and MLP2 denote MLPs acting on the
feature (nlp) dimension. Win,t

l,p ∈ R
Nl,p×Nl,p and Wout,t

l,p ∈ R
Nl,p×Nl,p correspond to

learnable linear weight matrices specific to the update step t and each (l, p).

ft
lpm =

(
MLP1(h̄t)

)
lp
	 (ĥt

lpm · Win,t
l,p ) where (h̄t , ĥt) = EvNorm(ht)

[24]

qlpm = glpm +
∑
l1,l2

∑
m1,m2

∑
p1,p2

(ft
l1p1m1

	 gl2p2m2) Clm
l1m1;l2m2

δ
(−1)l1+l2+l

p1·p2·p [25]

ht+1
lpm = ht

lpm+
(

MLP2(q̄)
)

lp
	(q̂lpm · Wout,t

l,p ) where (q̄, q̂) = EvNorm(q).
[26]

For t < t1, the updates are performed by combining ht with the aggregated
messages m̃t from step t:

ht+1
A = φ

(
ht

A, ρ†(m̃t
A)

)
, [27]

where ρ† is called a reverse matching layer defined as(
ρ†(m̃t

A)
)

l(p=+1)m
= W†

l ·
∑
μ

Scatter
(

m̃t
A,μ, n[μ, zA]

)
[28]

(
ρ†(m̃t

A)
)

l(p=−1)m
= 0. [29]

The Scatter operation maps the atomic orbital dimension in m̃t to a feature
dimension with fixed length Ml using n[μ, zA] as the indices and flattens the
outputs into shape (Natoms, MlIJ). W†

l ∈ R
Nl,+1×Ml IJ are learnable linear weight

matrices to project the outputs into the shape of ht .
For t1 ≤ t < t2, the updates are based on local information:

ht+1
A = φ

(
ht

A, ht
A
)

. [30]

Pooling layers and training. A programmed pooling layer reads out the target
prediction ŷ after the representations ht are updated to the last step htf . Pool-
ing operations employed for obtaining main numerical results are detailed in
SI Appendix, section S1.E; hyperparameter, training, and loss function details are
provided in SI Appendix, section S4. As a concrete example, the dipole moment
vector is predicted as �μ=

∑
A(�xA · qA + �μA), where�xA is the 3D coordinate of

atom A and atomic charges qA and atomic dipoles �μA are predicted using scalar
(l = 0) and Cartesian-coordinate vector (l = 1) components of htf

A , respectively.

QM-Informed Featurization Details and Gradient Calculations. The QM-
informed representation employed in this work is motivated by a pair of our
previous works (26, 88), but in this study, the features are directly evaluated in
the atomic orbital basis without the need of heuristic postprocessing algorithms
to enforce rotational invariance.

In particular, this work (as well as refs. 26 and 88) constructs features based on
the GFN-xTB semiempirical QM method (45). As a member of the class of mean-
field quantum chemical methods, GFN-xTB centers around the self-consistent
solution of the Roothaan–Hall equations:

FC = SCε. [31]

All boldface symbols are matrices represented in the atomic orbital basis. For
the particular case of GFN-xTB, the atomic orbital basis is similar to STO-6G and
comprises a set of hydrogen-like orbitals. C is the molecular orbital coefficient,
which definesΨ0, andε is a diagonal eigenvalue matrix of the molecular orbital
energies. S is the overlap matrix and is given by

Sμν = 〈Φμ|Φν〉, [32]

where μ and ν index the atomic orbital basis {Φ}. F is the Fock matrix and is
given by

F = H + G [P] . [33]
H is the one-electron integral including electron–nuclear attraction and electron
kinetic energy. G is the two-electron integrals comprising the electron–electron
repulsion. Approximation of G is the key task for self-consistent field methods,
and GFN-xTB provides an accurate and efficient tight-binding approximation for
G. Finally, P is the (one electron–reduced) density matrix and is given by

