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Abstract 

Background Wildfires can have complex effects on wildlife populations. Understanding how post-fire conditions 
affect the movement ecology of threatened species can assist in better conservation and management, includ-
ing informing the release of rescued and rehabilitated animals. The 2019–2020 megafires in Australia resulted 
in thousands of animals coming into care due to injury or concerns over habitat degradation. This included hundreds 
of koalas (Phascolarctos cinereus), for which relatively little was known about how fire affected habitat suitability, 
or when rehabilitated animals could be returned to burnt areas.

Methods We compared the movements of koalas across three experimental groups–non-rehabilitated koalas 
in burnt habitat, non-rehabilitated koalas in nearby unburnt habitat, and rehabilitated koalas returned to their rescue 
location in burnt habitat in New South Wales, Australia. We GPS-tracked 32 koalas for up to nine months and com-
pared, across treatment groups, home ranges, mean nightly distance moved, the farthest distance moved from their 
release site and total displacement distance.

Results We found no differences in koala movements and home range size between non-rehabilitated koalas 
in burnt and unburnt habitat. However, rehabilitated koalas moved farther from their release site, had larger displace-
ment distances, and larger home ranges than non-rehabilitated individuals. Regardless of their experimental group, 
we also found that males moved further than females each night. Additionally, our resource selection analysis showed 
that, koalas preferred low and moderately burnt habitats over all other fire severity classes.

Conclusions Experimental frameworks that incorporate “treatment” and “control” groups can help isolate disturbance 
effects on animal movements. Encouragingly, despite catastrophic wildfires, burnt woodlands provided adequate 
resources for koalas to persist and recover. Furthermore, rehabilitated koalas re-integrated into the burnt landscape 
despite moving farther from their release sites than non-rehabilitated individuals. Studies like this improve our under-
standing of the ecological impacts of fire on species and their habitats, and will be instrumental in informing wildlife 
management and conservation efforts as wildfires increase in frequency and severity worldwide in response to cli-
mate change.
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tracking
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Introduction
Animals move through their environment to find and 
defend resources, disperse, breed, avoid predation, inter-
act with conspecifics, and seek shelter [35, 109]. These 
essential movements normally occur within a defined 
area, which is often described as a home range [17, 
23,  33]. Several intrinsic and extrinsic factors can influ-
ence home range size, including body size [76, 90], age 
[8, 121], sex [21, 44], food availability and quality [51, 89, 
121, 125], climate [94, 117], and landscape fragmentation 
[44]. Understanding the factors that affect home range 
size can provide important information about the space 
and resources needed by species and populations, explain 
the drivers of movement patterns [130], and assist with 
conservation and management planning.

Landscape disturbance from natural and anthropogenic 
sources (e.g., fire, floods, land clearing, logging, etc.) can 
influence the structure of faunal and floral communities 
and can fragment landscapes by creating physical barri-
ers to movement [37, 129, 155]. These can directly and 
indirectly affect how animals utilise and move within 
their environment [12, 100, 129, 146]. Fire is a common 
stochastic disturbance process in many terrestrial envi-
ronments and can result in short-term effects on animal 
movement patterns due to the immediate emigration of 
individuals out of a landscape that are trying to escape 
fire fronts, and cause longer-term shifts in movement 
patterns within burnt areas due to changes in habitat 
suitability and altered competition and predation dynam-
ics [42, 100, 146]. Changes in habitat suitability after fire 
can include the destruction or modified pattern of food 
and shelter availability. This can place substantial physi-
ological stress on animals, which can negatively impact 
reproductive success, thermoregulation, and susceptibil-
ity to other threats such as predation and disease [26, 29, 
31, 34, 57, 91, 97]. The ability to move and find resources 
in a burnt landscape can therefore affect the survival and 
recovery of individuals [59, 99, 100, 103, 144].

Past research into the effects of fire on home ranges 
shows considerable variation between mammal species. 
Some species show no change in home range size follow-
ing wildfire [22, 82, 134, 138], while others expand their 
home ranges following fire [50, 54] or reduce them [105]. 
Increases in home range sizes have been attributed to 
easier movement through landscapes to find resources 
in the absence of understorey vegetation [54] or the need 
to move farther to find food if its availability is reduced 
[82, 133]. Where home range sizes were similar after 
fire despite a measurable change in resource availabil-
ity, this has been attributed to individuals accessing one 
resource in burnt areas and another in adjacent unburnt 
areas [82]. The different responses reinforce the complex 
effects of fire on animal movements and home ranges 

and highlight the need to improve our understanding of 
the mechanisms that underly the varied patterns in wild-
life population responses to fire.

The temperate forests of the south-east region of Aus-
tralia are dominated by tree species of the Eucalyptus 
genus and are incredibly fire-prone [7, 14, 79, 119]. This 
region is also subjected to lower rainfall and hot dry sum-
mers, which are significant contributors to major wild-
fires [7]. From August 2019 to March 2020, extensive 
bushfires burned over 12 million hectares of eastern Aus-
tralia [149]. These fires were unprecedented in both scale 
and severity [32, 73, 149]. Throughout this time, there 
were extensive wildlife rescue and rehabilitation efforts 
[38, 104]. One species that received particular attention 
was the koala. During the 2019–2020 fires, an estimated 
60,000 koalas were killed or injured [136], and over 900 
taken into wildlife care triage units [25, 80, 104].

