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Abstract

The permeability of the nicotinic channel (nAChR) at the ganglionic synapse has been examined, in the intact rat superior
cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC) I–V relationship.
Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh), were thus analyzed in an intact environment as
natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from 240 to 290 mV)
resulted in a change of the synaptic potassium/sodium permeability ratio (PK/PNa) from 1.40 to 0.92, corresponding to a
reversible shift of the apparent acetylcholine equilibrium potential, EACh, by about +10 mV. The effect was accompanied by
a decrease of the peak synaptic conductance (gsyn) and of the EPSC decay time constant. Reduction of [Cl2]o to 18 mM
resulted in a change of PK/PNa from 1.57 (control) to 2.26, associated with a reversible shift of EACh by about 210 mV.
Application of 200 nM aBgTx evoked PK/PNa and gsyn modifications similar to those observed in reduced [Cl2]o. The two
treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current
before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not
be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that
the driving force modification of the EPSC due to PK/PNa changes represent an additional powerful integrative mechanism
of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased
chloride gradient (membrane hyperpolarization), while it was increased, moving towards a channel preferentially permeable
for potassium, when the chloride gradient was reduced.
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Introduction

Nicotinic receptors (nAChR) are perhaps the most thoroughly

characterized family of ligand-gated ion channels. The muscular

subtypes are easily studied at the intact neuromuscular prepara-

tion, and the differential properties of the mature junctional

nAChR vs. the extrajunctional or embryonic subtype have been

precisely defined. In contrast, neuronal nAChRs occur in a variety

of subtypes and information on their selective localization, at the

postsynaptic site or in other regions of the neuronal plasmalemma,

are scarce and contradictory. Similarly ill-defined are the

biophysical properties of the native nAChR subtypes, and whether

differences may occur between the subsynaptic and extrasynaptic

receptors in terms of response to acetylcholine and agonist or

antagonist compounds.

The precise structural motifs that determine the relative

permeability to the various cation species have been intensely

studied. The first report of a nicotinic channel with modified

permeability regarded a mutated a7 homomeric nAChR [1].

Subsequently, point mutations of single subunits were shown to be

able to decrease or increase cation selectivity of nAChR channels

(see, for example, reviews by Skok [2] and Keramidas et al. [3]). In

those experiments, mostly performed by heterologous expression

of cloned receptors, a structural modification had to be produced

in the channel protein to induce significant changes in selectivity.

The nAChR is also known to be regulated by protein

phosphorylation of its cytoplasmic domains by protein kinases,

which phosphorylate this receptor at distinct sites [4]; however,

phosphorylation altered the kinetics of receptor desensitization,

but in no case it appeared to affect the permeation properties of

the channel [5], [6], [7], [8].

In general, little is known about possible changes in neuronal

channel selectivity among cations, and none of the usual

experimental approaches could reveal anything about the

important question whether subsynaptic or extrasynaptic nAChRs

were different functional entities.

We recently reported that the properties of the subsynaptic

native nAChRs, in response to the physiologically released ACh,

are modified within a few hours after denervation of the rat

postganglionic neuron [9]. In particular, the current-voltage

relations for EPSCs indicated a change in nAChR ion selectivity,

suggestive of a switch from a cationic channel preferably

permeable to potassium ions to a pore with no selectivity between

the two ions; the extrasynaptic receptor properties were insensitive

to denervation. Those observations warned about the importance

of selecting the appropriate subpopulation of receptors, in order to
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be able to extract information relevant to physiology; on the other

hand, they pointed out an unexpected flexibility of the nicotinic

channel in its permeation properties.

Here we report the analysis of simple experimental conditions,

which are unable to acutely produce any change in nAChR

subunit composition. Shifts of the resting membrane potential

within a voltage range of physiological interest, ionic modifications

and the action of specific toxins, however, are shown to be

accompanied in intact sympathetic ganglia by changes of the

nAChR selectivity, which may significantly control the efficiency

of synaptic transmission. On the other hand, the molecular

mechanisms by which the binding of a toxin, or simple changes in

chloride concentrations, induce such functional changes remain

elusive.

Methods

General procedures
Electrophysiological experiments were performed on superior

cervical ganglia isolated from rats (120–250 g body weight) during

urethane anesthesia (1–1.5 g kg21; I.P. injection) and maintained

in vitro at 37uC. After surgery, the animals were killed with an

overdose of anesthetic. The use and handling of animals was

approved by the Animal Care and Use Committee of the Ferrara

University (approval ID: 11214 of May 16, 2006). The ganglion,

dissected together with the sympathetic trunk, was desheathed and

pinned to the bottom of a chamber mounted on the stage of a

compound microscope; individual neurons were identified at a

magnification of 6500 by using diffraction interference optics.

Solutions and drugs
The preparation was continuously superfused with a medium

(mM: 136 NaCl, 5.6 KCl, 5 CaCl2, 1.2 MgCl2, 1.2 NaH2PO4,

14.3 NaHCO3, 5.5 glucose) pregassed with 95% O2-5% CO2 to a

final pH 7.3. Atropine sulfate (Sigma) 1026M was systematically

added to the saline. The nicotinic antagonists a-bungarotoxin

(aBgTx, Sigma), N,N,N-trimethyl-1-(4-trans-stilbenoxy)-2-propy-

lammonium iodide (F3) and methyllycaconitine citrate (MLA,

Tocris) were bath-applied by exchanging the normal saline with

drug-containing medium by means of a continuous rapid

perfusion system.

Electrophysiological recording and data acquisition
Neurons were impaled with two independent glass microelec-

trodes filled with neutralized 4 M potassium acetate (30–40 MV
resistance). Recordings were obtained under two-electrode

voltage-clamp conditions as described previously [10] using a

custom-made amplifier. The bath was grounded through an agar-

3 M KCl bridge.

[Cl2]o was reduced by substituting 136 mM Na-isethionate or

Na-benzenesulfonate for an isoosmolar amount of NaCl. The low-

chloride solutions were applied when both microelectrodes were

inside the neuron.

Impalement of the cell produces a change in liquid junction

potential at the electrode-solution interface which can be

estimated, under the present extra- and intracellular ionic

composition, to 22.46 mV. This correction should be applied to

all measurements. Furthermore, changes in intracellular and/or

extracellular chloride ions are expected to introduce shifts in such

diffusion potentials, respectively, at the microelectrode and

reference electrode interfaces. Considering all the conditions here

examined, the corrections which would be applied to measured

membrane potential hardly varied among the various conditions

(22.2 to 22.5 mV, 4 M K-acetate microelectrode), except low

external chloride (+0.04 mV). The variations were too small to

interfere with the reported effects, so the uncorrected measure-

ments are reported in the results (see Text S1 for the corrected

values and a detailed computation of liquid junction potentials at

the microelectrode and reference agar bridge).

Potentials arising between the bath and the reference agar-

bridge electrode were measured by comparing the potential of the

fresh 3 M KCl agar bridge with that of a broken-tip microelec-

trode filled with 3 M KCl [11]. Values of +1.160.4 mV after

5 min and of +2.460.3 mV after 10 min were measured following

isethionate replacement (n = 8), and of 20.960.3 mV in the

presence of benzenesulfonate (+1.460.2 mV after an additional

10 min wash in control saline; n = 6). A 5 min perfusion period

with the modified solution was usually sufficient to perform

complete liquid substitution in the chamber and the electrophys-

iological tests. The voltage shifts measured by the 3 M KCl

microelectrode thus suggest that the liquid junction potential at the

salt bridge was stable and too small to affect our results. Two

further checks were performed to exclude that chloride substitu-

tion might introduce artifacts in estimates of membrane potential.

