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Background: Although several observational studies have attempted to investigate the
association between type 2 diabetes mellitus (T2DM) and lung cancer risk, the results
are controversial. Here, we intend to examine whether there is a causal association
between T2DM and lung cancer risk.

Materials and Methods: We conducted a Mendelian randomization (MR) study to
systematically investigate the effect of T2DM on lung cancer among 13,327 cases
and 13,328 controls. A weighted genetic risk score (wGRS) was constructed as
a proxy instrument by using 82 previously reported T2DM-related single nucleotide
polymorphisms (SNPs). The logistic regression model was utilized to estimate
associations of T2DM-related SNPs and wGRS with lung cancer risk. Sensitivity
analyses were also performed to assess the robustness of the observed associations.

Results: We found no evidence for a causal relationship between T2DM and lung
cancer risk (odds ratio, OR = 0.96, 95% confidence interval: 0.91–1.01, p = 0.96), and
the association did not vary among populations of different age, sex, smoking status,
and histological type. Sensitivity analyses (e.g., MR-Egger test) suggest that pleiotropic
effects did not bias the result.

Conclusion: In this MR study with a large number of lung cancer cases, we found no
evidence to support the causal role of T2DM in lung cancer risk. Further large-scale
prospective studies are warranted to replicate our findings.

Keywords: lung cancer, type 2 diabetes mellitus, Mendelian randomization, genome-wide association study,
causation

INTRODUCTION

Lung cancer is one of the most commonly diagnosed cancers and the leading cause of cancer-
related death globally (Sung et al., 2021). It is estimated that 2.24 million new lung cancer cases
and 1.8 million deaths occurred worldwide in 2020 (Sung et al., 2021). Tobacco consumption is
recognized as the most critical risk factor for lung cancer, and approximately 90% of the cases can
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be attributed to tobacco exposure (Doll and Hill, 1950). Genetic
factors also play an important role in the carcinogenesis of
the lung. In the past decade, genome-wide association studies
(GWASs) report 51 lung cancer susceptibility loci in different
ethnic populations and highlight suspected causal genes at each
locus (Bosse and Amos, 2018; Dai et al., 2019). However, the
reported variants contribute to only 18% of the heritability of lung
cancer (Mucci et al., 2016). The risk factors of lung cancer remain
short of explored.

As a metabolic disease, the prevalence of type 2 diabetes
mellitus (T2DM) is increasing worldwide, especially in Asia
(Zheng et al., 2018). The International Diabetes Federation
estimates that the age-adjusted comparative prevalence of T2DM
among 20- to 79-year-olds in China was 9.7% in 2017 although
the European region has a lower prevalence of about 6.8%
(International Diabetes Federation, 2017). Because inflammation,
insulin resistance, hyperinsulinemia, and hyperglycemia, which
are biological alterations frequently observed in T2DM patients,
may promote the initiation and progression of tumors, multiple
studies have attempted to investigate the association of T2DM
with cancer risk (Coussens and Werb, 2002; Arcidiacono
et al., 2012; Ryu et al., 2014; Vigneri et al., 2016). Recently,
several studies have also explored the association between
T2DM and lung cancer risk, but no consistent conclusions
have been drawn possibly due to the small sample sizes and
confounding factors (Hall et al., 2005; Kuriki et al., 2007;
Ogunleye et al., 2009; Ehrlich et al., 2010; Luo et al., 2012;
Lo et al., 2013). In addition, for the existence of reverse
causation, previous observational studies may not evaluate the
causality accurately.

Mendelian randomization (MR) provides a novel approach to
unbiasedly infer the causal relationship between exposure
and outcome by using genetic variants as instrumental
variables (IVs; Smith and Ebrahim, 2003), which can be
quickly and accurately detected in large-scale epidemiological
studies. This approach has been successfully applied to
estimate the causal effect of polyunsaturated fatty acids
and mosaic loss of chromosome Y on lung cancer (Wang
et al., 2017; Qin et al., 2019). Recently, a large-scale meta-
analysis (36,614 cases and 155,150 controls of Japanese
ancestry) was conducted to evaluate the genetic influence on
T2DM (Suzuki et al., 2019), providing us an opportunity to
investigate the association between T2DM and lung cancer using
the MR approach.