Fire affects the distribution and abundance of koalas 
[26, 91], and could also influence short-term behavioural 
shifts in landscape use due to changes in population den-
sity, food quality and availability. Koalas, like many other 
animal species, form distinct home ranges, with males 
and females tending to overlap [28, 39, 56, 148]. Koala 
home range sizes can be influenced by a number of fac-
tors, such as the sex and age of the animal, population 
density, the availability and quality of feed trees, and by 
disturbance like fire [71, 78, 85, 113, 114]. Very few stud-
ies have investigated the effects of fire and rehabilitation 
on movements and home range sizes of the koala (but for 
exceptions see [81, 88]). Evaluating home range size after 
fire can provide insight into disturbance related changes 
in habitat quality, population health, and resilience, 
which can help to improve landscape and wildlife man-
agement [140, 141].

Understanding how rehabilitation in captivity may 
affect the longer-term recovery of individuals after fire is 
also important for decision-making around this type of 
intervention. Rehabilitation success is often determined 
by recovery and survival of animals in care to the point 
of release [81]; however, a better metric is survival post-
release, which is not always monitored or recorded [53, 
98]. Some studies have found that, after release, rehabili-
tated animals move farther than non-rehabilitated indi-
viduals, which may be due to several factors, including 
being displaced or even losing the skills to compete and 
survive following time in care [45, 47, 135]. Increased 
movements and dispersal can be energetically costly [13, 
118], lead to increased exposure to predators [154] and 
mortality [47, 77, 118]. Post-release effects such as these 
could be exacerbated when the release environment has 
been affected by disturbance, such as fire [25]. For exam-
ple, there could be greater conflict with non-rehabilitated 
individuals due to increased competition for limited food 
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resources. Since fire severity and frequency in many 
parts of the world are predicted to increase with climate 
change [79], we need to improve our understanding of 
these post-release issues to effectively manage the reinte-
gration of rehabilitated individuals into surviving popula-
tions of threatened species.

This study addresses identified knowledge gaps in 
managing wildlife living in landscapes impacted by fire, 
including the success of post-rehabilitation release [25]. 
The specific aim was to determine whether fire and/
or rehabilitation affect the home range sizes and move-
ments of koalas. We addressed this aim within an experi-
mental framework, which is commonly lacking in these 
types of studies due to the stochastic nature of fire and 
wildlife rehabilitation [25]. We monitored koalas fitted 
with GPS collars across three treatment groups: 1) non-
rehabilitated koalas in burnt habitat, 2) non-rehabilitated 
koalas in unburnt habitat, and 3) rehabilitated koalas 
released into their original burnt habitat. Each koala was 
monitored for up to nine months. Since severe fire can 
influence the availability of foliage biomass [58, 127], we 
expected that food resources would be diminished for 
koalas in the burnt landscape, resulting in them moving 
farther each day to obtain adequate nutrition and have 
larger home ranges compared to individuals in unburnt 
habitat. Because rehabilitated koalas had to reintegrate 
into the population in burnt habitat, where competition 
for resources may be increased, we also expected that 
they would have larger home ranges and movements 
compared to non-rehabilitated koalas.

Materials and methods
Study sites
The study was located in the New South Wales (NSW) 
Snowy Monaro Shire, a local government area in Aus-
tralia spanning just over 15,000  km2 and located approxi-
mately 130 km south of the Australian Capital Territory 
[49]. Much of the koala tracking work was located on the 
Macanally-Numeralla ranges. The area is on steep ter-
rain, dominated by north-to-south facing ridges [102]. 
The elevation ranges from 800 to 1233 m above sea level 
[72] and the underlying geology is comprised of Palaeo-
zoic Era sediments, with fluvial sandstones and lacustrine 
sediments amongst granite plutons and alkali basalts [86]. 
Overstorey vegetation is dominated by red stringybark 

(Eucalyptus macrorhyncha) and scribbly gum (Eucalyp-
tus rossii), with ribbon gum (Eucalyptus  viminalis) and 
candlebark (Eucalyptus rubida) more prominent in creek 
lines, and snow gums (Eucalyptus pauciflora) at higher 
elevations [102]. Brittle gum (Eucalyptus mannifera), 
broad-leaved peppermint (Eucalyptus dives), and apple 
box (Eucalyptus bridgesiana) were also common in some 
areas [1].

The Monaro Tableland, which encompasses the study 
area, is within a rain shadow zone [62, 102]. Prior to the 
fires in 2019, annual rainfall in the nearest city, Cooma, 
was 318.6  mm, which is well below the annual average 
of 528.1  mm [15]. Mean daily minimum and maximum 
temperatures in the Snowy Monaro Shire at these sites 
average 9 °C to 27 °C in summer, and − 3  °C to 13 °C in 
winter [86].

The “burnt” site was burnt by wildfire in January 2020, 
with large areas of moderate to complete canopy loss 
(Fig.  3). The “unburnt” site was located approximately 
15 km to the south and was not directly impacted by fire. 
Both sites were connected by continuous forest cover, 
and had similar tree species composition.