The EPSC I–V relationship was evaluated in two experiments, in

which microelectrodes filled with 3 M KCl (instead of K-acetate)

and a reference electrode with a stable half-cell potential

essentially independent of electrolyte concentration (Super-Dri-

Ref SDR2, WPI) were used. Finally, a functional test was

performed by measuring the peak amplitude of the delayed

potassium current in the 230/210 mV range, over which the

voltage dependence of the I–V curve becomes steep. In this

voltage region, in fact, about 8 mV are sufficient to change by e-

fold the steady-state activation variable n‘ (according to our

previous Hodgkin-Huxley-type analysis of the ganglionic delayed

potassium current). When [Cl2]o was modified the potassium

current amplitudes were found unchanged (31.262.3 vs.

32.562.9 nA at 210 mV; n = 5). The portion of the K+ I–V

curve above 230 mV was thus insensitive to external chloride

reduction, ruling out both the presence of any systematic voltage

shift due to external anionic modification, and marked changes in

internal K+ concentration.

In order to activate the preganglionic input, single supramax-

imal current pulses of 0.3 ms duration were applied to the cervical

sympathetic trunk through a fine suction electrode, positioned

close to the caudal pole of the ganglion. Each I–V curve was built

by applying a cycle of command voltage steps (0.1 Hz, 200 ms

duration, test potential in the 230/2100 mV range) to the post-

synaptic membrane and delivering one preganglionic pulse 30–

40 ms after the onset of each voltage step. The EPSC ensued and

developed its whole time course when any other ionic current,

possibly activated by the voltage step, should have settled to the

new level corresponding to the command voltage. The only

rapidly transient current, which might contaminate the EPSC time

course, when the holding potential was 290 mV, is IA; however,

the time interval between the voltage step onset and ACh release

was sufficiently long to allow complete IA inactivation by the time

the EPSC was evoked. After each step, the postsynaptic membrane

potential was returned to 250 mV, or to a different holding

potential when specified. Large synaptic currents could be

recorded with good control of the membrane potential at any

tested voltage [15]. From the EPSCs recorded at the different

command potentials the I–V relationship was derived and the

ACh reversal potential (EACh) that prevailed over the range of

physiological membrane potential values here considered (230/

2100 mV) was estimated by extrapolating the Goldman current

equation fitted to the whole data set (see below).

Dynamic Ionic Selectivity at a Ganglionic Synapse
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Normal saline made hypertonic by the addition of 0.37 M

sucrose (final osmolality 718 mosm/kg), or K+-enriched solutions

(final [K+]o = 35 mM) were used to increase the presynaptic

release of quantal events. Long-lasting tracings containing

randomly occurring miniature potentials (mEPSPs) were recorded

continuously on a digital recorder (Biologic, DTR-1200; 0–

10 kHz) under two-electrode current-clamp conditions; the post-

synaptic membrane potential was held at 250 mV by passing

current through the current electrode and switched to different

steady levels, in random sequence, for periods of 20–60 s,

separated by at least 2 min rest at 250 mV. Subsequently, the

recordings were sampled at 10 kHz and analysed off-line.

Tracings were filtered at 5 kHz with an 8-pole Bessel filter,

digitized at 10 kHz with a 12-bit analog-to-digital interface

(Digidata 1200A operated by pCLAMP software, Axon Instru-

ments) and stored on disk for future analysis with pCLAMP

(version 5.5; Axon Instruments, Union City, CA) and MATLAB

5.0 (The MathWorks, Natick, MA) software packages.

General data analysis
The relative permeability of the cations carrying the synaptic

current is usually evaluated by using the Goldman equation and

measuring the shift of the current reversal potential following

changes of single ion concentrations. Considering the possible

inaccuracy in the evaluation of the permeability ratios from a

single extrapolated value, we have preferred to examine the

permeability of the ions generating the macroscopic EPSC by

fitting the Goldman equation to the measured synaptic current-

voltage relations over the entire voltage range available (usually

the 230/2100 mV range). We have recently shown that the

calcium permeability does not contribute significantly to the

synaptic reversal potential in the range 0.1–8 mM external Ca2+,

and that the calcium current fraction in the EPSC genesis is

quantitatively too small to affect, by omitting it, any of the derived

conclusions [9]. Thus, the EPSC has been considered

as ISyn = INa+IK, and the current carried by each single

monovalent cation (‘‘x’’) given by the equation:

Ix~
F2PxV

RT
: X½ �o{ X½ �ieFV=RT

1{eFV=RT
, with Px indicating the perme-

ability of ion ‘‘x’’.

Experimental data have been fitted by minimizing the sum of

the square of the errors to provide the absolute value of potassium

(PK) and sodium permeability (PNa) for synaptic macrocurrents;

the resulting PK/PNa ratio, which is independent of the number of

channels and size of the cell, was computed and compared among

the various experimental conditions. The corresponding virtual

equilibrium potential, EACh, is also reported as it may be more

directly informative. The nicotinic current evoked by the native

ACh in neurons of intact amphibian [12], [13] or mammalian

[14], [15] sympathetic ganglia exhibits rectification only at positive

membrane potentials. However, we did not explore membrane

potentials positive to 220 mV because in that region delayed

potassium currents significantly interfere with the measurements.

Actually, the I–V curves are perfectly fit by the Goldman current

equation in the 2100/230 mV range using only two free

parameters (total cell nAChR conductance for Na+ and for K+)

and what we refer to as virtual EACh merely is a value

mathematically derived from PK/PNa, which is not affected by

possible departures of the channel behavior from the Goldman

model at more positive potentials. Constant [Na+]i = 32 mM and

[K+]i = 190 mM were assumed (see Discussion).

The differences among experimental conditions were examined

by one or two-way ANOVA. Values of F and P are reported in the

text for treatment effect. In the figures, data are reported by

pooling the results obtained from several cells under each

experimental condition. Average values and SEM are plotted for

each condition.

Results

The intact and mature rat sympathetic neuron in vitro is used to

analyze the basic effects of the naturally released ACh. The good

voltage control of the postsynaptic neuron, typically obtained with

the two-microelectrode technique, provides reliable EPSC I–V

curves, which make possible to perform a biophysical analysis of

the permeation properties of the subsynaptic channels that

generate the macroscopic synaptic current. The relatively slow

changes (over several minutes) produced in cation selectivity by

simple treatments, such as membrane potential migration, changes

in external chloride composition and aBgTx application, in the

absence of any structural channel modification, challenge the

conventional view of a stable behavior of the synaptic channel

ionic selectivity.

Effect of membrane potential on EPSC properties
The I–V curve of EPSCs elicited over the 230/2100 mV

voltage range has been measured in neurons held at 240 mV

(VH-40); each neuron was thereafter brought to and held at

290 mV for at least 3 min (VH-90), and the pulse sequence was

repeated from this new holding level; a third trial was performed

after returning to 240 mV (VH-40R). Typical EPSC families

recorded in the same neuron, starting from the two holding

potentials, are illustrated in Figure 1A; the mean peak EPSC

amplitude measured in a 10-neuron sample is plotted in Figure 1B

against the membrane level at which synaptic currents were

evoked. Both EPSC amplitude and relative slope of the I–V curve

were affected by increased membrane negativity: the PK/PNa ratio

decreased from 1.4060.13 at VH-40 to 0.9260.10 at VH-90, the

mean virtual EACh shifted from 215.761.0 mV to

25.962.0 mV, while the mean synaptic conductance, gsyn

(evaluated from the slope of the I–V relationship), decreased from

0.4860.4 mS to 0.3860.5 mS. The entire 240/290/240 mV

cycle was tested in 5 neurons to demonstrate that the voltage

effects were reversible after the steady-state was regained at the

starting membrane potential (214.361.7, 24.263.8,

216.261.6 mV for the EACh at VH-40, VH-90 and VH-40R,

respectively; 0.5360.06, 0.4460.01, 0.5360.08 mS for gsyn).