In this study, by using the genotype data of 26,655 participants
(13,327 cases and 13,328 controls) with Asian ancestry, we
derived a weighted genetic risk score (wGRS) with 82 T2DM-
associated variants reported in Suzuki et al. (2019) as the IVs and
applied the MR approach to investigate the causal relationship
between T2DM and lung cancer.

Abbreviations: GWAS, genome-wide association study; T2DM, type 2 diabetes
mellitus; MR, Mendelian randomization; IVs, instrumental variables; wGRS,
weighted genetic risk score; GSA, Global Screening Array; SNP, single
nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy–Weinberg
equilibrium; PCA, principal component analysis; LD, linkage disequilibrium;
PCs, principal components; IVW, inverse-variance weighted; OR, odds ratio; CI,
confidence interval.

MATERIALS AND METHODS

Study Populations
In this study, a total of 13,327 cases and 13,328 controls from
previously published lung cancer GWASs were included (Hu
et al., 2011; Dai et al., 2019): (i) the Global Screening Array (GSA)
Project of Nanjing Medical University (NJMU GSA Project with
10,248 cases and 9,298 controls) (Dai et al., 2019); (ii) the NJMU
GWAS with 2,126 cases and 3,077 controls (Hu et al., 2011);
and (iii) the NJMU OncoArray GWAS with 953 cases and
953 controls (Dai et al., 2019). Informed consent was obtained
from all the participants included in this study, and each study
was approved by the Ethics and Human Subject Committee
of Nanjing Medical University. The basic characteristics of the
included participants are summarized in Supplementary Table 1.

Genotyping and Quality Control
Standard quality control processes were performed for each of
these data sets to exclude unqualified samples and variants (Hu
et al., 2011; Dai et al., 2019). Briefly, one single nucleotide
polymorphism (SNP) was filtered out if it met one of the
following criteria: (1) maps onto autosomal chromosomes, (2)
had a call rate <95%, (3) had a minor allele frequency (MAF)
in controls <0.005, or (4) showed a departure from Hardy–
Weinberg equilibrium (HWE) in all samples (p ≤ 1 × 10−5) or
deviated from HWE in the controls (p-value < 1.00 × 10−7) or
cases (p-value < 1.00 × 10−12). We further excluded ineligible
individuals if they (1) have overall genotype call rates less
than 95%, (2) have gender discrepancies, (3) were duplicates
or probable relatives (PI_HAT > 0.25), (4) have extreme
heterozygosity rates (≥6 SD), or (5) were defined as outliers
according to a principal component analysis (PCA) computed
by EIGENSTRAT 3.0.

Imputation
Imputation was performed for all data sets and has been
described in our previous papers (Hu et al., 2011; Dai et al.,
2019). Briefly, SHAPEIT V2 (Delaneau et al., 2011, 2013) was
used to pre-phase the haplotypes. Then, IMPUTE2 (Howie
et al., 2009) was used to impute ungenotyped SNPs to hg19
with the 1000 Genomes Project (Phase III integrated variant set
across 2,504 samples1) as the reference. Poorly imputed variants
with imputation quality score less than 0.40 were excluded
from our analysis.