Koala groups
We used three treatment groups of koalas: 1) non-reha-
bilitated koalas in burnt habitat, 2) non-rehabilitated 
koalas in unburnt habitat, and 3) rehabilitated koalas 
released into the burnt habitat where they were origi-
nally rescued. The number of koalas in each group was a 
combined function of the available numbers of individu-
als and logistical considerations regarding tracking larger 
numbers of animals in multiple areas. The rehabilitated 
koalas comprised ten individuals that had been rescued 
from burnt habitat in the study area between early Janu-
ary 2020 and early March 2020 due to poor body condi-
tion and bushfire-related injuries. Rehabilitated koalas 
were released between June 2020 and November 2020. 
All rehabilitated koalas apart from a young, orphaned 
male were released at their capture location. The young 
male was housed and released with an adult female and 
her joey ~ 4.6 km from his capture location. Release tim-
ing depended on the overall health of each koala (subject 
to a health check–see “Health checks, collar fitting and 
release”) and evidence that there was food available in 

(See figure on next page.)
Fig. 1 Initial capture locations of all GPS-tracked rehabilitated koalas (green), and non-rehabilitated koalas in burnt habitat (blue) and unburnt 
habitat (red) (map data ©Google). Fire extent and severity mapping (FESM) [131] is also shown, with 2 representing the lowest severity (burnt 
understorey with unburnt canopy), 3 representing moderate (partial canopy scorch), 4 representing high (completed canopy scorch, ± partial 
canopy consumption) and 5 representing extreme (complete canopy consumption). The inset shows the location of the study area 
within south-eastern Australia
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Fig. 1 (See legend on previous page.)
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the area from which they were rescued (trees with intact 
canopy or producing new growth).

Non-rehabilitated koalas in burnt (n = 9) and unburnt 
landscapes (n = 13) were located between May 2020 and 
October 2020 using a combination of daytime ground-
based searches and night-time thermal drone searches 
[150]. These koalas were captured using the noose and 
flag method [83], placed into canvas bags and trans-
ported by car (usually less than 1 km) for a health check 
by a wildlife veterinarian.

Health checks, collar fitting and release
Koalas in all three groups were given a health assessment 
under sedation by an experienced koala veterinarian 
immediately prior to being fitted with a GPS tracking col-
lar and released [64]. The koalas ranged in age from < 2 to 
> 10  years old (based on tooth wear; [84]) and included 
15 males and 17 females (Additional file 1).

While sedated, we fitted koalas with a Lotek LiteTrack 
60 collar (Lotek Havelock North, New Zealand) with 
VHF and GPS capabilities. These collars weighed approx-
imately 80 g each and had a “weak link” made of elastic 
that was designed to break under strain. Koalas were 
placed in a pet carrier covered with a towel in a quiet 
room to recover from sedation. All of the non-rehabili-
tated koalas from the burnt and unburnt landscapes were 
released on the same day of their capture, at their capture 
location.

Koala tracking and monitoring
Given that koalas are nocturnal, collars collected five 
GPS points per 24  h period at three-hourly intervals 
between 1900 and 0700 h for the duration of the study. 
This data was stored on the collars and could be down-
loaded remotely using a paired PinPoint Commander 
(Lotek, Havelock North, New Zealand). If there was no 
movement detected for 24  h, a mortality signal would 
activate.

We visually checked koalas daily for the first two weeks 
following the collar fitting, twice per week for the follow-
ing two weeks, and then weekly when possible for the 
remainder of the study. Koalas were located using their 
unique VHF signal. Once a collared koala was located, 
we observed them with binoculars to check for any signs 
of injury, illness or decline of health. Occasionally, there 
were times when a koala could not be visually accessed 
at a scheduled point in time due to, for example, inacces-
sible roads or the koala had moved to a property that we 
did not have permission to access. When this occurred, 
we remotely downloaded their GPS data to check that 
their daily movements were normal (i.e., that they were 
moving around at night).

Collar removal
We removed collars from koalas after approximately 
nine months, unless the collar had already fallen off due 
to breakage of the weak link or slipping over the koala’s 
head. Koalas were captured using the same noose and 
flag method, and received another veterinary health 
check under sedation [64]. Once recovered, koalas were 
released back into the same tree from which they were 
captured.

Home range calculations
In the context of this study, home ranges were defined as 
the area used by koalas (50% and 95% kernel utilisation 
distributions) across the entire period over which they 
were tracked before calculating home ranges, we cleaned 
the GPS data to remove points with poor spatial accu-
racy. We removed any points where the recorded altitude 
fell outside the range available at the sites because pre-
liminary inspection revealed that these locations were 
invariably inaccurate. We then calculated the straight-
line distance and difference in altitude between each GPS 
fix. If either difference was unlikely given the site and ter-
rain, we removed the point. Finally, if the distance moved 
between consecutive points was greater than 200 m, we 
visually checked the location on a map relative to the pre-
vious and next point. In this case, we removed any points 
where a koala appeared to have moved to another loca-
tion and then returned to the first at the following fix, 
because this scenario was unlikely. After this process, we 
further thinned the data to two GPS points per koala per 
night (22:00 and 07:00), to get the best spread and timing 
where koalas were most likely to have moved.

