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ABSTRACT 

Fluorescein-labeled heavy meromyosin subfragment-1 (F-S-l) has been purified 
by ion exchange chromatography and characterized in terms of its ability to bind 
specifically to actin. F-S-1 activates the Mg+§ triphosphatase activity of 
rabbit skeletal muscle actin and decorates actin as shown by negative stains and 
thin sections of rabbit actin and rat embryo cell microfilament bundles, respec- 
tively. Binding of F-S-1 to cellular structures is prevented by pyrophosphate and 
by competition with excess unlabeled S-1. 

The F-S-1 is used in light microscope studies to determine the distribution of 
actin-containing structures in interphase and mitotic rat embryo and rat kangaroo 
cells. Interphase cells display the familiar pattern of fluorescent stress fibers. 
Chromosome-to-pole fibers are fluorescent in mitotic cells. 

The glycerol extraction procedures employed provide an opportunity to exam- 
ine cells prepared in an identical manner by light and electron microscopy. The 
latter technique reveals that actin-like microfilaments are identifiable in spindles 
of glycerinated cells before and after addition of S-1 or HMM.  In some cases, 
microfilaments appear  to be closely associated with spindle microtubules. Com- 
parison of the light and electron microscope results aids in the evaluation of the 
fluorescent myosin fragment technique and provides further evidence for possible 
structural and functional roles of actin in the mitotic apparatus. 
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Determination of the distribution and organiza- 
tion of actin-like microfilaments in nonmuscle cells 
is an important approach to discerning the mecha- 
nisms of cellular motility (see references 40 and 41 
for reviews). Microfilaments are identified in cells 
fixed and thin-sectioned for electron microscopy 
by their size ( - 6  nm diameter) and ability to bind 

the myosin fragments heavy meromyosin (HMM) 
and HMM subfragment-1 (S-l), resulting in "ar- 
rowhead" configurations or decorated complexes 
(26, 27, 18). This reaction is considered to be 
specific for actin, as HMM and S-1 do not deco- 
rate other fibrous structures in the cell (27, 19, 
40). 

Over the past 7-8 yr, conventional thin-section- 
ing techniques have been used to reconstruct the 
intracellular distribution and organization of mi- 
crofilaments. Light microscope techniques have 
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also been employed to study the overall distribu- 
tion of structures thought to contain actin (5). 
However, the supramolecular organization of aco 
tin cannot be determined by these techniques be- 
cause of the limits of resolution of the light micro- 
scope (22). Only a few attempts have been made 
to correlate directly information from light and 
electron microscope studies. For instance, the dis- 
tribution of phase-dense stress fibers (5) and bire- 
fringent fibers seen with polarized light mi- 
croscopy (17) has been shown to correspond to 
that of microfilament bundles in several cultured 
animal cells (20, 22). 

Fluorescein-labeled HMM (F-HMM), S-1 (F-S- 
1), and antiactin antibody in indirect immunofluo- 
rescence studies have been shown to stain stress 
fibers in extensively spread cells which correspond 
to microfilament bundles (45, 47, 22, 29, 20). We 
have shown that comparison of light and electron 
microscope data is required for the interpretation 
of results obtained from fluorescence microscopy. 
This was demonstrated by experiments in which 
some types of cells exhibited uniform fluorescence 
without showing distinct fluorescent fibers, indi- 
cating that microfilament bundles might not be 
present. However, the same cells have numerous 
microfilament bundles when examined by electron 
microscopy (22). 

Evidence for an actin component in the mitotic 
apparatus obtained by F-HMM was first provided 
by Aronson (1). Actin-like microfilaments in mi- 
totic cells have been studied in the light micro- 
scope with the use of antiactin (33, 6) and F- 
HMM (46, 47). These reports agreed for the most 
part concerning the localization of stained compo- 
nents, demonstrating fluorescence above back- 
ground in chromosome-to-pole fibers and at the 
poles, and not in the interzone. Ultrastructural 
studies either were not done (46, 47) or were 
shown to be impossible on account of extensive 
deterioration of structure after preparation for im- 
munofluorescence localization (6). 

Actin has been identified in mitotic and meiotic 
spindles of several cell types by electron mi- 
croscopy after glycerination and incubation with 
HMM (3, 15, 11, 16, 24, 12). In one case, 6-nm 
fibers were reported in spindles of glycerinated 
cells without addition of HMM (16). 

The procedures described in this study were 
developed to determine the distribution of actin in 
cells prepared identically for both light and elec- 
tron microscopy. We chose to use S-1 rather than 
HMM for fluorescence studies because of its 

smaller size (120,000 vs. 340,000 daltons for 
HMM; reference 31) and its homogeneity on so- 
dium dodecyl sulfate (SDS) polyacrylamide gels 
(e.g., reference 52). Precautions were taken to 
eliminate nonspecific interactions of F-S-1 with 
cellular structures by removal of overcoupled frac- 
tions. By fluorescence and electron microscopy, 
purified F-S-1 was shown to bind to actin-like 
microfilaments specifically in both interphase and 
mitotic cells. 

MATERIALS AND METHODS 

All protein solutions were handled at 4~ unless other- 
wise stated. 

Myosin Sub fragments 

Rabbit skeletal muscle myosin was purified by a modi- 
fication of the technique of Szent-Gy6rgyi (49). Rather 
than removing actin by precipitating actomyosin, ATP 
and MgCI2 were added to final concentrations of 2 and 4 
mM, respectively, and actin was pelleted by centrifuga- 
tion for 3 h at 100,000 g. 

S-1 was prepared as described by Weeds and Taylor 
(52), by digestion at 25~ of myosin filaments with 0.05 
mg of ~t-chymotrypsin/ml (Sigma Chemical Co., St. 
Louis, Mo.; bovine, crystallized three times) in 0.12 M 
NaC1, 0.02 M sodium phosphate, pH 7.0, and 1 mM 
EDTA. After terminating the digestion with 0.1 mM 
phenylmethylsulfonyl fluoride, insoluble myosin frag- 
ments were removed by centrifugation at 100,000 g. S-1 
was further purified by collecting the ammonium sulfate 
precipitate between 30 and 60% saturation while main- 
taining pH between 7.2 and 7.5. The precipitate was 
dialyzed exhaustively against 0.01 M Tris-HCl pH 7.5. 
Sucrose was added to 5%, and the solution was lyophi- 
lized. The resulting powder was stored at -20~ 

Samples of S-1 powder were suspended in and di- 
alyzed against 0.03 M imidazole-HCl pH 7.0 and sepa- 
rated into two peaks on a 30 x 2.6-cm column of di- 
ethylaminoethyi(DEAE)-cellulose (Cellex D, Bio-Rad 
Laboratories, Richmond, Calif.) using a linear gradient 
of 0-0.12 M NaCl, as described by Weeds and Taylor 
(52). S-1 peaks 1 and 2 eluted at 28 and 47 mM NaC1, 
respectively. Column fractions comprising each peak 
were pooled, and peaks 1 and 2 were concentrated by 
precipitation with 60% saturated ammonium sulfate at 
pH 7.2-7.5, and then dialyzed exhaustively vs. 0.01 M 
Tris-HCl pH 7.5. HMM was prepared by the method of 
Pollard et al. (39). 

