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balance between excitation and inhibition. Dysfunction of 
mechanisms that inhibit excitatory synaptic transmission 
or promoting the mechanisms that facilitate excitation can 
lead to epileptogenesis.[2,3] Although the concept of a balance 
provides a useful model for mechanisms that can initiate 
epileptiform activity, it is daunting to consider the array 
of potential causes. There are various controls that keep 
the balance between excitatory transmission and inhibitory 
transmission in normal neuronal network.

In addition to the two prevailing theories of DRE, target 
hypothesis and transporter hypothesis,[4] another recently 
proposed hypothesis is neural network hypothesis.[5] 
According to this hypothesis, seizure-induced alterations 
of brain plasticity including axonal sprouting, synaptic 
reorganization, neurogenesis, and gliosis could contribute 
to the formation of abnormal neural network. This in 
turn leads to loss of the inhibitory effect of endogenous 
antiepileptic system and also prevented the traditional 
antiepileptic drugs from entering their targets, eventually 
leading to DRE. It is important to understand the processes 
through which the neuronal activities are synchronized 

Introduction

Epi lepsy  that  cannot  be  control led  with  known 
pharmacological management, also referred as drug-resistant 
epilepsy (DRE), patients are recommended for epilepsy 
surgery.[1] The genesis of DRE still eludes us, but abnormal 
synaptic transmission is one of the key features of this 
disorder. Epilepsy can be caused by multiple mechanisms 
and often they appear so diverse that one would suspect 
that no common hypothesis applies. However, one common 
principle that is applied to the process of epileptogenesis 
is disruption of mechanisms that normally create a 
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which in turn lead to generation of seizures.[5] To this end, 
localization of epileptic networks will help in guiding 
epilepsy surgery, deploying antiepileptic measures, 
and elucidating mechanisms underlying the process of 
epileptogenesis.

Hypersynchronus Neuronal Activity

Action potentials or electrical spikes are known to be 
the language of neuronal communication.[6] These action 
potentials are the result of inward and outward currents 
that pass through the ion channels, namely Na+ and K+ 
channels respectively, coupled with the capacitance in the cell 
membrane, over a time scale. When a stimulus is input in a 
neuron it accumulates the electrical charge till it crosses the 
threshold value[7-9] beyond which an output signal or action 
potential or spike is generated and transmitted to the adjacent 
neuron. The entire process takes place in a collective manner 
in a large number of neurons. As expected, strong inputs 
are capable of evoking spikes by overcoming the threshold, 
whereas weak signals are not.[10,11] Interestingly, weak signals 
can also evoke spikes when coupled with noise.[11-13] The case 
of single neuron although reveals lot of interesting features 
related to brain dynamics, it is an isolated and rather artificial 
situation. In fact, in the functioning of the brain, the most 
important factor is the interactions and communications 
within an ensemble of neurons. Synchronization of neurons 
is a correlated appearance in time of two or more events 
associated with various aspects of neuronal activity. It is being 
argued that during a number of physiological processes, the 
spiking trains of neurons get synchronized.[14,15] Zhou and 
Kurths[16] have demonstrated (numerically) that Gaussian 
noise enhances synchronization of weakly coupled neurons 
and coherence of the spike trains. Synchronization could 
be associated with chemical and electrical synaptic as 
well as ephaptic and nonspecific interactions. The local 
synchronization contributes to the generation of local 
field potentials. In case of electroencephalography (EEG) 
synchronization, chemical synaptic interactions as detected 
by distantly located electrodes.[5] Excessive neuronal 
synchronization is a hallmark of epileptic discharges. In 
epilepsy, synchronization occurs between cells and within local 
networks at different time-scales. It has been hypothesized 
that during epileptogenesis, clusters of pathological neurons 
are interconnected leading to burst of hypersynchronus 
action potentials.[17] Ligand-gated ion channel-mediated 
neurotransmission synchronizes over milliseconds to tens of 
milliseconds. While electrical mechanisms, gap junctions, and 
ephaptic or field interactions, which can operate over fractions 
of a millisecond to a few milliseconds contributes to faster 
synchronization. In case of slower synchronization which 
is in the range of hundreds of milliseconds, it depends on 
G-protein coupled receptors, fluctuations in the extracellular 
concentration of ions (most notably K+), interactions between 
neurons and glia, and the dynamics of interaction between 
coupled hyperexcitable regions.[5]