Selection of T2DM-Related SNPs
Of the 88 T2DM-associated loci reported in Suzuki et al. (2019),
six variants were excluded from further analysis: (1) five variants
located on chromosome X and (2) rs77792157 with a MAF < 0.01
in all data sets. In addition, because indels were excluded in
our imputation process, eight indels reported in Suzuki et al.
(2019) were replaced by SNPs in high linkage disequilibrium (LD)
(r2 > 0.40) (Supplementary Table 2). The remaining 82 SNPs
were independent and not in LD with each other (r2 < 0.10). The

1http://www.internationalgenome.org/category/phase-3/
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FIGURE 1 | Plots of the effect size of each single nucleotide polymorphism (SNP) on T2DM and lung cancer risk. The x-axis plots the previously published
β-estimate for the association of each SNP with T2DM. The y-axis plots the β-estimate from the multivariate logistic regression model for the association of each
SNP with lung cancer risk in our study population. Lines represent causal estimates from the different methods.

FIGURE 2 | Risk of lung cancer for genetically predicted T2DM.

LD was estimated in the East Asian (EAS) population from the
1000 Genomes Project Phase 3 data set.

Mendelian Randomization Estimates
A wGRS was constructed to predict T2DM for MR by multiplying
the genotype dosage of 82 independent T2DM-increasing
alleles with the following formula: wGRS =

∑82
i = 1 βi SNPi,

where βi is the beta coefficient of the ith SNP for T2DM
from previous study (Suzuki et al., 2019) and SNPi is the
dosage of the effect allele. We evaluated the association of
genetically predicted T2DM and lung cancer risk in five
data sets separately and then did a meta-analysis of these
results. Associations of T2DM-related SNPs and wGRS with
lung cancer risk were estimated by using a logistic regression

model adjusted for age, sex, smoking status, and the first
10 principal components (PCs). Stratification analyses were
performed based on age group (<60 and ≥60 years), gender,
smoking status, and histology. In stratification analyses, a
logistic regression model was also performed to evaluate the
association with age, sex, smoking status, and the first 10 PCs as
covariables when these were not the stratified factor. Cochran’s
Q statistic was calculated to evaluate the heterogeneity between
different subgroups.

Pleiotropy and Sensitivity Analysis
In addition to the wGRS approach, the inverse-variance weighted
(IVW) method with summary statistics of each genetic variant
was also performed to assess the robustness of the association
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FIGURE 3 | Stratified analyses of the association between T2DM and lung cancer risk.

between genetically predicted T2DM and lung cancer risk
(Burgess et al., 2013). The IVW regression function from the
MR R package (Yavorska and Burgess, 2017) (0.4.1) was applied
to evaluate the potential causal association between T2DM and
lung cancer risk with T2DM-related SNPs as the IVs. Meanwhile,
MR-Egger regression analysis was performed to evaluate the
possible pleiotropic effect of this study’s genetic instruments
(Bowden et al., 2015).

Statistical Analysis
All statistical analyses were performed using PLINK (version
1.90) and R software (version 3.5.0). Two-sided p-values less than
0.05 were considered statistically significant.

RESULTS

Study Populations
A total of 13,327 cases and 13,328 cancer-free controls of
Asian ancestry were included in this study. Of the included
participants, 51.60% (6,876/13,325) of the lung cancer cases
and 51.67% (6,886/13,327) of the controls were over 60 years
old. The majority (65.75%; 8,761/13,325) histological type of
the included lung cancer cases was adenocarcinoma. Detailed
demographics of subjects included in this study are shown in
Supplementary Table 1.

MR Analysis
A total of 82 previously reported T2DM-related SNPs that
achieved genome-wide significance (p ≤ 5.0 × 10−8) were

included in the analysis. None of these SNPs had a significant
association with lung cancer risk (p < 0.05/82), and the
association between each variant with T2DM and risk of lung
cancer is displayed in Figure 1. To evaluate the relationship
between T2DM and lung cancer risk, we constructed a wGRS
by using the genotype dosage of the abovementioned 82 SNPs.
No statistically significant association was observed between
genetically predicted T2DM and lung cancer [odds ratio
(OR) = 0.96; 95% confidence interval (CI) = 0.91–1.01; p = 0.13;
Pheterogeneity = 0.61; Figure 2] after adjusting for age, sex, smoking
status, and the first 10 PCs.