The modifications in PK/PNa ratio were quite slow: minutes

were required for its settlement, at any new holding potential. The

shifts in the corresponding virtual EACh followed an exponential

time course upon depolarization to 240 mV (mean time constant

of 3.2 min, n = 5), and were virtually complete within 4–5 min

when the neuron was hyperpolarized to 290 mV.

The brief conduction time in preganglionic fibers results in a

quasi synchronous ACh release at the presynaptic terminals

following stimulation, so that the EPSC time course is strictly

related to the interaction of ACh with the nicotinic receptors. The

synaptic current onset was not sensitive to the postganglionic

membrane potential (either holding or test potentials) and the

EPSC time-to-peak remained remarkably constant at 2.160.1 ms

(n = 11). The synaptic current decay was described by a single

exponential function of time with a mild voltage dependence on

command voltage. The EPSC decay time constant, but not its

voltage dependence on the command potential, was sensitive to

the holding potential. The average decay constant significantly

decreased when currents were elicited from hyperpolarized

neurons: the mean time constants in neurons held at 240 mV

were 6.360.5 and 8.260.6 ms for 240 mV and 290 mV

Dynamic Ionic Selectivity at a Ganglionic Synapse
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command potentials, respectively, whereas in neurons held at

290 mV the corresponding values were 4.860.4 and 6.460.5 ms

(n = 10). Since the decay time constant reflects the mean open time

of the nicotinic channel, its modifications affect the overall

synaptic charge. In fact, while the peak synaptic current, given

the existing density of receptors, mostly depends on the magnitude

of synchronous quantal emission and the driving force for the

permeable ion species, the total synaptic charge is also affected by

the time the nicotinic channel remains open. This offers an

alternative approach to estimate the driving force and EACh. The

current through the receptor was thus evaluated from the same

current tracings as in Figure 1B by computing the ratio synaptic-

charge/tEPSC and plotted versus the test potential. These new null

point estimates (np-40mV = 217.6 mV; np-90mV = +0.4 mV) were

very similar to those extracted from the EPSC peak amplitudes in

Figure 1B. The voltage effect on the synaptic-charge/voltage curve

proved to be fully reversible (n = 4). A similar analysis is applied in

Figure 2C to a different neuron sample.

Fitting of the series of I–V curves obtained in VH-40 neurons

provided the following mean values of absolute permeability per

neuron: PK = 0.984 fl/s and PNa = 0.701 fl/s, suggesting a perme-

ability ratio PK/PNa = 1.4060.13 (n = 10). The observed changes

Figure 1. Effect of holding potential on EPSC properties. (A). Representative tracings showing the effect of voltage on the EPSC I–V
relationship in a neuron maintained at 240 (a) or 290 mV (b) holding potential. EPSCs were evoked in either case at test command potentials over
the same 230/2100 mV membrane potential range in 10 mV steps. Peak EPSC amplitude of the tracings was fitted by the Goldman current equation
over the whole voltage range tested, providing an estimate of EACh as derived from the PK/PNa ratio (214.5 mV for VH-40 and +3.1 mV for VH-90). (B).
Mean I–V relationship for peak EPSC amplitude. Data from 10 neurons held at 240 (filled circles) and subsequently at 290 mV (open circles) holding
potential. Analysis indicates a shift of the mean PK/PNa ratio from 1.4060.13 (VH-40) to 0.9260.10 (VH-90).
doi:10.1371/journal.pone.0017318.g001
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in the I–V curves and shift in null potential in the same neurons

held at VH-90 would be accounted for by a change of the PK/PNa

value to 0.9260.10 (PK = 0.582 fl/s and PNa = 0.632 fl/s). Mod-

ifications due to voltage would thus mainly involve the potassium

channel permeability.

Statistical analysis confirmed that the PK/PNa estimates

evaluated in single neurons, at VH-40 vs. VH-90, were

significantly different (P,0.01, paired Student’s t-test). A similar

difference was observed in the mean EACh values (P,0.01, paired

Student’s t-test) in neurons maintained at the two holding

potentials. Two-way ANOVA demonstrated that the EPSC decay

time constant values changed significantly from VH-40 to VH-90

(F = 48.8, P,0.01) and displayed a significant voltage dependence

(F = 12.2, P,0.01), which did not appear to change in the two

conditions (F = 0.1).

Effects of [Cl2]o modifications
The very slow time course of the observed voltage-dependent

changes in channel properties suggests that the action of the

holding potential may be mediated by some slow processes. In the

sympathetic neuron, modifications in membrane potential level

are accompanied by a chloride ion redistribution, which develops

with a time constant in the 20–40 s range [16], and may therefore

constitute a good candidate as a process that drives the observed

slow changes in AChR properties. In sympathetic ganglia, the

reversal potential of the nicotinic current is considered to depend

on the transmembrane gradient of sodium and potassium ions,

and to be insensitive to chloride ions [17], [18]. Thus, we have re-

examined the possibility that chloride might interfere with nAChR

channel operation, by changing external chloride concentration.

Data were obtained in 10 neurons after substituting 136 mM of

either Na-isethionate (n = 7) or Na-benzenesulfonate for an

isoosmotic amount of NaCl. Results were similar and are

cumulatively presented in Figure 2A. The ionic manipulation

systematically decreased EPSC amplitudes and slopes of the I–V

curves, generated a 29.761.3 mV shift in virtual EACh and a

19.262.3% decrease in gsyn (P,0.001 for differences in both data

groups, paired Student’s t-test). These effects were reversible upon

washing (n = 5). The time-to-peak of the synaptic current was

unaffected by this ionic treatment, while the EPSC decay time

Figure 2. Effect of [Cl2]o modifications and of pharmacological treatments on EPSC I–V curves. (A). Mean I–V relationship of EPSCs
evoked before (circles) and after substitution of 136 mM isethionate for an isoosmotic amount of NaCl (squares). Analysis indicates a shift of the PK/
PNa ratio from 1.5760.09 to 2.2660.08 in low chloride solution. Peak amplitude difference values (triangles) are used to build the I–V curve of the
current cancelled by the treatment: note its largely positive equilibrium potential. (B). Effect of 200 nM aBgTx application. The I–V curves of the EPSC
peak amplitude before (circles) and after toxin treatment (squares) are shown. The difference current relationship (triangles) was drawn as in (A). (C).
The ratio EPSC-charge/EPSC-decay time constant is fitted against test potential (same data as in B). (D). Effect of the selective nicotinic antagonist F3
(10 mM; squares) vs. controls (circles); triangles show the corresponding difference plot of the EPSC amplitudes.
doi:10.1371/journal.pone.0017318.g002
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constant proved to be slightly but significantly reduced by the

decreased [Cl2]o (213% at 270 mV and 211% at 290 mV;

P,0.01 for both data groups, paired Student’s t-test).

The effects observed after chloride substitution might be

contributed to by a change in Ca2+ activity, due to Ca2+ binding

to the substituting anion. Isethionate, but not benzenesulphonate,

actually exhibits some Ca2+ binding activity [19]. A presynaptic

effect, i.e. reduced Ca2+-dependent quantal emission, might

sustain the decreased EPSC amplitude shown in Figure 2A, but

not the associated selectivity change of the synaptic channel (see

below).