Conjugation o f  S-1 to Fluorescein 
Isothiocyanate (FITC) 

Two different methods of conjugation were used: 
M E T H O D  A: FITC (United States Biochemical 

Corp., Cleveland, Ohio) was weighed into a glass vial 
for a final ratio of 25 /zg of FITC/mg protein (53). 
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25-30 mg of S-1 peak 2, at 8-10 mg/ml in 0.01 M Tris- 
HCI, pH 7.5, was added with stirring at 4~ The pH 
of the reaction mixture was monitored for 1 h and ad- 
justed to 7.5-7.8 with 0.1 N NaOH if necessary. The 
vial was then sealed and the reaction allowed to con- 
tinue for 5 h. After conjugation, the pH was checked to 
assure that it had remained in the desired range. Ex- 
cess fluorescein was immediately removed by gel filtra- 
tion in 0.01 M imidazole-HCt pH 7.0 on a 30 • 1.5-cm 
column of G-25 Sephadex (medium grade). Unbound 
fluorescein moved slowly as a diffuse band. The 
conjugate eluted with the void volume and was recog- 
nized as the first visible, yellow band. 

M ET H O O a: FITC was dissolved in a small amount 
of buffer and S-1 peak 2 (8-10 mg/ml of 0.01 M Tris- 
HCI pH 7.5) was added with stirring, at room tempera- 
ture (35). The final FITC concentration was 25/zg/mg of 
protein. The pH of the reaction mixture was adjusted to 
7.5-7.8 during the 1-h conjugation period by addition of 
0.1 N NaOH. Unreacted FITC was removed by gel 
filtration on G-25 Sephadex equilibrated with 0.01 M 
imidazole-HCl pH 7.0. 

Chromatography ofF-S-1 
The gel filtration eluant was applied to a 5 x 1.5-cm 

column of DEAE-cellulose (the same batch as that used 
for separation of S-1 into 2 peaks) which had been 
previously equilibrated with 0.01 M imidazole-HC1 pH 
7.0. Peaks of S-1 with increasing fluorescein-to-protein 
ratios were eluted with a step gradient ranging from 0 to 
0.5 M NaC1 buffered with imidazole (see Results for 
concentration increments used in particular experi- 
ments). The column was monitored at 278 and 495 nm 
with a Zeiss PM6 spectrophotometer. Peaks were col- 
lected and concentrated by adding ammonium sulfate to 
60% saturation at pH 7.2-7.5. Samples were dialyzed 
exhaustively vs. 0.01 M Tris-HCl pH 7.5. 

Actin 
Actin was purified from rabbit skeletal muscle accord- 

ing to the following procedure (D. J. Hartshorne, per- 
sonal communication). KCl-phosphate-extracted back 
and leg muscle mince (49) was stirred for 30 min at 4~ 
in 0.4% NaHCO3, 0.1 mM CaC12, filtered through 
cheesecloth, and suspended in 0.01 M NaHCO3, 0.01 M 
Na2CO3, and 0.1 mM CaClz. After 10 rain the solution 
was diluted with 10 vol of distilled water at 22~ and 
squeezed through cheesecloth. The residue was ex- 
tracted five times with a total of 10 vol of cold acetone. 
After each extraction, the residue was collected on 
cheesecloth. The residue was finally dried overnight at 
room temperature and stored at -20~ 

Actin was extracted by stirring with 20 ml of 4~ 
COs-free distilled water per gram of powder. Actin in 
the filtrate was polymerized at room temperature by the 
addition of NaCI and MgCIz to 10 and 0.7 raM, respec- 
tively. Regulatory proteins were extracted with 0.6 M 

KC1 for 1 h at 4~ and fibrous actin (F-actin) was 
pelleted by centrifugation for 3 h at 100,000 g. 

For negative stains, the actin was depolymerized by 
72-h dialysis vs. 0.2 mM CaCl2, 0.2 mM ATP, and 5 mM 
Tris-HCl pH 8.0, and repolymerized with 0.1 M KCI, 
0.01 M potassium phosphate buffer pH 8.0. This re- 
sulted in less aggregated F-actin than was obtained with- 
out repolymerization. 

Gel Electrophoresis 
SDS-polyacrylamide gels were run and stained accord- 

ing to the procedure of Fairbanks et al. (8). 

Protein Determination 
Protein concentrations of conjugated S- 1 (F-S- 1) were 

estimated by the micro-biuret method (28) with bovine 
albumin (BSA) as standard. The micro-Kjeldahl method 
was used, assuming 16% nitrogen, to determine BSA 
concentration and to assure that the fluorochrome did 
not interfere with the color change associated with the 
biuret reaction. 

A TPase Activity 
Actin activation of the Mg++-ATPase activity of S-1 

and F-S-1 samples was assayed in a total volume of 2 ml 
containing 2.5 mM MgCI2, 25 mM Tris-HC1, pH 7.5, 
and 2.5 mM ATP, for 5 or 30 min at 25~ (23). Inor- 
ganic phosphate was determined by the method of Fiske 
and SubbaRow (9). 

Fluorescein-to-Protein (F/P) Molar Ratio 
The molecular weight of S-1 peak 2 was calculated as 

follows. Polyacrylamide gels of the sample were scanned 
at 550 nm with a Beckman model DUR spectrophotom- 
eter (Beckman Instruments, Inc., Cedar Grove, N. J.), 
and a Gilford 2000 recorder (Gilford Instrument Labo- 
ratories Inc., Oberlin, Ohio). Light chain stoichiometry 
was estimated from these scans. Assuming chain weights 
of 90,000 daltons for the heavy chain fragment (32) and 
21,000, 19,000, and 17,000 for the three light chains 
(51), a value of 120,000 was obtained for the molecular 
weight of S-1 peak 2. The molar extinction coefficient 
used for bound fluorescein was 4.25 x 104 cm -1 (50). 

Cell Culture 
Rat embryo (RE) cells were obtained from a primary 

culture of whole embryos. The cells were frozen after 
one passage. Each vial of cells was thawed and main- 
tained in culture for about 3 wk, at which time the cells 
were discarded and a new vial was thawed. Cells were 
grown in Dulbecco's Modified Eagle's medium (DME; 
H-21, (Grand Island Biological Co. (GIBCO), Grand 
Island, N. Y.) supplemented with 10% calf serum and 
50 /zg of Gentamicin (Schering Corporation, Kenil- 
worth, N. J.)/ml. 