Pμν =

nelec/2∑
i=1

C∗
μiCν i. [34]

nelec is the number of electrons, and a closed-shell singlet ground state is as-
sumed for simplicity. Eqs. 31 and 33 are solved for P. The electronic energy E
is related to the Fock matrix by

F =
δE
δP

. [35]

The particular form of the GFN-xTB electronic energy can be found in ref. 45.
UNiTE is trained to predict the quantum chemistry properties of interest

based on the inputs T = (F, P, S, H) with possible extensions (e.g., the energy-
weighted density matrices). For the example of learning the DFT electronic energy
with the delta-learning training strategy,

EDFT ≈ ETB + F(T). [36]

Note that F, P, S, and H all implicitly depend on the atomic coordinates x and
charge/spin-state specifications.

In addition to predicting E, it is also common to compute its gradient with
respect to atomic nuclear coordinates x to predict the forces used for geometry
optimization and molecular dynamics simulations. We directly differentiate the
energy Eq. 36 to obtain energy-conserving forces. The partial derivatives of the
UNiTE energy with respect to F, P, S, and H are determined through automatic
differentiation. The resulting forces are computed through an adjoint approach
developed in appendix D of our previous work (88), with the simplification that
the Symmetry-Adapted Atomic Orbital transformation matrix X is replaced by the
identity.

Dataset and Computational Details.
Training datasets. The molecule datasets used in Performance on Benchmark
Datasets and Accurate Modeling for Electron Densities were all previously pub-
lished. Following section 2.1 of ref. 61, the 2,291 BFDb-SSI samples for training
and testing are selected as the side-chain–side-chain dimers in the original
BFDb-SSI dataset that contain ≤ 25 atoms and no sulfur element to allow for
comparisons among methods.

The SDC21 dataset used for training the OrbNet-Equi/SDC21 model described
in Transferability on Downstream Tasks is collected from several publicly accessi-
ble sources. First, 11,827 neutral SMILES (simplified molecular-input line-entry
system) strings were extracted from the ChEMBL database (89). For each SMILES
string, up to four conformers were generated and optimized at the GFN-xTB
level. Nonequilibrium geometries of the conformers were generated using either
normal mode sampling (90) at 300 K or ab initio molecular dynamics for 200
fs at 500 K in a ratio of 50/50%, resulting in a total of 178,836 structures.
An additional 2,549 SMILES strings were extracted from ChEMBL, and random
protonation states for these were selected using Dimorphite-DL (91) as well
as another 2,211 SMILES strings, which were augmented by adding randomly
selected salts from the list of common salts in the ChEMBL Structure Pipeline
(92). For these two collections of modified ChEMBL SMILES strings, nonequi-
librium geometries were created using the same protocol described earlier,
resulting in 21,141 and 27,005 additional structures for the two sets, respec-
tively. To compensate for the bias toward large drug-like molecules, ∼45,000
SMILES strings were enumerated using common bonding patterns, from which
9,830 conformers were generated from a randomly sampled subset. Lastly,
molecules in the BFDb-SSI and JSCH-2005 datasets were added to the training
dataset (60, 93). In total, the dataset consists of 237,298 geometries span-
ning the elements C, O, N, F, S, Cl, Br, I, P, Si, B, Na, K, Li, Ca, and Mg. For
each geometry, DFT single-point energies were calculated on the dataset at the
ωB97X-D3/def2-TZVP level of theory in Entos Qcore version 0.8.17 (85, 94, 95).

10 of 12 https://doi.org/10.1073/pnas.2205221119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205221119/-/DCSupplemental
https://doi.org/10.1073/pnas.2205221119


We additionally filtered the geometries for which DFT calculation failed to con-
verge or broken bonds between the equilibirum and nonequilibrium geometries
are detected, resulting in 235,834 geometries used for training the OrbNet-
Equi/SDC21 model.
Electronic structure computational details. The dipole moment labels �μ for
the QM9 dataset used in Performance on Benchmark Datasets were calculated at
the B3LYP level of DFT theory with def2-TZVP AO basis set to match the level of
theory used for published QM9 labels using Entos Qcore version 1.1.0 (85, 95,
96). The electron density labelsρ(�r) for QM9 and BFDb-SSI were computed at the
ωB97X-D3/def2-TZVP level of DFT theory using def2-TZVP-JKFIT (97) for Coulomb
and Exchange fitting, also as the electron charge density expansion basis {χ}.
The density expansion coefficients d are calculated as

dγ =
∑
ξ

∑
μ,ν

(
(Sρ)−1)