We calculated 50% and 95% kernel utilisation distri-
butions (KUDs) for each koala using a bivariate normal 
kernel method in the adehabitatHR package (v0.4.19) 
[18] in R Statistical Software (v3.6.3) [112]. The h value 
(smoothing parameter), which controls the “width” or 
size of the kernel function around each point was set to 
the “reference” bandwidth defined as “href ” [20]. We gen-
erated asymptotes from the hrBootstrap function in the 
adehabitatHR package  to determine which koalas had 
a home range and which did not. Those koalas that did 
not have a home range were still moving significant dis-
tances, which suggest  they had not ’settled’ or were not 
in a defined ’range’. These koalas were not used in statisti-
cal comparisons of home ranges. Using the output from 
the analysis, we generated maps of home ranges in QGIS 
v.3.22.8 [110].

Calculation of movements
We calculated the nightly movement distance for each 
koala by adding the straight-line distances between each 
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sequential GPS point between 1900 and 0700 h the fol-
lowing morning. We used these values to calculate the 
average nightly distance moved by koalas throughout 
the study, as well as the average nightly distance moved 
during different seasons. We calculated the displacement 
distance for each koala by measuring the straight-line 
distance between the point at which koalas were released 
after being fitted with a tracking collar and the location 
at which they either lost their collar or were recaptured. 
We calculated the greatest distance moved by measuring 
the farthest distance a koala was recorded from its initial 
capture location.

Resource use analysis
We used resource selection analysis to investigate 
whether koalas use habitat in different fire severity classes 
in proportion to its availability within their home ranges.

Using the raster package [55]in R and the NSW fire 
extent and severity mapping spatial dataset [131] we cal-
culated the proportional availability of each fire severity 
class (as described by the State Government of NSW and 
Department of Planning and Environment 2020) within 
the home range of each koala that spent time in burnt 
habitat (n = 18). We also extracted the fire severity class 
at every GPS point used to generate home ranges, and 
calculated the proportion that fell within each of the five 
fire severity classes for each koala. We used the compana 
function in the adehabitatHS package [19] to perform a 
compositional analysis of habitat use [2], comparing pro-
portional fire severity class use by each koala relative to 
the proportional availability of each fire severity class 
within their home range.

Statistical analyses
All analyses were performed using R Statistical Soft-
ware (v3.6.3) [112]. We investigated whether home range 
size and movement data (displacement distance, great-
est distance moved and mean nightly distance) differed 
between koala groups (rehabilitated, or non-rehabilitated 
in burnt or unburnt habitat), sexes or their interaction 
using ANOVAs. We also used an ANOVA to investi-
gate whether mean nightly distance differed seasonally 
between male and female koalas. For greatest distance 
moved and displacement distance, all koalas tracked less 
than 50 days were excluded from analyses to avoid poten-
tial correlations between distance moved and the length 
of time tracked. We also excluded two female  koalas 
from the non-rehabilitated unburnt group (‘Rosalie’ and 
‘Brandy’) from all analyses because they moved from the 
unburnt habitat into burnt habitat during the study. Thus, 
their movements may have been influenced by character-
istics of both unburnt and burnt habitat, and it was not 
appropriate to consider them within the unburnt group 

for comparative purposes. Despite this, their data are still 
interesting and could be informative, so we have included 
them descriptively in the results. Displacement distance, 
greatest distance moved, and 50% and 95% KUDs were 
all logged prior to analysis to achieve normal distribu-
tion. If results of the ANOVA were statistically significant 
(p < 0.05), we used the emmeans package (v.1.6.3) [75] to 
conduct pairwise t-tests to determine which treatments 
differed from the others (p < 0.05).

Results
Thirty-two koalas across the three groups were followed 
for between 9 and 256 days each (Additional file 1). Both 
rehabilitated and non-rehabilitated koalas from the burnt 
landscape used burnt habitat extensively (Fig.  2). The 
average nightly distance moved by each koala ranged 
from 74 to 448 m (Additional file 1), although 14 koalas 
moved more than 1 km in a night at least once during the 
study. There was no difference in the mean nightly dis-
tances moved by koalas between the three groups (F2, 

26 = 1.35, p = 0.28; Fig. 3a). However, male koalas moved 
farther each night than females (F1, 26 = 24.35, p < 0.001), 
especially during spring (F1, 24 = 33.03, p < 0.001) and 
summer (F1, 17 = 34.21, p < 0.001; Fig. 4).

The maximum distance from the release location var-
ied between koalas (405 m to 8,362 m for koalas included 
in statistical analyses; Additional file 1). Similarly, the dis-
placement distance between the first and last locations 
recorded for each included koala varied, ranging from 32 
to 6,567 m. For koalas tracked more than 50 days, both 
displacement distance, and greatest distance moved dif-
fered significantly between koala groups (F2, 19 = 4.93, 
p = 0.019; F2, 19 = 5.94, p = 0.010, respectively; Fig. 3b and 
c). On average, rehabilitated koalas had a displacement 
distance over three times that of non-rehabilitated koa-
las in both the burnt (t(19) = 2.345, p = 0.03) and unburnt 
landscapes (t(19) = 2.615, p = 0.017; Fig.  3b). We found 
a similar pattern for the greatest distance moved. The 
greatest distance moved was 2.5 times higher in reha-
bilitated koalas compared to non-rehabilitated in the 
burnt area (t(19) = 2.240, p = 0.037) and was three times 
higher compared to non-rehabilitated in the unburnt 
(t(19) = 3.032, p = 0.007; Fig.  3c). Displacement distance 
and greatest distance moved did not significantly differ 
between males and females (F1, 19 = 0.295, p = 0.594; F2, 