Tools to Study Epileptogenic Network

Development and application of integrated dynamic 
imaging approaches examining neuronal circuit function has 

significantly helped in our understanding of the mechanisms 
underlying epileptogenesis, epilepsy, and seizure generation 
[see Figure 1]. Progress in neuroimaging has led not only 
to successful identification of epileptic foci for surgical 
resection, but also to an improved understanding of the 
functional and microstructural changes in long-standing 
epilepsy. Positron emission tomography (PET), functional 
magnetic resonance imaging (fMRI), and diffusion tensor 
imaging are all promising tools that can assist in elucidating 
the underlying pathophysiology in chronic epilepsy.[18] In 
addition to conventional MRI, functional neuroimaging using 
PET and single-photon emission computed tomography 
(SPECT) can provide complementary information to help 
localize the epileptic focus and often provides additional 
information that cannot be obtained from conventional MRI 
sequences. Magnetoencephalography (MEG) has recently 
emerged as a clinical tool for neurology and neurosurgery 
could also be helpful in dysfunctional neuronal circuit by 
localization of the irritative zone and through functional 
mapping of eloquent (sensory, motor, and language) cortex. 
Recent MEG studies have demonstrated dramatic plastic 
shifts in brain function due to lesions or developmental 
abnormalities but not necessarily predicted by the anatomical 
changes.[18]

The major challenge that the epilepsy surgeons across the 
world face are those 30%-40% patients who still continue 

Figure 1: In order to understand the molecular basis 
of pharmacoresistant epilepsy, it is important to study 
the epileptogenic network using complementary and 
multidisciplinary approach. Creation of an infrastructure, which 
brings together a center with clinical facility for epilepsy surgery 
and a research institute, will help improve surgical therapies 
and increase the success rate of epilepsy surgeries. Center of 
excellence for epilepsy is one of its kind facility established 
under the aegis of Department of Biotechnology, Ministry of 
Science and Technology (Government of India) where a premier 
medical science institute, All India Institute of Medical Sciences, 
New Delhi is collaborating with National Brain Research Centre 
(NBRC), Manesar, a dedicated neuroscience research center
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to have seizures despite undergoing an adequate epilepsy 
surgery.[19] The more straight forward pathologies have 
better outcomes, which are similar in most centers. The more 
complex pathologies, while requiring more extensive work 
up, does not translate into a better outcomes.[19-22] Localizing 
the dysfunctional network can explain the reasons for surgical 
failure and provide solutions to reduce the same. It is critical 
for the neurosurgeon to determine, how far the epileptogenic 
area is form the lesion. Growing evidences suggests that there 
is focal area where the onset of spike wave discharge (SWD) 
is located and these local SWDs propagate very quickly 
throughout the cortex and to thalamus at the millisecond 
scale.[23] It is important to determine with highest precision 
the extent of epileptogenic network while planning a surgical 
intervention. Quantitative methods of EEG signal analysis and 
epileptogenicity index are useful tools for functional analysis of 
neuronal networks associated with an epileptogenic lesion.[24] 
Posttemporal lobectomy, the presence of diffused pathology, is 
one of the reasons for recurrence after surgery. As suggested by 
positive neuroimaging in this case, maximal networks are close 
to the lesion.[25,26] Electrocorticography (ECoG) provides useful 
information for the prediction of surgical success in surgically 
remediable epilepsy. DRE and post resection ECoG correlation 
with its grade of severity and clinical outcome suggest network 
pattern of the lesions. Despite its widespread usage, there 
are still controversies regarding its utility especially keeping 
in mind its short period of application.[27-30] It also should 
be kept in mind that any electrode used potentially records 
from millions of neurons, for example, a circular electrode 
of the EcoG grid sits over 106 neurons, each having about 104 
connections. Thus, this is equivalent to hanging a microphone 
among a population of 1 million people, each talking to 10,000 
persons! Thus, the need of hour is to develop better amplifiers 
and also technologies which can analyze meaningfully such 
a huge amount of data.[31-33] The method of intraoperative 
coregistration of MRI, PET, and ECoG has shown to provide 
better objective localization of the epileptogenic foci.[29] 
Localizing eloquent cortex lesions, which present a surgical 
challenge, could be successfully achieved by combination of 
neuronavigation aided fMRI and diffusion tensor tractography 
along with cortical stimulation.[34] Source localization by 
the combination of MEG and EEG provided insight into 
the regional network associated with epileptogenic focus.[35] 
Stereoelctroencephalography- mediated electrophysiological 
recording helps in the computation of epileptogenecity index 
which helps determine if the epilieptogenic network is confined 
to the lesion or it involves other distant structures.[24] Recently, 
high frequency oscillations (HFOs) have been reportedly shown 
to arise from brain regions constituting epileptic networks and 
may be important to seizure generation.[36] HFOs are brief 50-
500 Hz pathologic events measured in intracranial field and 
unit recordings in patients with refractory epilepsy. Basic 
research studies on HFOs indicate these local oscillatory field 
potentials correspond with an increase in rate and synchrony 
of neuronal discharges. Because HFOs can facilitate synaptic 
transmission through local networks, these events are 
implicated with information processing and consolidation of 
memory. Alterations to neuronal networks associated with 
epilepsy can also generate abnormal or pathologic HFOs that 
are believed to reflect fundamental neuronal disturbances 
associated with brain areas capable of generating spontaneous 
epileptic seizures.[37] There is compelling evidence supporting 