γξ
Sμν;ξPμν , [37]

where μ, ν are AO basis indices and ξ, γ are density-fitting basis indices. Note
that γ stands for the combined index (A, n, l, m) in Eq. 7. P is the DFT AO density
matrix, Sρ is the density-fitting basis overlap matrix, and Sμν;ξ are three-index
overlap integrals between the AO basis and the density-fitting basis {χ}.
Benchmarking details and summary statistics. For the mean L1 electronic
density error over the test sets reported in Accurate Modeling for Electron Den-
sities, we used 291 dimers as the test set for the BFDb-SSI dataset and 10,000
molecules as the test set for the QM9 dataset following the literature (61, 62).ερ
for each molecule in the test sets is computed using a 3D cubic grid of voxel spac-
ing (0.2, 0.2, 0.2)Bohr for the BFDb-SSI test set and voxel spacing (1.0, 1.0, 1.0)
Bohr for the QM9 test set, both with cutoffs at ρ(�r) = 10−5 a−3

0 . We note that
two baseline methods used slightly different normalization conventions when
computing the dataset-averaged L1 density errors ερ: 1) computing ερ for each
molecule and normalizing over the number of molecules in the test set (62) or 2)
normalizing over the total number of electrons in the test set (61). We found that
the average ερ computed using normalization 2 is higher than normalization 1
by around 5% for our results. We follow their individual definitions for average
ερ for the quantitative comparisons described in the text: that is, using scheme
1 for QM9 but scheme 2 for BfDB-SSI.

For downstream task statistics reported in Fig. 5 and SI Appendix, Table S5,
the results on the Hutchison dataset in Fig. 5A are calculated as the R2 correlation
coefficients comparing the conformer energies of multiple conformers from a
given model with the energies from DLPNO-CCSD(T). The median R2 vales in
SI Appendix, Table S5 with respect to both DLPNO (domain-based local pair nat-
ural orbital)-CCSD(T) and ωB97X-D3/def2-TZVP are calculated over the R2 values

for every molecule, and error bars are estimated by bootstrapping the pool of
molecules. The error bars for TorsionNet500 and s66×10 are computed as 95%
CIs. Geometry optimization experiments are performed through relaxing the
reference geometries until convergence. Geometry optimization accuracies in
Fig. 5D and SI Appendix, Table S5 are reported as the symmetry-corrected rmsd
of the minimized geometry vs. the reference level of theory (ω B97X-D3/def2-
TZVP) calculated over molecules in the benchmark set. Additional computational
details for this task are provided in SI Appendix, section S3.E.

For the GMTKN55 (general main group thermochemistry, kinetics
and noncovalent interactions) benchmark dataset collection, the reported
CCSD(T)/complete basis set results are used as reference values. The weighted
absolute deviation (WTAD) scores for producing Fig. 6 are defined similar to the
updated weighted mean absolute deviation (WTMAD-2) in ref. 75 but computed
for each reaction in GMTKN55:

WTADi,j =
56.84

1
Ni

∑
j |ΔE|i,j

· |ΔE|i,j [38]

for the jth reaction in the ith task subset. Note that the subset-wise WTMAD-2
metric in SI Appendix, Table S7 is given by

WTMAD-2i =
1
Ni

∑
j

WTADi,j. [39]

The overall WTMAD-2 is reproduced by

WTMAD-2 =
1∑55
i Ni

∑
i,j

WTADi,j. [40]

Data Availability. Source data for results described in the text and SI Appendix,
the training dataset, code, and evaluation examples have been deposited in
Zenodo (https://zenodo.org/record/6568518#.YrtTKHbMK38) (99).
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