19 = 0.392, p = 0.539, respectively).
We determined home-range sizes for 26 koalas (8 

rehabilitated koalas, 8 non-rehabilitated koalas in the 
burnt landscape, 8 non-rehabilitated koalas in the 
unburnt landscape and for the two koalas that moved 
from unburnt area into burnt (Additional file  1). For 
the six koalas that did not reach an asymptote, five were 
tracked for less than 50  days (one rehabilitated, one 
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Fig. 2 Home ranges at KUD 50% (darker colours) and 95% (lighter colours) for rehabilitated koalas (a), non-rehabilitated koalas in burnt habitat (b) 
and non-rehabilitated koalas in unburnt habitat (c) (map data ©Google). Part c also shows two koalas that moved from unburnt into burnt habitat 
(Brandy and Rosalie). The inset on Fig. 2c shows the home ranges of six koalas in the unburnt area with comparatively smaller home ranges. Note 
that the scale on Fig. 2c differs from that of 2a and b
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non-rehabilitated in the burnt, and three non-rehabil-
itated in the unburnt). The sixth koala was tracked for 
120 days (a rehabilitated female), but she moved consist-
ently in one direction. Home range size for the other 24 
koalas in the treatment groups (11 females and 13 males) 
varied from 4.8 to 279.8 hectares at 50% KUD and 18.5 
to 1,543.1 hectares at 95% KUD (Fig. 2; Additional file 1). 
At 95% KUD, mean home range was significantly differ-
ent between koala groups (F2, 20 = 3.639, p = 0.045), with 
post-hoc analyses showing larger home range sizes for 
rehabilitated koalas compared to non-rehabilitated indi-
viduals in the unburnt landscape (t(20) = 2.291, p = 0.033; 
Table  1). 50% KUD, koalas in the rehabilitated group 

tended to have larger home ranges than koalas in the non-
rehabilitated groups (F2, 20 = 3.041, p = 0.070; Table 1). On 
average, home range sizes for males and females were not 
significantly different at both 50% KUD (F1, 20 = 0.121, 
p = 0.732) and 95% KUD (F1, 20 = 0.114, p = 0.739), with 
large variation between individuals of both sexes. There 
was no group by sex interaction observed at either 50% 
or 95% KUD.

There was substantial overlap in the home ranges 
of tracked koalas at the 95% KUD, particularly in the 
unburnt area, but less so at the 50% KUD. For koalas liv-
ing in the burnt landscape (n = 16), the core home range 
(50% KUD) of seven koalas did not overlap with any 

Fig. 3 Mean nightly distance moved by all koalas (n = 30) (a), displacement distance for koalas tracked > 50 days (n = 23) (b), and greatest distance 
moved from release point for koalas tracked > 50 days (c) in each study group. Excluded non-rehabilitated koalas (n = 2) moved from unburnt 
habitat into burnt habitat, and therefore did not fit the criteria for any group. Note that the lines within each bar are the median value
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other tracked individuals. However, for the remaining 
nine koalas, overlap occurred with at least one individual 
and up to a maximum of three individuals. For koalas in 
the unburnt landscape, only one individual had a core 
home range that did not overlap with any other koalas. 

There was more extensive overlap for the remaining nine 
koalas in the unburnt landscape, with overlap observed 
with at least one other individual, and maximum overlap 
occurring with eight other tracked individuals.

Relative to their availability, koalas showed a prefer-
ence for low and moderately burnt habitat over all other 
severity classes, including unburnt (λ = 0.228, p = 0.002) 
(Table  2). They also used habitat in the high fire sever-
ity class more often relative to its availability than the 
extreme or unburnt classes (Table 2). Fire severity classes 
were ranked in the following order of preference: low 
severity (class 2), moderate severity (3), high severity (4), 
extreme severity (5) and unburnt (0).

Discussion
Understanding how environmental disturbances such 
as wildfire affect animal movements and home ranges 
is important for assessing and guiding the conservation 

Fig. 4 Mean ± SE nightly distances moved by koalas during different seasons. Seasons with an asterisk above them indicate that the distances 
moved are significantly different (p < 0.05) between males and females

Table 1 Mean ± SE home range size at 50% and 95% kernel 
utilisation distribution (KUD) for koala groups and excluded non-
rehabilitated koalas that used both habitat types

Group 50% KUD (ha) 95% KUD (ha)

Rehabilitated koalas (n = 8) 151.5 ± 39.8 773.8 ± 206.5

Non-rehabilitated in burnt habitat 
(n = 8)

58.0 ± 28.0 250.8 ± 123.3

Non-rehabilitated in unburnt habitat 
(n = 8)

45.1 ± 33.6 194.7 ± 142.7

Excluded koalas (n = 2) 1178.1 ± 598.8 5880.4 ± 2741.7

Table 2 Relative preference for fire severity categories by koalas considering availability. A description of the categories is provided as 
per [131]. Symbols indicate whether koalas demonstrated a slight ( +) or strong preference (+ + +) for, or avoidance (- or –-) of different 
fire severities