When [Cl2]o was reduced to 18 mM, the typical dependence of

EACh on holding potential, described in the preceding paragraphs,

was cancelled. In 4 neurons exposed to 136 mM Na-isethionate

the EACh was 222.863.9 mV at VH-40 and 223.563.8 mV at

VH-90 (as opposed to a VH-40/VH-90 shift of about 10 mV in

normal saline).

The EPSC amplitude decrease, systematically observed in

chloride-deprived solutions, suggests that chloride omission may

cancel a component of the synaptic current. When the difference

in EPSC amplitude, before and after ionic modification, is plotted

vs. membrane potential, a strongly positive null potential

(+24.0 mV) is obtained for this difference current (Fig. 2A). In

principle, this result might be due to an ill-defined participation of

the chloride current to the overall synaptic current, or to a

modification of the permeability of the nicotinic channel. We

utilized the Goldman model, initially based on the pure cationic

nature of the EPSC, to examine the unconventional possibility of

EPSC being carried also by a chloride current component

(EPSC = INa+IK+ICl). Under this hypothesis, the equation describ-

ing the current carried by monovalent ion species X can be

rewritten as Ix~
F2PxV

RT
: Inx{OwxeFV=RT

1{eFV=RT
where Inx~ X½ �o

Owx~ X½ �i for a cation, and Inx~ X½ �i, Owx~ X½ �o for chloride

ion; the EPSC is predicted by the equation

I~
F2V

RT
:
P

Px Inx{OwxeFV=RT
� �

1{eFV=RT
, and the difference current,

DI, between the EPSC in normal Ringer’s and the EPSC in {0-

Cl}, is simply given by DI~
F2PClV

RT
: Cl{½ �oeFV=RT

eFV=RT{1
. This

formula necessarily (and obviously) yields a positive value, i.e. an

outward current (it corresponds to the Cl– inflow that has been

abolished). Actually, the difference current was negative (Fig. 2A),

and fitting this hypothesis would lead to a negative estimate of

PCl<–0.2 pl/s for nAChRs. We therefore definitively discarded

the hypothesis of chloride permeation through the nAChR

channel.

The synaptic current was thus considered as cationic in nature,

with the important complement that [Cl2]o/[Cl2]i controls the

permeability and ion selectivity of the nicotinic channel. The

numerical solution of the fit of the experimental data, based on this

assumption, is that the PK/PNa ratio = 1.5760.09 with

[Cl2]o = 154 mM (PK = 2.162 fl/s and PNa = 1.361 fl/s) becomes

2.2660.08 with [Cl2]o = 18 mM (PK = 2.229 fl/s and

PNa = 0.977 fl/s; n = 10). These PK/PNa estimates are significantly

different (P,0.001, paired Student’s t-test). The [Cl2]o

–dependent changes of the synaptic channel would thus mainly

involve the sodium permeability.

EPSC properties after pharmacological treatments
The synaptic macrocurrent in the sympathetic ganglion may

arise from a mix of different nicotinic channels, with different

subunit composition and functional properties [20]. The shift of

the EACh toward a negative membrane potential following ionic

modification might arise from a selection among them, due to

differential sensitivity to the ionic composition. The rat sympa-

thetic neurons actually express an aBgTx-sensitive nAChR which

is likely to incorporate the a7 subunit to yield channels of

unusually high Ca2+ permeability. This receptor type might carry

a current with a positive null potential, that, when cancelled, might

justify a negative shift of the EPSC null potential.

We have tested the effect of 200 nM aBgTx at the ganglionic

synapse. Data obtained from 7 neurons are illustrated in Figure 2B.

Toxin application (for at least 5 min, while the neuron was

maintained at 250 mV holding potential) resulted in an evident

decrease of the EPSC amplitudes accompanied by modification of

the slope of the EPSC I–V curve; the mean EACh changed by

212.662.8 mV and gsyn by 212.863.1%. These estimates were

confirmed when the EPSC synaptic-charge/tEPSC parameter in

the same neurons was plotted versus the test potential (Fig. 2C).

The EPSC decay remained monoexponential in the presence of

the toxin; the decay time constant was significantly reduced

compared with controls (223.2% at 240 mV; 216.1% at

270 mV), by amounts similar to those observed in the low

[Cl2]o experiments.

The I–V of the difference current, and synaptic charge, before

and after aBgTx treatment exhibited a reduced slope (Fig. 2B,

triangles) suggesting a largely positive null point (+63.3 to

+75.3 mV), as if a current fraction with a strongly positive

equilibrium potential were blocked by the toxin. To examine the

possibility that aBgTx selectively blocked a subpopulation of

channels, other blockers were tested.

The 4-oxystilbene derivate F3 has a high selectivity for neuronal

nicotinic aBgTx receptors containing the a7 subunit, in chick, and

low activity against brain-type nAChRs [21]. In mammals it is also

active on non-a7-containing receptors, but it retains selectivity for

a7-containing receptors (IC50<1 nM for rat homomeric a7

receptors expressed in Xenopus oocytes) [22]. The data obtained

from 6 neurons exposed to 10 mM F3 are illustrated in Figure 2D.

The drug reduced the mean gsyn by 36% without any effect on the

EACh, suggesting that a subpopulation of channels is presumably

blocked, but unblocked channels retain their normal selectivity

properties. Similar results were obtained using a specific antagonist

for a7-containing neuronal nicotinic receptors, methyllycaconitine

(MLA): 10 nM MLA applied to the bath did not noticeably affect

EACh (a mean difference of 20.9 mV; n = 4), while gsyn decreased

by a statistically not significant 10.8%. These results rule out the

hypothesis that the aBgTx action on the ganglionic synaptic

current might arise from selective blockade of an a7-dependent

calcium current fraction and point to a specific effect of aBgTx on

the selectivity properties of the subsynaptic nAChR channel.

Manipulation of [Cl2]o or of the nicotinic receptor by aBgTx

resulted in phenomenologically similar modifications of the

synaptic current, since both treatments similarly affected both

channel permeation and kinetics. We verified the possible

interactions between the two treatments by applying sequentially

and cumulatively, in either order, the chloride reduction (136 mM

Na-isethionate substitution for NaCl) and 200 nM aBgTx. Data

from 6 neurons, in which the isethionate-solution was followed by

the aBgTx application, are presented in Figure 3 and Table 1.

The same table also reports the results of the mirror experiment, in

which the aBgTx treatment was followed by the [Cl2]o reduction

(n = 7). The effects appear to be partly overlapping and

complementary. By comparing the data from the two experiments,

the following conclusions can be drawn: 1) aBgTx or external

chloride reduction modify the nicotinic cationic selectivity to

approximately the same extent (PK/PNa ratios move from 1.5 to
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about 2.2); 2) once the permeability properties of the channel are

modified by either aBgTx or isethionate, the subsequent

application of the second treatment (isethionate or aBgTx) does

not further modify the channel properties significantly, indicating

mutual occlusion of the effects; 3) the effects on gsyn are instead

additive: external chloride reduction decreases the momentary

available gsyn by the same amount (about 220%), independently

of the application order; the same holds true for aBgTx (about

210%); 4) the ultimate cumulative effect (both in terms of cation

selectivity and total conductance) is quantitatively the same,

independent of the order in which the two treatments are applied.