Rat kangaroo (Pt K1) cells (CCL 35, American Type 
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Culture Collection, Rockville, Md.) were grown in DME 
with 10% fetal calf serum, 50/~g of Gentamicin/ml, and 
1 mM sodium pyruvate. 

Cultures were maintained in a humid, 5 % CO2 atmos- 
phere at 37~ Every 3-4 days, cultures were removed 
from their plastic dishes (Falcon Plastics, Div. of Bio- 
Quest, Oxnard, Calif.) with 0.05% trypsin-EDTA solu- 
tion (GIBCO) and replated into fresh medium. A coat- 
ing of poly-L-lysine (av mol wt --4,000, 0.05% in water) 
was sometimes used to anchor cells onto plastic or glass 
surfaces during glycerination. 

Light Microscopy 

Cells grown on no. 1 glass cover slips were made 
permeable by a modification of the glycerol extraction 
technique of Goldman (18). The culture medium was 
replaced with 50% glycerol (vol/vol) in a modified stan- 
dard salt solution (MSS) containing 50 mM KCI, 15 mM 
MgC12, and 7 mM potassium phosphate buffer at pH 
7.0. After 5-10 min, this extracting solution was re- 
placed for 5-10 rain with 25% glycerol in MSS, and 
similarly for 12 and 5% glycerol in MSS. The cover slips 
were rinsed twice with MSS and placed in a humid 
chamber consisting of a piece of wet filter paper in a Petri 
dish. This allowed use of small volumes (50/~l) of F-S-1 
for staining. F-S-1 was diluted to 0.5 mg/ml (unless 
otherwise indicated) in standard salt solution (SSS: 50 
mM KCI, 5 mM MgC12, 7 mM potassium phosphate, pH 
7.0) and placed on the cover slips for 10-20 min. The 
cover slips were then returned to Petri dishes, where they 
were rinsed once with SSS and five times over a period of 
15 min with MSS. The cover slips were supported on 
glass chips on a glass slide to avoid crushing the cells, 
were sealed (17), and then observed in MSS. A similar 
protocol was followed for control experiments, changing 
only the staining solutions and rinsing as indicated be- 
low. All extraction and labeling procedures were carried 
out at room temperature. Slides were generally studied 
immediately; however, several cover slips were exam- 
ined after storage for.24 h at room temperature in MSS 
containing 50 /~g of Gentamicin/ml. There was no de- 
tectable change in the phase-contrast or fluorescence 
images of these specimens. 

A rapid, one-step glycerol extraction technique was 
used in parallel with most of the experiments described 
below, and yielded identical results. The medium was 
carefully removed from cells in a petri dish and replaced 
with 50% glycerol in MSS. After 1-2 min, the glycerol 
solution was drained as completely as possible and re- 
placed with MSS. 2 min later, F-S-1 was added to the 
cells for 1-2 min, followed by several washes in MSS. 
This procedure resulted in phase-contrast and fluores- 
cence images identical to those obtained with the longer 
(approximately 1 h) extraction protocol. With this rapid 
procedure, SSS or Dulbecco's phosphate-buffered saline 
(PBS: 0.14 M NaCl, 2.4 mM KCI, 8 mM Na2HPO4, 1.6 
mM KH2PO4, 1 mM CaCI2, and 0.5 mM MgClz) could 
be used in place of MSS and gave identical results. For 

ease of comparison, all micrographs presented in this 
report were from cells prepared with the longer protocol 
with MSS, except for two electron micrographs (Figs. 
l l a  and b). 

Consistent fluorescent labeling of cells extracted with 
the rapid one-step procedure was obtained with F-S-1. 
When F-HMM, which is over twice the molecular weight 
of F-S-l, was used, fluorescent labeling of intraceilular 
fibrous structures was often limited to areas where large 
holes could be seen in the cell surface. This appeared to 
result from limited diffusion of the larger myosin frag- 
ment and could sometimes be corrected by doubling the 
extraction, rinsing, and F-HMM incubation times. 

Photomicrographs were made with a Zeiss Photomi- 
croscope III equipped with a IIIRS epifluorescence con- 
denser or phase-contrast microscopy. Zeiss objectives 
used are described in the figure legends. Illumination for 
fluorescence micrographs were provided by a DC pow- 
ered HBO 100-watt mercury burner or an XBO 75-watt 
xenon arc. A Zeiss BG38 (red suppressing) filter re- 
mained between light source and specimen at all times. 
Excitation wavelengths ranged from 330 to 550 nm with 
maximum transmission at 400 nm (Zeiss BG12 filter). 
The dichroic beam-splitter cutoff was 510 nm. Viewing 
wavelengths were above 519 nm (Zeiss barrier filter 50). 
Plus-X film rated at DIN 27 was developed in Diafine 
(Acufine Inc., Chicago, Ill.). 

Electron Microscopy 

Cells in 35-ram plastic Petri dishes were treated as 
described above (see Light Microscopy), except that 
staining with F-S-I, S-l, or HMM was done directly in 
the dish for 15 min. After the final rinse with MSS, the 
cells were fixed with 1% glutaraldehyde in PBS for 30 
min, rinsed three times with PBS, postfixed for 30 min 
with 1% osmium tetroxide in PBS, and rinsed three 
times with PBS. The cells were dehydrated through 70, 
95%, and absolute ethanols and embedded in Epon- 
Araldite. The hardened plastic containing the cells was 
removed from the Petri dishes. Mitotic cells were located 
with a Leitz inverted microscope and marked with a slide 
marker (Ebtec Corporation, Agawam, Mass.). These 
regions were cut out and glued onto the ends of prepo- 
lymerized BEEM (Better Equipment for Electron Mi- 
croscopy, Inc., Bronx, N.Y.) capsules. Hat-embedded 
interphase cells were also mounted on BEEM capsules. 
Thin sections were made parallel to the growth substrate, 
beginning in the region of cell-substrate contact, on an 
LKB Ultrotome and were collected on uncoated, 300- 
mesh copper grids (22). Sections were stained with ura- 
nyl acetate (30) and lead citrate (43) and observed with a 
Philips 201C electron microscope. 

Negative stains were made by applying a drop of F- 
actin (see above) at approximately 0.1 mg/ml in 0.1 M 
KC1, 0.01 M potassium phosphate buffer pH 8.0 to 
Formvar/carbon-coated 200-mesh copper grids. After 30 
s, excess actin was removed with filter paper. Before the 
grid was dry, a drop of F-S-1 at 0.2 mg/ml was placed on 
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the grid. 30 s later the excess was removed and the grid 
was rinsed twice with the aetin buffer, once with aqueous 
2% uranyl acetate, and, finally, negatively stained with 
uranyl acetate. 