Severity class Description 0 2 3 4 5

0 Unburnt 0% canopy and understorey burnt 0 --- --- --- -

2 Low  > 10% burnt understorey 0  +  + + +  + + + 

> 90% green canopy

3 Moderate 20–90% canopy scorch 0  + + +  + + + 

4 High  > 90% canopy scorched 0  + + + 

< 50% canopy biomass consumed

5 Extreme  > 50% canopy biomass consumed 0
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and management of endangered species. In our study, the 
use of “control” groups within an experimental frame-
work was particularly valuable because it allowed us 
to compare movement distances and home range sizes 
of rehabilitated and non-rehabilitated koalas in burnt 
and unburnt eucalypt woodland to understand how 
both bushfire and rehabilitation influenced movement 
behaviour. Our key findings were that: 1) contrary to 
expectations, the movements and home ranges of non-
rehabilitated koalas were similar in burnt and unburnt 
habitat, and 2) as anticipated, displacement distances 
(distance between release and recapture points), the far-
thest distance moved from the release point, and home 
ranges were largest on average in rehabilitated koalas 
compared to their non-rehabilitated counterparts. Inter-
estingly, our compositional analysis of habitat use showed 
that koalas preferred low to moderate burn severity, rela-
tive to all other burn severity categories. These findings 
have important implications for our current understand-
ing of the value of burnt habitat for koalas and other mar-
supial folivores, and for refining intervention and release 
guidelines for koalas that are rescued from fire-affected 
areas.

Effects of fire on home ranges and movement
Our predictions of larger home ranges and longer move-
ments in burnt habitat were based on the idea that fire 
reduces habitat quality (e.g. less food available; [87]) 
and competitive pressure from conspecifics due to fire-
related mortality [27], forcing individuals to travel greater 
distances to find adequate food and/or allowing them 
to expand into unoccupied habitat immediately after a 
fire event. Unquestionably, leaf biomass, and therefore 
food availability, is substantially reduced in eucalypt for-
ests after high severity fire [111]. Likewise, moderate to 
severe wildfire can substantially reduce koala abundance 
in burnt compared to unburnt areas [26, 71, 107]. Despite 
these changes, movement distances and home range sizes 
of non-rehabilitated koalas in burnt habitat were similar 
to those in unburnt habitat within our study timeframe, 
which spanned five to sixteen months post fire.

By the time our study commenced, food availability 
may not have been limiting for the remaining animals. 
Eucalypts are well-adapted to fire, and many species pro-
duce new growth from epicormic buds within days or 
weeks [16, 106]. In addition, a reduction in the availabil-
ity of canopy foliage may be offset by an increase in the 
nutritional quality of epicormic leaves in a relatively short 
time after fire. This is further supported by our compo-
sitional analysis of habitat use, which demonstrated that 
koalas showed a preference for low to high burn sever-
ity over unburnt habitat, which could be linked to the 
epicormic foliage in these areas being more nutritious. 

Recent studies have shown that epicormic leaves are 
higher in nutritional quality in some eucalypt species 
than the adult-phase leaves that are present in unburnt 
areas [65]. This may have contributed to our findings, 
since many trees in the burnt landscape had at least some 
epicormic growth at the time we initiated our study.

It was interesting to note that two koalas in our study 
who were initially captured as part of the group in 
unburnt habitat moved into burnt areas. Although they 
were excluded from statistical analyses, this behaviour 
is worth discussing. At a minimum, the movement from 
unburnt to burnt habitat reinforces the idea that burnt 
landscapes can provide habitat for koalas. Additionally, 
the compositional analysis showed that koalas preferred 
low, moderate and highly burnt areas over extremely 
burnt areas and even unburnt areas, demonstrating 
that burnt areas can support koalas, and may even be 
favoured if the canopy has not been completely con-
sumed. Other studies have observed similar results, with 
some grazing and browsing mammals attracted to burnt 
areas for the new growth of plants recovering from fire 
[4, 5, 63, 92]. The movement of individuals from unburnt 
to burnt areas should also be considered in the context of 
post-fire recovery, whereby populations in unburnt areas 
can drive the recolonisation of burnt habitat [128, 143]. It 
would be valuable to design future studies to investigate 
the emigration of koalas from unburnt to burnt habitat to 
better understand how this may contribute to population 
recovery after wildfire.