Statistical analysis (one-way ANOVA) of the PK/PNa data

presented in Table 1 confirmed the difference between groups

(F = 18.12, P,0.01) and the marked increase in the permeability

ratio (about 46%, 95%-CL = 27–64%) produced by aBgTx and

thereafter by aBgTx plus isethionate (about 56%, 95%-CL = 38–

74%). The difference between the two treatments did not reach

statistical significance. Essentially the same statistical results were

obtained when the order of treatment application was inverted

and isethionate was applied first.

mEPSPs under current-clamp conditions
The accuracy of the present EPSC I–V curves is based on the

assumption that a constant amount of ACh is released by each

supramaximal preganglionic stimulus. In principle, the assump-

tion is tenable, based on the observation that the ACh volley

Figure 3. Cumulative effects of aBgTx application and [Cl2]o reduction. (A). I–V relationship of EPSC peak amplitude in control (filled circles;
PK/PNa ratio = 1.5260.11), after 200 nM aBgTx application (squares; PK/PNa ratio = 2.2260.13) and after cumulative isethionate replacement (open
circles; PK/PNa ratio = 2.3860.07), substituting for 136 mM NaCl. Goldman equation curves are fitted to the mean values from the same 6-neuron
pool. (B). I–V curves of the difference currents showing the effect of aBgTx (filled triangles; note the largely positive equilibrium potential) and of the
subsequent application of the low-chloride solution in the presence of the toxin (open triangles). Control values (circles) and the EPSC peak
amplitudes generating the difference currents are the same as in (A). Zero crossing points of the fits indicate the corresponding EACh estimates.
doi:10.1371/journal.pone.0017318.g003

Table 1. Modifications of EACh, gsyn and the permeability ratio PK/PNa after subsequent application, in either order, of 200 nM
aBgTx and 136 mM isethionate (substituting for an isoosmotic amount of NaCl).

Control (n = 6) aBgTx aBgTx+isethionate Cumulative effect*

gsyn 100% D29.562.6% D221.861.6% D229.2%

EACh 215.661.4 mV D29.562.4 mV D21.861.0 mV D211.3 mV

PK/PNa 1.5260.11 2.2260.13 2.3860.07

Control (n = 7) isethionate isethionate+aBgTx Cumulative effect*

gsyn 100% D219.262.2% D211.863.8% D228.7%

EACh 216.261.3 mV D29.761.3 mV D21.961.4 mV D211.6 mV

PK/PNa 1.5760.09 2.2660.08 2.4260.11

*with respect to control.
Values are means 6 SEM.
doi:10.1371/journal.pone.0017318.t001
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output and the overall EPSC amplitude and properties remain

reasonably constant over time. Nonetheless, the EPSC is

intrinsically a compound phenomenon, strictly related to the

summed effect of quantal transmitter packets, whose single size is

not readily measurable. We tested whether some of the results

described under voltage-clamp conditions would be confirmed

under current-clamp, considering the single quantal units, the

mEPSPs. Current clamp was preferred because of the large

intrinsic noise of the two-electrode voltage-clamp technique,

which makes the analysis of the small unitary currents inaccurate.

Application of solutions made hyperosmotic (with sucrose; final

value: 718 mosmol/kg; n = 4) or with increased [K+]o (35 mM;

n = 6) raised the otherwise negligible mEPSP emission rate. A

sequence of mEPSPs was recorded while injecting current so to

drive the membrane potential for short periods (20–60 s) at

various levels in the 230/2100 mV voltage range, in random

sequence and more than once, when possible, in the same

experiment, from a holding potential of 250 mV. After each

episode, the neuron was returned and maintained at 250 mV for

2 min before applying the subsequent voltage step; the voltage-

dependent [Cl2]i shifts, which obligatorily accompany membrane

potential migrations [16], were thus minimized. Quantal emission

rate was constant, independent of the type of stimulation and of

the postsynaptic membrane potential level; it was higher in the

K+-enriched solution (30–65 mEPSP/s) than in hyperosmotic

conditions (27–32 mEPSP/s). Typical recordings at two different

test potentials are shown in Figure 4A, together with the mEPSP

amplitude and interval distributions (Fig. 4B and C). The mean

amplitude varied almost linearly with voltage (Fig. 4Ba,Ca and

Fig. 5), as expected (the passive neuron properties are reasonably

constant over this voltage range, especially during short time

periods), and the random nature of the presynaptic release

mechanism was not affected by the postsynaptic membrane

potential (Fig. 4Bb and Cb). The current-voltage relations were

not fit with Goldman current equations under these conditions,

because the size of the mEPSP is not expected to be linear with

the conductance, especially as membrane potential approaches

the null potential. The comparisons were performed semi-

quantitatively by normalizing the values measured in each

experiment to the mean mEPSP amplitude at 290 mV and

fitting a linear regression curve. The dotted line in each panel of

Figure 5 displays the control EPSC I–V curve, similarly

normalized, as a visual control.

The normalized I–V curve of mEPSPs obtained in hyperos-

motic solution was virtually superimposable on the normalized I–

V curve of control EPSCs (Fig. 5A; n = 4). Conversely, when the

external potassium was raised to 35 mM, the mEPSP I–V curve

(Fig. 5B; n = 6) displayed a reduced slope, indicative of a

rightward shift of the null-point (more pronounced than expected

solely based on the increase in extracellular K+ concentration,

which should shift the null point by some 7 mV); in this

experiment the sodium complement was kept constant and KCl

was simply added to the normal saline, making it slightly

hypertonic (this is not expected to modify the synaptic null

potential, see above) and increasing the extracellular chloride

concentration by about 30 mM, which instead might shift the I–

V curve a few mV to the right. By reducing the [Cl2]o in the

solution enriched with potassium (isoosmotic substitution of

136 mM Na-isethionate for NaCl), the I–V curve moved back

towards the control. A typical experiment is illustrated in

Figure 5C. The negative shift of the EACh in low chloride

concentration, observed under voltage-clamp conditions, was

thus mirrored, at least qualitatively, by the behavior of the

mEPSP I–V relationship.

Simulation of the effects of a variable EACh

A computational model has been previously developed for the

action potential and, more generally, the electrical behavior of the

rat sympathetic neuron, based on a complex system in which five

voltage-dependent conductances and the activating synaptic

conductance coexist [23], [24]. The individual current compo-

nents are mathematically described, making the model flexible, in

that each of the variables can be controlled and modified. The

model was adapted to simulate the effects of the modification of

the EACh on the overall electrical behavior of the neuron. In

Figure 6A the computed value of the threshold synaptic

conductance required to evoke the action potential (gsyn*) is

represented, with the ideal neuron held at various membrane

potential values in the 250/290 mV range, and assuming a mean

EACh of 217 mV. At each voltage level, a positive-negative

10 mV shift of the synaptic equilibrium potential was simulated

and the new gsyn* values were estimated. A varying driving force of

the synaptic current resulted in relevant effects on neuron

excitability. For example, a 50% larger gsyn* was required to fire

the neuron held at 270 mV when EACh moved to 227 mV, while

a 26% lower gsyn* was sufficient to activate the same neuron

following EACh shift to 27 mV. The effect became increasingly

larger with increased membrane potential negativity. A comple-

mentary simulation is presented in Figure 6B, in which the EPSPs

evoked by a constant amount of ACh released onto an ideal

sympathetic neuron are computed, considering the null potential

migrations of the postsynaptic nicotinic receptors analyzed in

Figure 6A. The gsyn was arranged to generate an EPSP just close

to the firing threshold (Fig. 6Ba). Thereafter, the numerical value

of gsyn was maintained constant, but a 10 mV negative shift of

EACh was considered: the EPSP was reduced in amplitude and the

neuron response fell short from threshold (Fig. 6Bb). When the

EACh was set at 27 mV, the EPSP produced by the same gsyn

became sufficient to elicit the action potential (Fig. 6Bc).

Simulations confirmed that any action on the driving force of

the postsynaptic current, at constant presynaptic transmitter

release, resulted in relevant readjustment of the neuronal

excitability machinery. This process thus represents an additional

powerful integrative mechanism of neuron behavior.