the view that normal hippocampal ripples and neocortical 
HFOs in the normal brain reflect inhibitory post-synaptic 
potentials (IPSPs) of interneurons that regulate the firing and 
timing of postsynaptic principal cells.

Mechanism of Neuronal Synchronization

Epileptiform synchronization could be generated due to loss 
of inhibition, reduction in after hyperpolarization, enhanced 
excitatory synaptic transmission, enhancement of inhibitory 
network activity, and depolarizing γ-amino butyric acid 
(GABA). The generation of interictal epileptiform discharges 
(IEDs) epilepsy is commonly ascribed to enhanced excitatory 
interactions within glutamatergic neuronal networks.[5] In 
terms of both pattern and underlying mechanisms, IEDs are 
heterogenous in nature. Evidence suggests that core region 
in which focal seizures are generated is surrounded by an 
area that generates hypersynchronous activity (denominated 
the ‘‘irritative region’’) interposed between the seizure-onset 
area and the surrounding normal tissue.[38] IEDs are generated 
both in the epileptogenic zone and in the irritative region 
and can spread to (and thus be recorded from) adjacent 
‘‘healthy’’ brain structures. Therefore, it is reasonable to 
conclude that interictal events are sustained by cellular and 
pharmacological mechanisms that vary according to the 
site of generation. It is possible that these differences may 
result in a different functional role with respect to seizure 
generation. Experiments on animal models with convulsants 
showed that the CA3 region of the hippocampus is involved 
in generating IEDs, which were soon related to abrupt 
“paroxysmal” depolarization shifts (PDSs) in pyramidal 
cells.[39-41] Hyperexcitation contributed to the PDS produced by 
most acute convulsants.[42,43] It has been found that the extensive 
axon collateral network of CA3 pyramidal cells, which connect 
with many other CA3 pyramidal cells in addition to their 
longer range projections to CA1, septum and contralateral 
CA3 is responsible to the aforesaid hyperexcitation. It has also 
been shown that integrity of CA3 region of the hippocampus 
is an important determinant of glutamatergic drive to the CA1 
pyramidal neurons.[33] Ablation of CA3 field in rat brain slices 
lead to the reduction of glutamatergic synaptic transmission 
onto CA1 pyramidal neurons.[44] Altogether, these reports 
suggest that excessive excitatory drive generated from the CA3 
region may contribute to the abnormal synchronous neuronal 
activity associated with epileptogenesis. These synaptic 
networks can play a role in the synchronization occurring 
during both seizures and IEDs. It is possibly strengthened by 
sprouting of new connections and other synaptic changes in 
chronic epileptic foci.

The duration of epilepsy is the most important predictor for 
long-term surgical outcome and active networks may attain 
permanent bi-stable stage with time.[45,46] It is also plausible that 
idling networks may return back to their active bi-stable stage 
after discontinuation of antiepileptic drugs (AEDs) in patients 
rendered seizure free by epilepsy surgery.[47] Altogether, 
the network concept provides better understanding of the 
epileptogenic lesion. Nonregression analysis of intracerebral 
EEG signals helps in the identification of epileptogenic 
networks.[48] In addition, fluctuation analysis has been an 
important aspect of research in neurophysiology.[49] Advanced 
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cellular electrophysiological experiments has enabled us to 
record currents through a single or a group of channels from 
single neurons under voltage clamped conditions.[50] Recent 
development on quantification of noise at the ion channel 
level has thrown light on the phenomenon of transport of ions 
and metabolites across cell membrane and its mechanisms 
especially its relation to neuronal communications.[51-61] 
Synaptic noise, a kind of channel noise, plays an important 
role in this process.