Effects of rehabilitation on home ranges and movement
Rescuing and rehabilitating wildlife can be stressful for 
animals [139], and the risks to animal welfare need to 
be weighed against the potential benefits for both the 
individual and the population [24]. Some species have 
a low survival rate after release following rehabilita-
tion [11], while other species reintegrate back into the 
wild with minimal expense to fitness [95]. The effects 
of rehabilitation and release can be complex, with vari-
ous factors contributing to outcomes [74, 93]. We found 
that rehabilitated koalas had larger home ranges and 
larger displacement distances from their release site than 
non-rehabilitated koalas in both the burnt and unburnt 
landscape. While several studies have looked at koala 
movements following release from rehabilitation (e.g., 
[40, 48, 74, 88]), only Matthews et al. [88] also compared 
their findings to non-rehabilitated koalas in the same 
area. In contrast to us, they found that rehabilitated koa-
las in Port Stephens had similar home range sizes to non-
rehabilitated koalas. Future research is needed to better 
understand which factors drive these differences and 
could provide insights into when koalas will reintegrate 
most easily into their habitat after rehabilitation.
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The larger movements of rehabilitated koalas are 
unlikely to be due to their release into burnt habitat per 
se, because their movements differed from non-reha-
bilitated koalas in the same area. Previous studies have 
found that rehabilitated koalas that are released away 
from their capture location often disperse to other areas 
[9, 74]. However, this does not explain our findings either 
because koalas in all groups were released at the loca-
tion from which they were captured. Instead, there are 
other possible explanations, such as larger movements 
to refamiliarise themselves with the landscape, or com-
petitive exclusion by established, non-rehabilitated koa-
las. For example, rehabilitated red foxes (Vulpes vulpes) 
had larger home ranges and travelled farther from their 
release site than wild individuals, which was attributed 
to captivity causing territorial displacement [135]. To 
address this, future research could look at interactions 
among rehabilitated and non-rehabilitated koalas in the 
same landscape to better understand their social dynam-
ics, particularly when male–female and male-male inter-
actions are likely to be high, such as during the breeding 
season [142]. This could guide more effective manage-
ment of rescued koalas and aid rehabilitation and release 
practices.

Despite the greater distance moved and larger area 
used by rehabilitated individuals, measured health 
parameters were similar between koalas in all groups 
throughout the study [64]. Furthermore, there was no 
change in the chlamydia status of individuals (a disease 
which can be triggered by stress; [145]), and koalas in all 
groups improved in body condition over the study time-
frame and had high rates of survival [64]. This suggests 
that any costs associated with moving away from release 
locations did not have substantial longer-term (i.e. at 
nine months post-release) effects on the health of indi-
viduals. In combination with our findings, there is strong 
evidence from multiple studies that rehabilitated koalas 
are capable of integrating back into the landscape, includ-
ing when it is burnt, and they can successfully form home 
ranges, although they may initially need to move farther 
from their release site to re-establish their territory [48, 
74, 88].

Based on our findings, koalas in fire-affected land-
scapes that are injured or in poor body condition should 
be taken into care, but otherwise, uninjured koalas 
should be allowed to remain in burnt landscapes, as long 
as some browse is available. For animals that are taken 
into care, our study demonstrates that rehabilitated indi-
viduals can be safely released at their rescue location 
rather than moving them to areas that are less disturbed, 
a practice that is sometimes undertaken [74]. Our find-
ings should give wildlife carers confidence that reha-
bilitated koalas can be successfully released into burnt 

habitat, and to incorporate this practice into release pol-
icy. More research like this is needed across the range of 
the koala, since tree species composition can have sub-
stantial effects on food quality for koalas before and after 
fire [65]. In addition, climatic conditions can vary consid-
erably across the koala’s large distribution and reduced 
canopy cover after fire may impact thermoregulation 
more substantially in some regions than others. The 
ability to develop region specific guidelines would assist 
policy-makers, landscape managers and the wildlife care 
sector to more effectively conserve koalas and their hab-
itat in the face of increasingly severe and frequent fires 
from anthropogenic climate change [116].

Challenges of interpreting animal movements
Studying animal movements and interpreting the out-
comes of home range analyses can be challenging, as 
many animal species do not use their home range, or 
move, in a uniform way [52]. It is often assumed that 
animal movement data captured at a particular time 
adequately reflects normal behaviour, however it fails 
to recognise dispersal and shifts in habitat use due to 
changes in the landscape and environmental conditions 
[108]. Core home range measurements (i.e., 50% KUD in 
our study) focus on where animals spend the majority of 
their time, and they remove longer and more directional 
movements that are considered for the 95% KUD. We 
observed that many of the rehabilitated koalas gradually 
moved away from their release sites until they remained 
in one area more consistently. These gradual directional 
movements were captured in the 95% KUD, whereas the 
50% KUD was more concentrated around the area where 
koalas completed the study (see Fig. 2).

Similar to some of the koalas in our study, Ream et al. 
[115] observed a lone female wolf dispersing a large dis-
tance and then settling into a well-defined home range, 
and intensively using two core areas. Spencer [130] sug-
gested that the reason for this type of behaviour may sim-
ply be exploration that resulted in finding a good place to 
stay and settle down. While our KUD analyses represent 
the area used by koalas over the study period, the move-
ments of some koalas (e.g. moving from unburnt to burnt 
habitat or dispersing after release from rehabilitation) 
may not be typical of home range use and extent at other 
times. Researchers should be mindful of these issues 
when interpreting the output from home range analyses 
[43, 67, 151]. In addition, end users, such as policy mak-
ers and conservation practitioners, need to use caution 
when translating this type of output into management 
recommendations. For example, there may be limited 
value in using “home range” size from rehabilitated koa-
las to understand the typical amount of area needed to 
support koalas in the Monaro region.
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Our study, like many tracking studies, was restricted in 
scope by the logistical limitations of tracking many dif-
ferent individual animals across rugged terrain [123]. 
However, a larger number in each group would have pro-
vided more statistical power, particularly given the large 
variation between koalas in core home range sizes in our 
study area (5 ha to 280 ha). The “trend” observed in 50% 
KUD between rehabilitated and non-rehabilitated koa-
las (p = 0.07) may have been significant with additional 
data. Notably, the variation that we observed between 
individual koala home ranges is not unusual and similar 
variability has been reported in other koala tracking stud-
ies [6, 39, 41, 69, 85, 88]. This demonstrates that, in any 
study, there is a need to consider how large variations in 
movement behaviour between animals might influence 
the capacity to address project aims when selecting the 
number of individuals to monitor.