RESULTS 

Preparation o f  S-1 and F-S-1 

Rabbit skeletal muscle myosin S-1 was sepa- 
rated into two fractions by ion exchange chroma- 
tography. The fractions were similar to those de- 
scribed previously (54, 52). The first peak con- 
sisted primarily of heavy chain and A1 light chain, 
the second of heavy chain, A2 light chain, and a 
small amount of A1 chain (Fig. 1). We chose the 
second peak for conjugation experiments. Prelimi- 
nary results indicate that conjugated samples of 
the first S-1 peak give results identical to those 
observed for second peak conjugates. 

FIGURE 1 SDS-polyacrylamide gel profiles of S-1 
peaks 1 (a) and 2 (b) and of F-S-1 peaks a (c),/3 (d), 
and 3' (e). 5.6% gels loaded with 30/xg of protein. The 
myosin light chains are labeled (A1, DTNB, and A2). 
The similarity between b and c, d, and e indicates that 
separation of peaks a,/3, and 3' on DEAE is a function 
of the number of bound fluorescein molecules. In our S- 
1, some DTNB light chain was always present after 
chymotryptic cleavage. Other laboratories have not re- 
ported the presence of this chain (54, 52). This may be 
due to differences between the enzyme used here and 
that used by others (54, 52). 

TABLE I 

Characteristics of F-S-1 Conjugates 

Peak 

Average 
time for 

Molar photo- 
Gradient posi- ratio SA re- graphic ex- 

tion* (F/P) tained:~ posurew 

o~ 0.05 M NaCI 1.0 67 75 
/3 0,07 M NaCI 2.0 55 33 
)' 0,10 M NaC1 2,5 37 17 

* Buffered with 0.01 M imidazole-HCI pH 7.0. 
* Relative to SA of unlabeled S-1 peak 2, See Fig, 5. 
w Spot meter urea centered on a fluorescent fiber. All exposure settings 

held constant except time. 20 measurements were made for each peak. 

S-1 peak 2 was conjugated according to method 
A (see Materials and Methods) for most experi- 
ments and then applied to DEAE-cellulose. Elu- 
tion with NaCI steps of 0.05, 0.07, and 0.10 M 
yielded peaks which were designated as a,/3, and 
3' in the order in which they were eluted. The F/P 
molar ratios increased with each step in the gra- 
dient. There was some variation from one experi- 
ment to the next of the exact F/P ratio that eluted 
with a particular salt concentration. The range of 
F/P ratios within the gradient was, however, con- 
sistent. A representative example of one prepara- 
tion is given in Table I and Figs. 1 and 2. 

Many of the previous studies involving fluores- 
cent labeling of proteins with FITC used pH val- 
ues in a range of 8.5-9.5 for conjugation (e.g., 
references, 1, 53, 35, 45). In an attempt to reduce 
the possibility of denaturation of S-1 at high pH, 
we chose to carry out conjugation in a pH range of 
7.5-7.8. After reaction under these conditions, 
the S-l-fluorescein complex moved as a single 
band on G-25 Sephadex. Separation on DEAE- 
cellulose resulted in superimposition of peaks re- 
sulting from protein and fluorochrome absorbance 
(see Fig. 2). To eliminate the possibility that the S- 
1-fluorescein interaction was noncovalent, the fol- 
lowing experiment was performed. A sample of F- 
S-1 with a known F/P ratio was dialyzed for 24 h 
against 8 M urea. After denaturation, the F/P 
ratio (3.0) was virtually identical to the ratio be- 
fore urea treatment (2.9), which indicated that 
fluorescein was bound in a stable manner to S-1 by 
our conjugation conditions. 

Actin-Binding Studies on 

F-S-1 ct, ~, and T 

To determine the capacity of the DEAE-puri- 
fled F-S-1 to interact with actin, we tested for 
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FIGURE 2 A typical elution profile resulting in the sep- 
aration of F-S-1 into fractions having different fluores- 
cein to protein molar ratios. 21 mg of S-1 were reacted 
for 6 h with 525/~g of FITC (see Materials and Methods, 
conjugation method A). After removal of unbound fluo- 
rescein by gel filtration, the conjugate was applied to 
DEAE-cellulose and eluted with a step gradient consist- 
ing of the NaCI (molar) concentrations shown across the 
top of the figure. Fractions were pooled to yield samples 
designated a,/3, and 3,. 0.9, 3.2, and 1.3 mg of t~,/3, and 
y, respectively, were recovered from the procedure. 
(Q---Q) Absorbance at 278 nm. (El [Z]) Absorb- 
ance at 495 nm. 

decoration of actin and activation of ATPase ac- 
tivity. 

Peak a eluted from DEAE at an ionic stength 
similar to that necessary for release of S-1 peak 2 
from the same chromatographic medium. Peak a 
could therefore contain S-1 that was not coupled 
to fluorescein. Elution of peaks/3 and 3' at higher 
ionic strengths indicated that these two peaks 
bound more tightly to DEAE, which was expected 
for S-1 with higher F/P ratios. Only these latter 
conjugate samples were used to check the ability 
of F-S-1 to decorate actin. 

When rabbit skeletal F-actin was placed on an 
electron microscope grid and peak /3 or 3' was 
added, arrowheads formed on the actin (Fig. 3), 
indicating that F-S-1 bound to actin in the correct 
configuration. Peak/3 was also shown to decorate 
microfilaments in glycerinated rat embryo cells 
(Fig. 4), demonstrating that conjugated S-1 inter- 
acted with nonmuscle actin-like microfilaments in 
situ as well as with muscle actin. 

S-1 peak 2 retained 68% of the actin-activable 
ATPase activity of the original S-1 preparation 
(Fig. 5). In three experiments (one of which is 

presented in Fig. 5), the DEAE-purified F-S-1 
ATPase was activated by actin. The percentage of 
specific activity (SA) retained was always related 
to the order of elution, that is: SA~ > SA~ > SAy. 
This finding parallels that of Wood et al. (53) who 
demonstrated decreasing activity of an antistrepto- 
coccal fluorescent reagent in proportion to an in- 
creasing number of bound fluorescein molecules. 
The retention of ATPase activity by peaks eluting 
after the unlabeled S-1 was eluted from the col- 
umn is further evidence that conjugated S-1 can 
bind to actin in a physiologically significant and 
specific manner. 