Discussion

The present results suggest that the permeability of the native

nicotinic channel at the ganglionic synapse to the physiologically

permeant ion species – sodium and potassium – can be modified

by relatively simple manipulations, such as membrane voltage

history, anionic composition of the extracellular solution or toxin

application.

In particular, moving membrane potential from 240 mV to

290 mV produces a 34% decrease in PK/PNa ratio, with a 21%

decrease in cell synaptic conductance. Conversely, reducing

extracellular Cl– concentration from the physiological 154 mM

to 18 mM produces a 30–44% increase in PK/PNa, accompanied

by a 20% decrease in synaptic conductance; application of aBgTx

produces similar effects, i.e. a 46% increase in PK/PNa,

accompanied by a 10% decrease in conductance. The effects of

reduced extracellular chloride and aBgTx on the permeability

ratio are mutually occlusive, whereas their effects on permeability

are additive.

Although the population of nAChRs at the sympathetic neuron

may be comprised of several combinations of receptor subunits,

and it cannot be excluded that the composition of the subsynaptic

population of receptors may change under particular conditions, it

is very unlikely that the procedures here considered may produce
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such changes. Actually, it appears that the biophysical properties

of the channel itself, and in particular its selectivity for the various

cations, are influenced by the binding of toxins and the

concentration of (impermeant!) chloride ions at the inner and/or

outer mouth of the pore. The modified permeability properties of

the channel and the ensuing changes in functional null potential

result in significant modification of the synaptic current driving

force and magnitude, and are able to produce major effects on

neuronal excitability.

The role of membrane potential
In principle, the EPSC I–V relations might be affected by

voltage-dependent, slow changes in the concentrations of the

cations that carry the synaptic current. This would produce

changes in the driving forces across the channel and determine a

shift in reversal potential, which would be erroneously attributed

to a change in PK/PNa ratio. However, cation concentration

should change by a factor of 1.5 to shift the null point by 10 mV or

more.

As regards [K+]i in rat sympathetic ganglia, the subthreshold

potassium conductance (gK) is virtually constant at about 35 nS per

neuron over the 240/2120 mV voltage range [16]; it generates a

mean potassium current of about 1.7 nA at 240 mV. Tail-current

analysis indicates that this IK intensity has minimal effects on the

potassium equilibrium potential, EK (see Figure 2 in Belluzzi et al.

[25]), and therefore on intracellular K+ concentration. In principle,

outward K+ current should be lower at 290 mV than at 240 mV;

this might produce a slight increase in [K+]i with hyperpolarization,

and a consequent leftward shift of EACh, which is opposite to the

observed shift, illustrated in Figure 1B. Moreover, significant

changes in EK result in modification of the ion driving force, which

would be readily detected by considering the amplitude of the

voltage-activated potassium currents; I–V curves of evoked current

were actually insensitive to external anion modification, pointing to

small, if any, changes in [K+]i. Finally, the intracellular potassium

activity was measured in rat sympathetic neurons by using ion-

sensitive microelectrodes: it was found to be unaffected by

membrane potential movements in the 240/280 mV range

(Figure 1 in Ballanyi and Grafe [26]).

As concerns [Na+]i, hyperpolarization-induced elevation was

described in pyramidal neurons of mouse hippocampus [27] and

dopamine cells of the substantia nigra [28]. In both cases,

however, [Na+]i changes were blocked by cesium, and were

considered to be due to Na+ influx through the non selective Ih

Figure 5. mEPSP I–V curves are influenced by the impermeant chloride ion. (A). I–V relationship of mEPSPs recorded, under two-electrode
current clamp conditions at different holding potentials in the 240/290 mV range, in 4 neurons exposed to an external solution made hyperosmotic
(718 mosmol/kg) with 0.37 M sucrose. Quantum size was calculated in the different tracings as described in Figure 4B and C, and normalized to the
value measured at 290 mV (290 mV mean value = 1.660.2 mV). The I–V curve of EPSPs (continuous line) was virtually superimposable to the
normalized I–V curve of control EPSCs (dotted line; same data, normalized, as in Figure 1B). Hypertonicity does not seem to affect the I–V relation. (B).
mEPSP I–V relationship (continuous line) evaluated as in (A) in a 6-neuron sample exposed to enriched K+ solution (290 mV quantum size
= 1.360.3 mV). Control EPSC I–V relationship is shown as in (A) (dotted line), for comparison. The different slope of the curves points to a rightward
shift of the null potential in high [K+]e. (C). I–V relationship of quantal events recorded in a single neuron at different holding levels while exposed to a
K+-enriched solution in which 136 mM isethionate had been substituted for an isoosmolar amount of NaCl (data normalized to the 2100 mV value
= 3.2 mV). The dotted line shows the control EPSC I–V curve (normalized), for comparison. The general behavior appears to have reverted back to
control: note that the cation composition of the bathing solution in (B) and (C) was the same, despite the large differences in the presumable null
potential of the mEPSP. Point numbers indicate the order in which the different test levels were successively imposed.
doi:10.1371/journal.pone.0017318.g005

Figure 4. Properties of the mEPSPs elicited by 35 mM [K+]o at different holding potentials. (A). Representative mEPSP recordings
obtained under two-electrode current-clamp conditions in the same neuron at 235 mV (spontaneous) and 290 mV holding potential. (B) and (C).
Examples of mEPSP amplitude (a) and time interval distributions (b) obtained in a different neuron at 230 and 280 mV holding potential. Amplitude
histograms are fitted by a lognormal distribution; the interval distribution by an exponential function. Quantum size at each holding level is
calculated as the arithmetic mean of the mEPSPs recorded during 20–60 s time periods.
doi:10.1371/journal.pone.0017318.g004

Dynamic Ionic Selectivity at a Ganglionic Synapse

PLoS ONE | www.plosone.org 10 February 2011 | Volume 6 | Issue 2 | e17318



cation channel. In the sympathetic neuron, voltage-dependent

sodium channels are closed above 240 mV [23] and subthreshold

membrane currents are generated exclusively by a variable mix of

chloride and potassium conductances; when these are blocked no

other conductances can be detected, except the small voltage-

independent leakage conductance (a mean of about 14 nS per

neuron [16]). On the other hand, [Na+]i should increase by a

factor of 1.5 to shift the null point by 10 mV; such a high

concentration is reached in neurons only in the presence of

blockers of active sodium pumping. Direct evidence of internal

ionic stability arises from the observation that GABA-induced

membrane depolarization or hyperpolarization in rat sympathetic

neurons did not change the intracellular sodium activity, measured

with ion-selective microelectrodes [26].

Shifts in the potassium and sodium ion gradients were thus quite

unlikely explanations for the changes in EPSC I–V curves

observed following modifications in holding potential.

Direct effects of holding membrane potential on the perme-

ability properties of the channel might well occur. The main

problem with this interpretation of the data is related to the very

slow time course (minutes) of these changes. An intriguing aspect is

that chloride ions redistribute following membrane potential

migrations, and this equilibration similarly requires tens of seconds

to minutes. Chloride concentration in the rat sympathetic neuron

was found to be systematically larger than predicted by a passive

equilibrium, thereby generating a slowly adapting, voltage-

dependent chloride battery, which plays a pivotal role in

controlling the membrane potential in the subthreshold voltage

range, through a voltage- and time-dependent chloride conduc-

tance [16]. In particular, the 240/290 mV membrane potential

change is expected to be accompanied by a [Cl2]i decrease from

about 39 to 13 mM at steady-state ([16], Figure 3B), and vice-

versa upon returning to the initial 240 mV holding level. At

present, the threefold change in intracellular chloride concentra-

tion appears to be the most relevant ionic change.