Other findings
Other studies have found that movement parameters dif-
fer between males and females [30, 88, 120]. We found 
that male koalas moved farther each night on average 
than females, particularly during spring and summer. 
This is likely because spring and summer are the breeding 
season for koalas [70]. Male koalas also often have larger 
home ranges than females [41, 66, 88, 148] and tend to 
disperse farther [28]. In our study, home range sizes were 
similar between the sexes, and the longest movements or 
dispersals away from the release site were undertaken by 
females. This demonstrates that variability in movements 
is not explained by sex alone, but also by differences 
between individuals.

The home ranges observed in this population were gen-
erally larger than other studied koala populations. Other 
studies in NSW have reported home range sizes ranging 
from 4.9 to 58.9 ha using the fixed kernel method (FK) at 
95% [48, 61, 66, 88], which is considerably smaller than 
the 95% KUD reported for the non-rehabilitated koa-
las in our study (250.8 hectares in the burnt and 194.7 
hectares in the unburnt). Some studies in Queensland, 
however, have reported larger home ranges, including up 
to 135 ha in Blair Athol [39]. It is important to acknowl-
edge that home range size estimates will vary depend-
ing on the method or technique used. Kernel methods 
are used to calculate utilisation distributions (i.e. distri-
bution of an animal’s position) by smoothing locational 
data and creating a density estimate [137, 152], and are 
thought to be more accurate measures compared to 
minimum convex polygons (MCPs) and the harmonic 
mean [36, 151, 153]. MCPs are thought to either under- 
or over-estimate home range size, depending on sample 
size [36] and over-estimates have also been documented 
for the harmonic mean [96]. For example, Goldingay and 

Dobner [48] found larger home ranges when using MCPs 
(e.g., average of 37.4 ha compared to the 8 ha at FK 95%). 
Despite this, it is likely that the larger home ranges and 
movement distances in our study are not just an artefact 
of using different home range methodologies, but dem-
onstrate that some koalas in the NSW Monaro use larger 
areas than koalas that have been studied elsewhere.

There are a number of reasons why home range sizes 
differ between populations in other mammal species. 
These include differences in the availability of resources 
[126], disturbance [101], environmental conditions (such 
as rainfall; [28]) and population densities [46, 124], with 
populations at lower density having larger home ranges 
than areas with higher densities [10]. Several of these fac-
tors likely contribute to the larger home ranges of koalas 
recorded in our study. For example, the Snowy Monaro 
region has a relatively low density koala population com-
pared to some other areas, with Cristescu et al. [26] esti-
mating 0.032 koalas per hectare in burnt habitat at Peak 
View, NSW and 0.041 koalas per hectare in unburnt 
habitat in Numeralla, NSW. Higher density populations 
in other parts of NSW are typically around 0.3 koalas per 
hectare [68], and can be much higher in other states (e.g., 
10.1–18.4 koalas per hectare recorded in Cape Otway, 
Victoria between 2011 and 2013; [147]). The quality of 
food resources may be lower or more dispersed in our 
study area compared to other areas [132]. However, this 
region is one of the few areas in Australia where koala 
populations appear to be stable rather than declining [3]. 
Our study provides the first information about the move-
ments and home ranges of this understudied population 
of koalas, which will assist with the development of local 
management plans.

Conclusions
Studies such as this one that document the movement 
ecology of species after fire play an important role in 
understanding the ecological implications of wildfire, and 
can help guide conservation efforts by evaluating how 
burnt landscapes are used. Incorporating an experimen-
tal design with “treatment” and “control” groups in the 
same study can help identify disturbance effects on ani-
mal movements and landscape use with more certainty 
than comparing data collected from different areas, with 
different populations and/or at different times. Our find-
ings fill important knowledge gaps about post-rehabil-
itation release success and the value of burnt habitat to 
rehabilitated and non-rehabilitated animals, and can 
assist with decisions about the rescue and release of wild-
life in burnt landscapes.

Encouragingly, despite the catastrophic wildfires of 
2019–2020, our study found that burnt woodlands in 
the Monaro region of the NSW Southern Tablelands 
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provided adequate resources for koalas to persist and 
recover, which is further supported by the high body 
condition of all koalas at the end of the study [64]. In 
addition, apart from habitat that burnt in the extreme 
category, koalas spent proportionally more time in burnt 
than unburnt areas within their home ranges. The rela-
tively mild conditions and higher than average rainfall 
from multiple years of La Niña after the fires also may 
have contributed positively to landscape and wildlife 
recovery. With wildfires predicted to increase in fre-
quency and severity worldwide in response to climate 
change [60], the success of wildlife management and 
conservation efforts will likely depend on improving our 
understanding of the ecological impacts of fire on species 
and their habitats [122].
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