Light Microscopy of  lnterphase RE 

Cells Treated with F-S-1 

Light microscope observations demonstrated 
that the fluroescent fibers seen in RE cells after 
glycerol extraction and staining with any of the F- 
S-1 fractions corresponded to stress fibers seen in 
phase contrast (Figs. 6, 7a and b). All three 
fractions yielded the same staining pattern. Stress 
fibers stained brightly, nuclear and nucleolar fluo- 
rescence were very low, and other cellular organ- 
elles did not fluoresce significantly (Figs. 8a, b, 
and c). A rough estimate of relative brightness of 
staining by peaks or,/3, and 3' was made by timing 
the exposures which were determined by the built- 
in photometer of the Zeiss Photomicroscope III. 
We consistently found that the required exposure 
time for cells stained with a was greater than that 
for cells stained with/3 which was greater than the 
time for cells stained with y (see Table I). 

When cells were incubated with 4 mM Mg §247 
pyrophosphate and F-S-l, fluorescent stress fibers 
were not seen. Cells were very difficult to find in 
the fluorescence microscope field and were identifi- 
able only by a blurred outline and diffuse cytoplas- 
mic fluorescence (Fig. 8 d). Thus, binding of F-S-1 
to cytoplasmic actin was prevented by pyrophos- 
phate, which is analogous to the situation in skele- 
tal muscle. After rinsing with MSS, pyrophos- 
phate-treated cells could be labeled with F-S-1 to 
yield a pattern of fluorescence identical to that 
seen in cells not treated with pyrophosphate. 

Competition of F-S-1 binding by unlabeled S-1 
also eliminated stress fiber fluorescence. Cells 
were exposed to a series of solutions which con- 
tained 0.1 mg of F-S-1/ml SSS and increasing 
concentrations of unlabeled S-1. With 0.1, 0.2, 
and 0.5 mg of unlabeled S-1/ml, the fluorescent 
image went from slightly to greatly reduced bright- 
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FIGURE 3 Electron micrographs of negatively stained (a) rabbit skeletal muscle actin and (b) actin plus 
F-S-1 (F/P = 2.5). After reaction with the F-S-l, arrowhead complexes are formed. Bar, 0.1 /zm. x 
110,570. 

ness. When 1.0 mg of S-1/ml was present along 
with 0.1 mg of F-S-1-ml, the cells were still visible, 
but no stress fibers were seen. Cell margins and a 
faint image of the nucleus were the only visible 
remains of the staining pattern when cells were 
exposed to 0.1 mg of F-S-1/ml and 2.0 mg of 
unlabeled S-1/ml (Fig. 8e). Competition was suc- 
cessful for F-S-1 fractions with F/P ratios ranging 
from 1 to 3. Competition of F-S-1 with BSA over 
the same concentration range produced no change 
in the fluorescent image, indicating that a specific 
S-1 competition, and not a nonspecific protein- 
protein interaction, was occurring. 

Light Microscopy of Pt K1 Cells 
Treated with F-S-1 

When glycerol-extracted Pt K1 cells were incu- 
bated with F-S-1 and examined by fluorescence 
microscopy, stress fibers of interphase cells stained 
in a pattern similar to that seen in RE cells. Rela- 
tive to stress fiber fluorescence, nuclear fluores- 

cence was low. During mitosis, Pt K1 cells remain 
partially spread on the growth substrate, which 
facilitates examination of mitotic structures. F-S- 
1-treated Pt K1 spindle structures fluoresced 
above the background of cytoplasmic fluores- 
cence. During metaphase, fluorescent chromo- 
some-to-pole fibers were seen (Figs. 9a and b). In 
late anaphase or telophase cells, no fluorescence 
greater than background was seen in the interzone 
(Fig. 9c). A bright rim of cortical staining was 
often observed in mitotic cells (Fig. 9g). Both 4 
mM Mg++-pyrophosphate and S-1 competition ex- 
periments (conditions identical to those described 
for RE cells) eliminated spindle fluorescence. The 
only spindle structure that remained bright after 
these control incubations was the pole region. 
Interphase nuclei also remained visible after con- 
trol incubations. 

Owing to both the fading of fluorescence and 
the very low initial intensity of the control (pyro- 
phosphate and S-1 competition) preparations, it 
was extremely difficult to locate mitotic cells by 
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Fmul~a~ 4 (a) Microfilament bundle seen in an electron micrograph of a thin section taken from a 
glycerinated rat embryo cell. x 86,410. (b) Microfilament bundle treated with F-S-1 (F/P = 2.0). The 
microfilaments are fuzzy in outline and more electron-dense than those seen in Fig. 4a. Bar, 0.1 p.m. • 
86,730. 

epifluorescence alone. To insure that a reasonable 
number of cells were observed, the following steps 
were performed. Illumination with a halogen light 
source at low intensity in combination with the 
546-nm green interference filter normally used for 
phase-contrast microscopy was outside the range 
of fluorescein-conjugate light absorption, which 
falls to zero above 545 nm (13). Under these 
conditions of illumination, cells in metaphase were 
located by phase-contrast microscopy. The same 
field was then viewed with epifluorescence mi- 
croscopy. When located in this manner, spindles 
incubated with F-S-1 showed fluorescence above 

background in the chromosome-to-pole region 
(see Figs. 9a and b), whereas spindles in cells 
incubated for pyrophosphate or S-1 competition 
controls (at least 10 cells viewed in each case) 
showed fluorescence only at the poles. 

Nonspecific Labeling of  Cells 
due to Overcoupled S-1 

Two methods were used to obtain F-S-1 sam- 
pies with higher F/P ratios which resulted in over- 
coupled S-1 which no longer bound specifically to 
cellular actin. 
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FIGURE 5 Actin activation of Mg++-ATPase activity of 
S-1, S-1 peak 2, and F-S-1. The SA of peak 2 is 68% 
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With the use of conjugation method A (see 
Materials and Methods), fractions with four to five 
fluorescein molecules per S-1 could be obtained 
by elution with 0.1-0.5 M NaCI. The protocol 
described yielded this material in quantities too 
small to allow assay of actin activation of Mg +§ 
ATPase for these samples. When glycerinated rat 
embryo cells were incubated with these fractions, 
stress fibers stained, although not so intensely as in 
cells stained with F-S-1 having lower F/P ratios. In 
addition, nuclei and nucleoli were very bright and 
general cytoplasmic fluorescence was more in- 
tense (see Fig. 8f).  The staining reaction was not 
prevented by treatment with 0.004 M Mg++-pyro- 
phosphate, nor could competition with unlabeled 
S-1 be detected. 