Epiletogenic Zone Versus Network

Despite remarkable advances in epilepsy surgery, the 
principles of surgery have been only resective, disconnective, 
or neuromodulatory surgery. Since Wilkins et al.,’s[62] 
description of the famous case in 1886 of a patient with focal 
motor seizures with depressed fracture, who was cured of 
his epilepsy, when the lesion and also the surrounding area 
was resected led to the birth of epilepsy surgery. From here 
on the concept of ‘‘epileptic zone’’ took birth, where the 
lesion was assumed to be placed in the center surrounded by 
structurally normal but functionally deranged parenchyma. 
Luders further refined this concept by creating the concept 
of lesional zone, surrounded by ictal onset zone (as detected 
by video EEG) and further surrounded by a large irritative 
zone (as defined by inter ictal EEG). The epileptogenic zone 
was said to be placed between the ictal onset zone and the 
irritative zone.[63] Currently, there is no single investigation 
available to exactly delineate the epileptgenic zone. This 
is mostly because all the current investigations,[64,65] have 
different levels of spatial resolutions (ability to delineate the 
focus from the level of neuron to the brain) and temporal 
resolutions (ability to distinguish the onset of epilepsy at 
different time periods). Thus, PET has a lower temporal and 
spatial resolution as compared with SPECT. Thus, different 
modalities of investigations provide different snapshots of 
the epileptogenesis at different time periods and at variable 
magnifications. With the biomarkers of epilepsy limited to a 
few options (ictal EEG, HFO, and MEG), options turned on 
to devise more complex methods of data analysis to allow 
a greater sampling rate and larger sampling area. Linear 
mechanics to explain epiletogeneis were obviously doubtful 
to explain real-time situations. Thus, nonlinear mechanics 
like nonlinear regression analysis (Wendling et al.[48,66]) became 
more useful to develop computer models of epileptogenesis. 
This also led to use of more complex computational models 
like nonlinear dynamical systems and chaos theory which 
helped us understand epileptogenesis much better. These 
mostly included phase synchronization methods, generalized 
synchronized methods, and phase lag index.[67-70]

To understand epileptogenesis better, Aubert et al.,[24] 
developed the concept of epileptogenic index, which is 
essentially the propensity of the brain to generate high 
frequency oscillations and the time for this area to get 
involved in the seizure. He found that only in 1/3rd of cases 
with epilepsy there is a single epileptogenic zone, while in the 
rest cases; there was evidence of more than one area, which 
generated epilepsy. There is now cumulating evidence that 
the epileptogenic ‘‘zone’’ is essentially a simplified concept. 
In fact, the epileptic neurons are now recognized to have a 

bi-stable nature during epileptogenesis and during interictal 
period.[5,23,24,36,37,69-71] Thus, a small area of neurons, which 
epileptogenic stimulate more distant neurons, and through 
reentrant pathways forms a reverberating circuit (also called 
a ‘’node’’). Such circuits progressively recruit more distant 
circuits forming larger and larger networks over a period of 
time [Figure 2]. In fact, clinical studies (though indirectly) do 
also suggest existence of such networks. McIntosh et al.,[26] 
demonstrated best long-term outcome for temporal lobe 
epilepsy with presence of a demonstrable lesion, suggesting 
that the maximal networks are centered around the lesion. 
Another elegant study by Janszky et al.,[45] demonstrated 
that the seizure freedom was inversely proportional to the 
duration of epilepsy (being 90% Class I Engel for patients 
with duration of epilepsy between 1 and 10 years reducing 
to about 30% for patients with duration of epilepsy being 
>30 years at the time of surgery). While the findings of the 
study cannot be explained with the ‘’zone’’ hypothesis, the 
‘‘network’’ hypothesis can explain this by the fact that more 
neurons become recruited into the ‘’epileptogenic network’’ 
over a period of time if epilepsy is not controlled. Similarly 
another landmark study by Schmidt et al.,[47] demonstrated 
that the seizure freedom falls down to 65% (Class I Engel) 
over 3 years after discontinuation of AEDs for temporal 
lobe epilepsy suggesting that ‘‘idling’’ networks may return 
back to the active bistable state. These studies suggest that 
the epileptogenic focus is not a ‘‘fixed’’ zone but a dynamic, 
constantly changing group of networks. The network 
hypothesis is further strengthened by Lin et al.,[72] who 
demonstrated diffuse thinning of neocortical grey matter in 
mesial temporal sclerosis suggesting clearly the complexity 
involved even in focal pathologies producing epilepsy. The 
network concept is important for the surgeon to understand 
that the epileptogenic ‘‘focus’’ may be far removed from 
the lesion and separated by normal parenchymal tissue. 
This has been very elegantly demonstrated in case study by 
Stefan et al.,[35] Here, the patient had a ventricular perinodular 
hetertopia (PNH). Placement of depths and a surface grid 
actually revealed ictal onset from the surface even though the 
lesion was deep within the ventricle. The patient underwent 
both resection of the PNH and surface neocortical temporal 
gyrus, following seizure freedom was achieved. We also 
had a similar case, where a distant focus was demonstrated 
[Figure 3].