The effect of holding potential on the channel properties might

therefore be indirect, and mediated by a change in intracellular

chloride concentration. This idea is strongly supported by the

observation that the I–V curves become insensitive to holding

potential when [Cl2]o is reduced by about tenfold (18 mM), a

condition under which chloride redistribution is largely impaired

and intracellular chloride concentration is very unlikely to undergo

massive fluctuations in response to migrations of the membrane

potential.

The action of aBgTx
Alpha-7 homomeric channels have not been detected in rat

sympathetic neurons [29], [30]. These neurons, however, express

an aBgTx-sensitive nAChR which is likely to incorporate the a7

subunit: 100% of fresh-cultured neurons of the rat SCG are

actually stained with antibodies to a7 [31] and two classes of

aBgTx-binding sites have been detected in dissociated SCG

neurons [32]. Previous studies have shown, by utilizing rapid

agonist application on dissociated rat SCG neurons at constant

membrane potential, that aBgTx was either without effect on any

current [33], or able to block up to 80% [31] or 40% [32] of the

ACh induced currents. In none of those studies was it possible to

discern whether the toxin acted on synaptic or extrasynaptic

receptors. In the present study the specific biophysical effect of the

toxin on subsynaptic receptors has been addressed in mature,

intact sympathetic neurons. We show that aBgTx significantly

decreases the synaptic conductance, slightly reduces the mean

open time of the synaptic nicotinic channel and sustains a negative

shift of the EACh by altering the PK/PNa ratio.

The difference current, abolished by aBgTx application,

displays a strongly positive null potential. This might arise from

Figure 6. Neuron excitability is regulated by shifts of the EPSC null potential. (A). Calculation of the threshold synaptic conductance
required to fire the ideal sympathetic neuron held at different membrane potential levels (250/290 mV range); 610 mV changes in EACh from the
normal 217 mV mean value are considered. (B). Simulation of the EPSP generated in the model neuron held at 270 mV by a just subthreshold
synaptic conductance (0.27 mS), with EACh = 217 mV (a). The effects of the same value of synaptic conductance are examined with the value of EACh

moved to 227 mV (b) or to 27 mV (c). The synaptic response is larger in (c) and, if active voltage-dependent sodium conductance (gNa) is present,
the synaptic input results adequate to fire the neuron, otherwise silent.
doi:10.1371/journal.pone.0017318.g006
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a change in the permeability properties of the channel, or from the

block of a specific current component (a Ca2+ current would be

suggested by the positive equilibrium potential).

A negative extrapolated null potential was estimated for a7

homo-oligomeric channels expressed in Xenopus oocytes

(228 mV, see Couturier et al. [34]; 217 mV, Forster and Bertrand

[35]). Massive changes in [Ca2+]o were shown to produce negligible

effects on the nAChR null potential at the sympathetic neuron [9].

The experiments here reported indicate that blockers of the a7-

containing receptors (F3 and MLA), with presumably higher

selectivity, are unable to mimic the effect of aBgTx on EACh. Thus,

it is most unlikely that aBgTx simply blocks a subset of calcium-

permeable synaptic channels. The amplitude decrease of the EPSC

measured at a single membrane potential level might, in fact, be

related to changes of both null potential and synaptic current

kinetics, which contribute to various extents in shaping the overall

EPSC I–V curve. In order to clarify the question, analysis of native

nAChRs should be extended at the single channel level;

unfortunately, patch clamp of unequivocally subsynaptic receptors

in the intact sympathetic neuron is technically unfeasible.

All considered, a likely mechanism of aBgTx action appears to

involve a change in the selectivity of the nicotinic channel, which

would increase its ability to carry potassium ions. If this were the

case, interference should be observed with other treatments that

affect the channel selectivity. This aspect is considered below.

The effect of chloride and the interaction with aBgTx
The most relevant, and unexpected, observation here reported

is that changes in external, and possibly internal, non-permeant

chloride ions regulate the behavior of the nicotinic channel.

Drastic reduction of [Cl2]o results in synaptic effects that are

similar, qualitatively and quantitatively, to those sustained by

aBgTx; namely, the apparent synaptic conductance and the mean

channel open time are reduced, the channel selectivity is equally

modified, and the missing fraction of the synaptic macrocurrent

exhibits a strong positive equilibrium potential. Calcium-related

effects can be readily ruled out in reduced [Cl2]o experiments: 1)

changes in subunit composition (differentially calcium-permeable)

are unlikely here, 2) isethionate can bind calcium ions, but

benzenesulphonate does not; 3) large modifications in [Ca2+]o

have negligible effects on the EACh.

Once more, a change in cation permeability ratio, and in

particular a decreased Na+ vs. K+ permeability in low [Cl2]o, is the

most likely interpretation. The toxin and chloride reduction

mutually occlude their effects on channel permeability, indepen-

dent of the order of application, pointing to the involvement of a

common mechanism.

A few studies have examined the functional role of chloride ions

as regulators of biological macromolecules, typically via allosteric

mechanisms. The activation of kainate receptors requires the

presence of chloride in the extracellular solution [36]; glycine

receptors gating was found to be profoundly affected by high

chloride [37]. These analyses, however, mainly focussed on single

receptor kinetics and were not accompanied by the study of the

permeability properties of the single channel. This type of

information on the nicotinic channel is lacking in the literature.

From our electrophysiological data it is impossible to tell whether

and how occlusion between aBgTx and chloride binding occurs,

whether the sites of action are physically the same and which

might be the molecular counterparts.

The ganglionic selectivity filter can dynamically change
The selectivity characteristics of the nicotinic channel at the

ganglionic synapse have long been studied [38], [18]. The mix of

sodium and potassium conductances and their ratio, which mould

the synaptic cationic current, are considered to be kept constant,

constrained by the physical structure of the channel pore

[39],[40]. More generally, no experimental evidence has so far

suggested any time-dependent dynamic changes in the selectivity

of the nicotinic filter, or of the 5-HT3 receptor, a ligand-gated ion

channel that is a cation-selective member of the nicotinic receptor

family [41], [42]. In our preparation, gsyn and EACh usually are

stable over periods of tens of minutes under steady-state

conditions, at constant holding potential and with appropriate

modes of presynaptic stimulation (see, for example, Figure 1 in

Sacchi et al. [43], and unpublished observations).

Early denervation [9], the history of membrane potential, a

reduced external (and possibly internal) chloride concentration

and aBgTx (present data) reversibly modulate postsynaptic ACh

response amplitude and decay kinetics, with a clear-cut shift in the

nicotinic channel PK/PNa ratio, estimated by using the Goldman

current equation to fit the entire I–V relationship of the EPSC.

The results of all these analyses on native, unequivocally and

exclusively subsynaptic nicotinic channels are summarized in

Table 2. Reduced [Cl2]o and aBgTx increased the calculated

channel selectivity for K+ with respect to Na+ ions, while

membrane hyperpolarization and presynaptic denervation result-

ed in a loss of the relative selectivity of the channel, which became

equally permeable to both ions.

From a physiological point of view, it is worth noting that the

selectivity changes of the synaptic channels and the ongoing

neuronal activity (and the associated membrane potential

migrations) reciprocally influence each-other. The flexible perme-

ability of the synaptic channels therefore constitutes an additional

aspect in neuronal regulation and plasticity, as it results in changes

in the driving force of the synaptic current, and consequently in

time- and activity-dependent variations in the postsynaptic

response to an invariant presynaptic input.

Possible artifacts and alternative interpretations
The evidence in favor of the selectivity hypothesis might suffer

from systematic errors in electrophysiological measurements or

might be challenged by alternative biophysical interpretations.