We have also prepared F-S-1 by room tempera- 
ture conjugation for 1 h (as recommended by 
Nairn [35]; see method B, Materials and Meth- 
ods) which retained 60% of the actin-activated 
ATPase activity of unlabeled S-1 (M.-J. Yerna, 

personal communication) and which stained stress 
fibers brightly. When a sample of this rapidly 
labeled S-1 was purified on DEAE-cellulose, over 
90% of the protein which eluted from the column 
had F/P ratios >4. These preparations stained 
stress fbers (Fig. 8f),  but also caused other cellu- 
lar material to fluoresce brightly. The spindle 
structures observed after reaction with overcou- 
pied F-S-1 were similar to those described above 
for F-S-1 with F/P ratios of 1-2, but were much 
brighter (Figs. 9d-f). Pyrophosphate and unla- 
beled S-1 competition experiments were unsuc- 
cessful. Neither rabbit actin nor RE microfila- 
merits in situ could be decorated by reaction with 
these overcoupled F-S-1 fractions. 

Electron Microscopy o f  Mitotic Cells 

G L U T A R A L D E H Y D E - F I X E D  PT K1 C E L L S :  

Mitotic spindles of nonglycerinated, glutaraide- 
hyde-fixed cells were examined with the sole in- 
tent of determining whether or not microfilaments 
could be seen. A detailed ultrastructural study of 
glutaraldehyde-fixed Pt K1 cells in all stages of 
mitosis has been published by Roos (44). Pt K1 
spindles contain numerous microtubules oriented 
along the long axis of the spindle. Microtubules 
were often found closely packed together but were 
sometimes far enough apart to allow visualization 
of - 4 -  to 6-nm diameter flbrillar material in be- 
tween the large numbers of ribosomelike particles 
(Figs. 10a--c). 

G L Y C E R O L - E X T R A C T E D  RE A N D  PT K1 

CELLS: Cells extracted with glycerol but not 
treated with S-1 or HMM were examined. Rela- 
tive to cells fixed directly with glutaraldehyde, 
much of the matrix material of the spindle was 
removed. Microtubules were found in configura- 
tions similar to those seen in nonglycerinated cells. 
The fibriUar material ( - 4 -  to 6-nm diameter) was 
more prominent after glycerination, probably as a 
result of the decrease in amount of electron-dense 
material in the spindle matrix (Figs. 11 and 12). In 
many instances, discrete 4- to 6-nm microfila- 
ments were seen in the spindle. These often fol- 
lowed paths parallel to microtubules, and in other 
cases appeared more randomly organized (Figs. 
11 and 12). 

S-1  A N D  H M M - T R E A T E D  PT K1 C E L L S :  

After glycerol extraction and incubation with S-1 
or HMM, decorated microfilaments were found in 
the spindle; undecorated microflaments were not 
seen (Figs. 13 and 14). Arrowheads were best 
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Fi~ur~ 6 Fluorescence micro~aph showing a field of RE cells treated with F-S-1 (F/P = 1.8). Stress 
fibers are the major labeled component in interphase cells. Bar, 40/.~m. • 290 (Neofluar 16/0.4). 

Fi~ur~ 7 (a) Phase-contrast micrograph of a portion of a glycerinated RE cell that had been incubated 
with F-S-1 (F/P = 1.0). Note phase-dense fibers. (b) The same field as Fig. 7a viewed with epifluorescence 
illumination. Bright fibers correspond to phase-dense fibers in Fig. 7a. (a and b) Bar, 10 /.~m. • 820 
(Phase planapochromat 63/1.4). 
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distinguished with S-1. The orientation and distri- 
bution of decorated microfilaments was similar to 
that of microfilaments in glycerinated cells not 
treated with myosin fragments; they were often 
associated with and sometimes parallel to microtu- 
bules. Decorated microfilaments were found in 
the chromosome-to-pole regions of metaphase 
and anaphase cells and in the interzones of ana- 
phase cells. Decorated microfilaments were also 
found in the cortex of dividing Pt K1 cells (Fig. 
14). 

M I C R O F I L A M E N T - M I C R O T U B U L E  A S S O C I A -  

T I O N :  In several sections, very close associa- 
tions between microtubules and microfilaments 
were seen. Small groups of closely packed micro- 
tubules or individual microtubules which disap- 
peared from the plane of the thin section fre- 
quently appeared to be continuous with microfila- 
ments in glycerinated cells (Fig. 11 b) and with 
decorated microfilaments in cells treated with 
HMM or S-1 (Fig. 13), indicating a possible inter- 
action between the two types of fibers. 

DISCUSSION 

Actin has been localized with light and electron 
microscopy by the addition of fluorescein-labeled 
rabbit skeletal myosin S-1 to glycerinated nonmus- 
cle cells. Although some properties of S-1 are 
altered by coupling to fluorescein (e.g., the extent 
of activation of F-S-1 ATPase by skeletal muscle 
actin), it is possible to obtain labeled S-1 that 
reacts with actin in much the same manner as does 
unlabeled S-1. This is shown by the formation of 
arrowhead complexes with actin in negative stains, 
by decoration of microfilaments in thin sections, 
by prevention of binding by Mg++-pyrophosphate, 
and by competition for the same actin-binding 
sites by unlabeled S-1. The cells used for these 
experiments were glycerinated and treated with F- 

S-1 in exactly the same manner for light and elec- 
tron microscopy. This makes possible a direct 
comparison of actin-containing structures at these 
two levels of resolution. 

Wood et al. (53) showed that separation of 
fluorescein-labeled ~/-globulin into fractions hav- 
ing limited ranges of F/P ratios was necessary to 
remove overcoupled antibody molecules. These 
overcoupled samples stained nonspecifically in the 
bacterial systems tested. We have demonstrated a 
similar effect. Glycerinated cells treated with over- 
coupled S-1 have diffuse cytoplasmic staining and 
intense nuclear fluorescence as well as fluorescent 
stress fibers. Moreover, the control experiments 
which demonstrate specific actin binding of F-S-1 
with lower F/P ratios are not successful for over- 
coupled F-S-1. We therefore believe that it is 
important, in any study employing labeled myosin 
fragments, that these overcoupled fractions be re- 
moved in order to maintain the specificity of the 
light microscope probe. 

Glycerination and incubation of mitotic Pt K1 
cells with F-S-1 result in a fluorescent image of 
chromosome-to-pole fibers in the spindle. F- 
HMM (46, 47; our unpublished observations) and 
antibody to actin (33, 6) give similar results. We 
have attempte~ to visualize actin-like microfila- 
ments by electron microscopy in positions corre- 
sponding to these fluorescent regions. 