Figure 2: The following diagram shows the active, dynamic 
nature of epileptogenic networks. Epileptogenecity initially 
begins with a group of bistable local neurons which recruit more 
distant neurons and are joined back by reverberating circuits 
forming a ‘‘node.’’ When epilepsy remains untreated, more 
distant neurons are recruited within the network progressively 
increasing both its size and complexity. Thus, an epileptogenic 
network is constantly evolving as compared to the zone concept 
which was assumed to be static
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Multidisciplinary Approach to Study 
Epileptogenesis

In a developing country like India, the number of epilepsy 
patients is approximately five million, of which around 
one million epileptics suffer from the medically intractable 
epilepsy.[1] A significant number of patients who have 
undergone resective brain surgery for epilepsy still continue 
to have seizures. Understanding the intricacies of DRE still 
remains a challenge for neurosurgeons across the world. The 
investigation of abnormal neuronal network and it association 
with epileptogenic area may provide us answers regarding 
the cellular and molecular basis of the epileptogenesis. It 
is important to go through the growing phase and bridge 
the gap between clinical and basic research in the field of 
epilepsy through a complementary and multidisciplinary 
approach [Figure 1]. Even though animal models of epilepsy 
shed light on the process of epileptogenesis, the molecular 
mechanism underlying this phenomenon is unclear. The 
reason behind this road-block is that none of the animal 
models for epilepsy could replicate the etiopathological 
conditions in humans. The tissue removed during resective 
surgery of epilepsy patients could serve as an ideal model 
system to investigate the abnormalities at microscopic level.[73] 
The well-established epileptogenic zones in the resected 
brain sample serve as an ideal model to study the molecular 
mechanism of hypersynchronus epileptiform discharges. 
To this end, biochemical and cellular electrophysiological 

analysis of resected brain specimens obtained from epilepsy 
patients to investigate the molecular mechanism associated 
with epileptogenesis will provide useful insights.[47-49] The 
epileptogenic zone established using the above-mentioned 
imaging and electrical localization techniques provide a 
unique model system to study hyperexcitatory neuronal 
network. Patch-clamp technique provides an avenue to study 
the alteration in glutamatergic and GABAergic synaptic 
transmission on to specific neurons in the epileptogenic 
zone.[44,45,47-50,73-75] Moreover, the brain tissue specimens 
obtained in a graded manner from various areas of the 
above-defined epileptogenic zone could also be investigated 
for abnormal gene expression using deoxyribonucleic 
acid (DNA) microarray and to study changes in the 
excitatory and inhibitory neurotransmitter levels using 
immunohistochemistry. The correlations of above-mentioned 
molecular aspects of epileptogenic network with the clinical 
data will help enhance our understanding of epileptogenesis 
in general and DRE in specific [see figure 1].

Conclusion

Analysis of hypersynchronus neuronal network should 
be widely used for epilepsy surgery. Currently, utility and 
efficacy of determining epileptogenic network prior to 
surgery is controversial. But with high-resolution recording 
and imaging techniques, signal analysis methodologies and 
the possibility of studying dynamic brain states neuronal 
network analysis has gained strength. In India, the usage of 
noninvasive techniques like MEG and fMRI is now gaining 
popularity to identify network involvements both structurally 
and dynamically. Moreover, development of newer methods 
to analyze the dynamics of neuronal networks has gained 
momentum and has yielded a wide range of computer tools 
being tested in clinical and experimental environments. 
This has lead to development of newer concepts where the 
epileptogenic focus earlier thought to be a static zone centered 
around the lesion is now considered as an evolving active and 
a dynamic circuit of networks.
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