As previously discussed, a variable junction potential at the

electrodes might bias, in principle, the present voltage values when

external chloride concentration is changed or its internal concentra-

tion changes due to a shift in membrane potential (Sacchi et al., 1999

[15]). Liquid junction potentials have been computed, according to

Henderson’s approximation [44], for the microelectrode and agar

bridge in the various solutions encountered in these experiments; the

resulting corrections are reported in Text S1: they never exceed a

2.5 mV magnitude; when the corrections are applied, the PK/PNa

ratios slightly increase (+0.01 to +0.18). However, these corrections

were too small to interfere with our conclusions.

A series of experimental test argue against artifacts linked to

junction potentials:

1) the liquid junction potential, measured with the 3MKCl agar-

bridge and the 3MKCl microelectrode broken-tip technique, was

found to be small and stable; 2) the I–V curves for potassium currents

in normal or reduced external chloride concentration were

overlapping (the voltage sensor of the potassium channel is very

sensitive so that any voltage shift around 215 mV would drastically

modify the current amplitude); 3) identical external chloride

modifications markedly affected EACh in the absence of aBgTx, but

minimally in the presence of the toxin; 4) bathing in low chloride

(18 mM) + isethionate solutions is supposed to be the most

challenging treatment in terms of liquid junction potentials, as the

agar bridge can be contaminated by the bathing solution and
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produce a relevant change in liquid junction potential upon returning

to normal chloride containing (154 mM) solution; however, estimates

of EACh and PK/PNa ratio displayed full reversibility, arguing against

marked artifacts in potential measurement.

As concerns the battery of the permeant cations, the potassium

and sodium internal concentration following neuron hyperpolar-

ization was measured in the sympathetic neuron, and was found

unchanged over the voltage range tested here [26]. Over the same

voltage range, the voltage-dependent sodium channels are closed

[23] and the sodium-dependent co-transports do not significantly

contribute to control baseline intracellular sodium, at least in

cultured hippocampal neurons [45]. The potassium current

evoked by depolarization are of constant amplitude when external

anion composition is modified, ruling out any significant shift in

the potassium driving force. Finally, either the sodium or the

potassium internal concentrations should decrease by an unreal-

istic amount during hyperpolarization (contrary to the direction

expected from the electric field), if these ionic gradient changes

were underlying the EACh shift.

The hypothesis that multiple channel types, with different

selectivity properties, might be differently modulated by the

treatments, is inaccessible to direct biophysical testing, especially if

only subsynaptic channels are to be considered. On the other hand

there is no notion that nicotinic channels with different alpha-beta

subunit compositions might exhibit different ionic selectivities in

native neurons, except for those containing the a7 subunit. The

possible participation of the latter receptors in contaminating the

pure Na+/K+ fluxes with a calcium component, however, has been

ruled out by applying the selective a7 antagonists.

Apart from intracellular bulk cation concentrations, one may

wonder whether the AChR channel I–V curve might be affected

by local heterogeneities in cation concentrations. In principle,

channel selectivity might appear to change due to altered local

cation concentration at the mouth of the pore, rather than to an

intrinsic change in pore selectivity filter. If the channel presents a

vestibule at the pore access, and chloride is the major mobile anion

which can access the vestibule, a Donnan equilibrium ensues

between the vestibule and bulk solution (both intra- and

extracellularly). Assuming that a difference exists between the

concentration of fixed negative charges in the vestibule and anions

in solution that cannot access the vestibule, a difference DCl– is

expected to occur between [Cl2]v and [Cl2]s, where the ‘‘v’’ and

‘‘s’’ subscripts respectively refer to the vestibule and the bulk

solution. Thus, a Donnan equilibrium should ensue, with

½Mz�s
½Mz�v

~
½Cl{�s{DCl{

½Cl{�s
, where M+ indicates monovalent cations,

and a change in [Cl2]s should produce a change in cation

concentration in the vestibule. This would affect the driving force

on the cations and be reflected in the conductance ratio of the pore

(which is determined by both the permeability ratio and the

concentration ratio for sodium and potassium). However, it is

easily shown that a corresponding Donnan’s potential

DV~
RT

F
: ½M

z�o
½Mz�i

will arise under these conditions at the

vestibule-solution interface, which exactly offsets the altered

vestibular cation concentration in controlling cation flux. Thus,

effects of chloride concentration, either on the intracellular or the

extracellular side, would not be able to affect the measured null

potential of the channel and the computed PK/PNa ratio. By

similar reasoning, possible effects of chloride ions on the profiles of

transmembrane electrical field or local cation concentrations, and

local screening effects (which are quite unlikely for a monovalent

ion), would affect to the same extent the two permeating cations

and would in no case be able (due to simple thermodynamic

consideration) to introduce any asymmetry in the inward vs.

outward permeation. On the other hand, chloride ions might

affect the permeability ratio for differently sized cations by binding

allosterically to specific sites on the channel protein (not necessarily

within the pore) or by binding to fixed charges within the pore,

thereby affecting the minimum pore diameter or the dehydration

energy for the permeating cations.

We have no direct evidence for a structural change of the nicotinic

channel that might affect its selectivity. It should be stressed, however,

Table 2. Effect of different treatments on the permeation properties of the nicotinic channel at the ganglionic synapse.

Treatment PK (fl/s) PNa (fl/s) PK/PNa

[Ca2+]o = 2 mM (n = 5) 0.619 0.423 1.4660.12 Sacchi et al., unpublished

[Ca2+]o = 5 mM 0.874 0.609 1.4360.13

Control (n = 6) 1.896 1.121 1.6960.19 This paper

F3a 10 mM 1.242 0.730 1.6860.13

Holding potential = 240 mV (n = 10) 0.984 0.701 1.4060.13 This paper

Holding potential = 290 mV 0.582 0.632 0.9260.10

[Cl2]o = 154 mM (n = 10) 2.162 1.361 1.5760.09 This paper

[Cl2]o = 18 mM 2.229 0.977 2.2660.08

[Cl2]o = 154 mM (n = 6) 1.903 1.314 1.5260.11 This paper

aBgTx 200 nM, in [Cl2]o = 154 mM 2.236 1.024 2.2260.13

aBgTx + isethionate, [Cl2]o = 18 mM 1.821 0.762 2.3860.07

Control (n = 33) 1.56b [9]

Denervated (n = 26) 1.07b

Single treatments were tested on the same group of neurons, except in the case of denervation.
aF3 is a 4-oxystilbene derivate with a high degree of antagonist selectivity for neuronal nicotinic aBgTx receptors containing the a7 subunit.
bCalculated by fitting the Goldman current equation to mean I–V data.
Values are means 6 SEM.
doi:10.1371/journal.pone.0017318.t002
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that while each single source of artifact or biophysical interpretation

(listed above, or others) could explain a single circumstantial result,

none of them alone is able to give an unifying view of the complex of

toxin and voltage- or anionic-dependent effects on ACh null potential.

Does a common mechanism underlie these examples of
nicotinic channel modulation?

A new role for chloride ions is envisaged here. It might represent

a common key to understand findings obtained under otherwise

heterogeneous experimental conditions. Steady membrane poten-

tial shifts modify [Cl2]i, while the concentrations of the other major

ions, Na+ and K+, are presumably hardly affected. External chloride

modification, on the other hand, is able to evoke effects similar to

those of aBgTx, and the two actions are partly overlapping and

mutually occlusive. The channel cation selectivity is reduced by

increased chloride gradient (membrane hyperpolarization), while it

is increased, moving towards a channel preferentially permeable for

potassium, when the chloride gradient is reduced. The EPSC decay

accelerates when either external or internal chloride is reduced,

suggesting that anions modulated nicotinic receptors from both

sides of the plasma membrane; this effect was apparently insensitive

to the momentary membrane potential.
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