Electron micrographs of fixed (but not glyceri- 
nated) spindles do not unambiguously demon- 
strate the presence of microfilaments (see also 
references 2 and 34). Indeed, an individual micro- 
filament would be difficult to visualize in any elec- 
tron micrograph of sectioned animal cells. Micro- 
filaments are most easily recognized when aggre- 
gated into bundles (e.g., reference 18). The distri- 
bution of 4- to 6-rim diameter fibrillar material in 
fixed specimens is similar to that of microfilaments 

Firur.E 8 (a-c) RE cells incubated with F-S-1 with F/P ratios of 1.0, 2.0, and 2.5, respectively. Stress 
fibers fluoresce brightly. Nuclear fluorescence is low. The very bright spots represent cell debris. (d) RE 
cell incubated with F-S-1 (F/P = 1.0) in SSS with 4 mM pyrophosphate and then rinsed for 30 rain with the 
same solution without F-S-1. The exposure and printing conditions were identical to those for Fig. 8a. 
Fluorescent fibers are no longer visible. For pyrophosphate experiments, increasing the KCI concentration 
to 0.1 M was found to produce more consistent results than using 50 mM KCt. This increase in KCI 
concentration did not affect other staining characteristics. (e) S-1 competition experiment. An RE celt 
incubated simultaneously with 0.1 mg of F-S-1 (F/P = 1.0)/ml and 2 mg of unlabeled S-1/ml. No fibers are 
seen and nuclear fluorescence is the main characteristic of these cells. (f) RE cells stained with overcoupled 
F-S-1 (F/P = 6.4). In addition to fluorescent fibers, the nuclear and general cytoplasmic fluorescence is 
higher than that seen in Fig. 8a-c. Inset is printed to show that nucleolar fluorescence is brighter than that 
of the nucleoplasm. (a-f) Bar, 20/zm. Epifluorescence, x 480 (Apochromat 40/1.0). 
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FIGURE 9 Glycerinated mitotic Pt K1 cells. (a and b) Metaphase cells incubated with F-S-1 (F/P = 2.1). 
Poles and chromosome-to-pole fibers are fluorescent. Some perichromosomal fluorescence is apparent in 
Fig. 9b but not in Fig. 9a. (c) Telophase cell treated as in Fig. 9a. No fluorescent fibers are seen in the 
interzone. Only the poles (arrows) fluoresce above background. (d and e) Metaphase cells incubated with 
overcoupled F-S-1 (F/P = 6.4). Poles, chromosome-to-pole fibers, and kinetochores fluoresce intensely: 
(f) Anaphase cell treated as in Fig. 9d. Short chromosome-to-pole fibers are seen, but no fibers fluoresce 
above background in the interzone. (g) Late telophase cell treated as in Fig. 9a. A rim of fluorescence 
above background level is seen at the cell periphery and the cleavage furrow. (a-f) Bar, 10 /zm. 
Epifluorescence, x 1,200 (Planapochromat 100/1.25). 

806 THE JOURNAL OF CELL BIOLOGY" VOLUME 74, 1977 



FI~uI~E 10 (a-c)  Electron micrographs of Pt K1 cells fixed with glutaraldehyde without prior glycerina- 
tion. Microtubules (M) running from chromosomes (C) to poles are surrounded by a dense matrix 
including ribosome-like particles (R). Where this matrix is less dense, fibrillar material is often seen 
(arrows) between the microtubules. This fibrillar material has a diameter of - 4 - 6  nm and is seen only 
when its long axis runs approximately perpendicular to the microtubules. In Fig. 10b the microtubules 
appear to insert into a chromosome. In Fig. 10c a centriole is seen as the pole (p) and is surrounded by a 
dense matrix. (a-c) Bar, 0.1 tzm. x 82,500. 



FIGURE 11 (a) Electron micrograph of an RE cell spindle after the one-step rapid extraction procedure 
(see Materials and Methods). Microtubules (M) run from the pole (p) region to the chromosomes (C). 
Many actin-like microfilaments (mr) are seen, often closely related to microtubules. Bar, 0.2 p,m. • 
33,600. (b) Interzone region of an anaphase RE cell prepared as in Fig. l l a .  In at least two instances, 
point A, microfilaments project along the same path where microtubules go out of the plane of section. 
Bar, 0.2 /~m. x 43,200. 



FIout~ 12 (a) Low magnification electron micrograph of a glycerol-extracted Pt K1 cell showing 
chromosomes (C) and microtubules (M) preserved in the chromosome-to-pole (p) region. Bar, 1 /~m. • 
7,750 (b) Higher magnification view of the chromosome-to-pole region of a cell treated as in Fig. 12 a. 
Note chromosome (C) and microfilaments (mr) running parallel to microtubules (M). (c) Another view of 
the chromosome-to-pole region showing randomly distributed microfilaments (arrows). (b and c) Bar, 
0.1 /~m. • 82,500. 



Fmup.E 13 (a) Chromosome-to-pole region of a glycerol-extracted, HMM-treated Pt K1 cell. Decorated 
microfilaments (arrows) in some regions are seen running parallel to microtubules, and in other regions 
they appear to be randomly distributed, x 82,500. (b) A higher magnification view of the rectangular 
area indicated in Fig. 13a. In this region it appears as if microtubules leaving the plane of the thin section 
are continuous with decorated microfdaments. A points to a small region of a microtubule which appears 
to be continuous with a decorated microfilament (small arrows). B points to a group of three microtubules 
which appear to be continuous with a small bundle of decorated microfilaments (small arrows). Bar, 
0.1 /zm. x 115,500. 



FI~tIP, E 14 (a) An anaphase cell after glycerination and HMM incubation, showing decorated microfila- 
ments (D) in the interzone region along one of the long arms of a chromosome (C). Decorated actin-like 
microfilaments are also evident in other regions of the cytoplasm and at the cortex (arrows). Masses of 100 
A filaments (f) are seen beneath the cortex, x 49,720. Inset is a higher magnification micrograph showing 
HMM decoration in a Pt K1 cell cortex, x 57,820. (b and c) Chromosome (C)-to-pole regions of 
glycerinated Pt K1 cells treated with S-1. Note decorated microfilaments containing arrowheads (arrows). 
Bar, 0.1 /xm. • 82,500. 



in glycerinated samples. The decrease in electron 
density of the spindle matrix after glycerol extrac- 
tion appears to allow visualization of microfila- 
ments (25). 

Upon incubation with S-1 or HMM, microfila- 
ments become thicker and fuzzy in outline (27, 
19). The absence of undecorated microfilaments 
in samples treated with myosin heads indicates 
that thin filaments seen in only glycerinated sam- 
ples are probably not microtubule protofilaments 
or other, previously undescribed types of fibers. 

Actin-like microfilaments are found in the chro- 
mosome-to-pole regions and in quite large num- 
bers near the poles (Figs. 11-14 and references 3, 
t5, 11, 10, 16, 24, 12). In addition, they are 
found in the interzone. Decorated microfilaments 
have also been reported in interzones of other cell 
types (11, 16). These latter observations appear to 
contradict the fluorescence results reported here 
and elsewhere (46, 47, 33, 6). If actin indeed does 
play a role in mitotic movements, one could specu- 
late that once a chromosome has moved from its 
metaphase position, actin is no longer required in 
this region. As the chromosomes move closer to 
the poles, the actin remaining in the interzone may 
be redistributed and therefore decreased in 
amount. It is possible that the intensity of inter- 
zone actin-F-S-1 is simply not detectable by fluo- 
rescence microscopy over the ever present back- 
ground fluorescence. The fact that background 
fluorescence in mitotic cells is reasonably high is 
not surprising, considering the presence of a corti- 
cal layer of actin. As shown in Fig. 14 a, decorated 
microfilaments are present around the edges of 
the cell. This is the submembranous layer of mi- 
crofilaments described in many types of animal 
cells (48, 55, 4, 18, 21). 

Several reports indicate that decorated microfil- 
aments are seen in glycerinated spindles after the 
addition of HMM (3, 15, 11, 16, 24, 12). Only 
one report exists showing that microfilaments are 
seen in glycerinated spindles of locust spermato- 
cytes without addition of HMM (16). Visualiza- 
tion of microfilaments in spindles of glycerinated 
cells is an essential aspect in proving their exis- 
tence in the spindle, because of the well-known 
ability of HMM to polymerize actin (7). Some 
types of S-1 may have the same effect (37). We 
have extended Gawadi's observations (15) to cul- 
tured rat embryo and Pt K1 cells by demonstrating 
the presence of actin-like microfilaments in glyc- 
erol-extracted spindles by long- and short-term 
extraction techniques (Figs. 11 and 12). 

These glycerol extraction methods maintain not 
only the positions but also the birefringence of 
stress fibers in well-spread interphase cells (un- 
published observations), and allow most of the 
actin to stay within the cells (21). Microfilament 
bundles seen in electron micrographs of glyceri- 
nated cells appear identical to bundles in directly 
fixed cells. In addition, actin filaments in striated 
muscle retain their appearance and position after 
glycerol extraction (25). These types of observa- 
tions lead us to believe that glycerol extraction 
may be used reliably to study the distribution of 
actin-like microfilaments. The possibility does ex- 
ist that some microfilaments might drift into the 
spindle or be polymerized there due to the extrac- 
tion techniques. It may be noted, with regard to 
possible glycerol-induced polymerization artifacts 
(11), that immunofluorescence approaches not 
employing glycerination have demonstrated the 
presence of actin (33, 6) in specific spindle re- 
gions. The same regions contain actin-like micro- 
filaments after glycerol extraction, as demon- 
strated by F-S-1 localization and the distribution 
of decorated microfilaments. Examination of cells 
extracted with cold acetone for 1 min followed by 
incubation with F-S-1 results in a pattern identical 
to that obtained with glycerination (unpublished 
observations). Extraction with cold ( -20~ ace- 
tone is a commonly used method for immunofluo- 
rescence localization. Identification of actin in the 
spindle by several methods is good evidence for its 
specific localization in that structure. 

Regarding the possibility that actin might drift 
into the spindle, we have decreased the extraction 
time from several days (e.g., references 27 and 
45) to 2-4 min to minimize the chance for such an 
occurrence. It is also interesting to note that mi- 
crofilaments have been found in spindles of cells 
which possess very little actin in other regions of 
the cytoplasm (12). 

A functional role for spindle actin has not yet 
been proved. In addition to showing the presence 
of actin-like microfilaments in spindles, it would 
be useful to determine whether or not there is a 
consistent polarity of the actin component relative 
to poles and chromosomes. Gawadi (16) and 
Forer and Jackson (12) have shown consistent 
polarities in a few, ideally visualized HMM-actin 
complexes. We have studied 60 HMM- or S-I- 
treated Pt K1 Spindles and found the number of 
distinct arrowheads to be very low. 

An observation that may shed light on the prob- 
lems of spindle microfilament localization and 
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chromosomal movement  is that of the close rela- 
tionship between some decorated microfilaments 
and microtubules. Such microtubule-microfila- 
ment associations have been proposed on a theo- 
retical basis (42, 10). The association becomes 
apparent during the analysis of thin sections of S- 
1- and HMM-trea ted  Pt K1 cells. Spindle microtu- 
bules or bundles of microtubules which disappear 
from the plane of section appear to be continuous 
with decorated microfilaments. A possible expla- 
nation for these observations is that one or several 
microfilaments could be closely applied to the 
outer portion of the microtubule wall. If this asso- 
ciation existed in cells fixed directly with glutaral- 
dehyde, it would be impossible to resolve the 
microfilaments. Even a small number  of actin-like 
microfilaments appear to be more than sufficient 
to produce the force required to move a chromo- 
some to the pole (36, 10). 

Our analyses of the properties of F-S-1 demon- 
strate that it can be used as a specific probe for 
actin localization in interphase and mitotic cells 
once overcoupled fractions have been removed.  
Although the fluorescence results indicate reason- 
able sensitivity, as shown by the ability to visualize 
the relatively small number of microfilaments in 
chromosome-to-pole regions of the mitotic spin- 
dle, there appears to be a lower limit to the detec- 
tion of fluorescence above an expected back- 
ground level, as demonstrated by the results con- 
cerning the interzone. The glycerination tech- 
niques employed provide a means for direct com- 
parison of structure of the levels of light and elec- 
tron microscopy. The growing body of evidence 
for actin in the mitotic spindle obtained by the 
several different methods for actin identification, 
along with recent evidence for myosin in the same 
regions of the mitotic apparatus (38, 14), is a 
convincing indication that an actomyosinlike con- 
tractile system may play a role in chromosome 
movement  during mitosis and meiosis. 

A D D E N D U M  

Because of the tremendous variations in electron density 
of chromosomes, ribosomes, microtubules, etc., relative 
to single microfilaments in the spindle region, some of 
the prints have backgrounds that are slightly darker than 
usual. This was necessary in order to optimize the infor- 
mation being presented. 

While the manuscript was in preparation, I. M. Her- 
man and T. D. Pollard presented an abstract in the 
Biological Bulletin, 1976 (151:413) concerning purifica- 
tion of rhodamine-HMM conjugates by ion exchange 

chromatography, and T. E. Schroeder published a mi- 
crograph showing the possible association of microfila- 
ments with interzone microtubules (1976. Cell Motility. 
R. Goldman, T. Pollard, and J. Rosenbaum, editors. 
Cold Spring Harbor Laboratory, Cold Spring Harbor, 
N. Y. p. 272). 
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