Subgroup Analyses
Stratification analyses were also performed based on age, sex,
smoking status, and histological type to evaluate whether the
association between genetically predicted T2DM and the risk of
developing lung cancer varies among different subgroups. As
shown in Figure 3, the associations between T2DM and lung
cancer risk were similar among subgroups divided by age, sex,
smoking status, and histological type (p-values for heterogeneity
were 0.79, 0.77, 0.13, and 0.77, respectively). However, for those
who were ever smokers, we identified a marginally significant
association between genetically predicted T2DM risk and lung
cancer risk (OR = 0.92; 95%CI = 0.85–0.99; p = 0.03) although no
significant association was observed in never smokers (OR = 1.00;
95%CI = 0.93–1.07; p = 0.96; Pheterogeneity = 0.13).

Sensitivity Analysis
To evaluate the robustness of the observed association between
genetically predicted T2DM and lung cancer risk, the IVW
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method was also conducted, and the association showed no
difference with main results (OR = 0.99; 95%CI = 0.98–1.00,
p = 0.13; Figure 1). Similar results were observed in simple
median (OR = 0.99; 95%CI = 0.98–1.00, p = 0.13; Figure 1) and
weighted median methods. The result of MR-Egger regression
analysis suggests that no potential pleiotropic effect exists for
variants used in constructing the genetic instruments (p = 0.85).

DISCUSSION

In this study, by using genotype data of 26,655 participants with
Asian ancestry and 82 previously reported T2DM-related SNPs,
we found no strong evidence to support the causal role of T2DM
in lung cancer risk. This study is one of the largest MR analyses on
T2DM and lung cancer risk to the best of our knowledge, and the
findings are robust in sensitivity analyses with different methods.

Increasing evidence indicates the association between
T2DM and cancer risk, and several plausible mechanisms
underlying carcinogenesis are proposed (Giovannucci et al.,
2010). Inflammation, insulin resistance, hyperinsulinemia, and
hyperglycemia are the main pathophysiological characteristics of
T2DM, which may be implicated in the pathogenesis of cancer
among patients with T2DM (Kahn et al., 2014). Proinflammatory
pathways can promote malignant transformation of cell
carcinogenesis by inducing the production of inflammatory
mediators, upregulating the expression of anti-apoptotic genes,
and stimulating cell proliferation as well as angiogenesis
(Landskron et al., 2014). Hyperglycemia can regulate cancer
cell behavior, such as proliferation, migration, invasion, and
recurrence, by causing DNA damage and activating various
signaling pathways (Cencioni et al., 2014; Duan et al., 2014).
Insulin resistance and hyperinsulinemia ultimately lead to
elevated plasma insulin concentration, which may stimulate
tumor growth by inducing the mitogenic effect and increasing
bioavailable insulin-like growth factor 1 (Kazer, 1995; Chappell
et al., 2001).

In the past decades, observational studies report somewhat
inconsistent results regarding T2DM and lung cancer (Ehrlich
et al., 2010; Rao Kondapally Seshasai et al., 2011; Hu et al.,
2020). In the Nurses’ Health Study and the Health Professionals
Follow-up Study with 3,814 lung cancer cases observed, incident
T2DM was associated with an increased risk of lung cancer (Hu
et al., 2020). In the retrospective cohort study with 1,811,228
participants, individuals with T2DM are at increased risk of
several pulmonary conditions (asthma, COPD, fibrosis, and
pneumonia) but not lung cancer (Ehrlich et al., 2010). However,
these studies still cannot control the influence of potential biases
because of the nature of the observational study. The present
study provides no evidence to support a causal association
between genetically predicted T2DM and lung cancer risk using
an MR approach, which may control unmeasured confounders
and reverse causation.

The strengths of our study include the large sample size
with 13,327 lung cancer cases and the use of 82 independent
T2DM-associated SNPs, which increases the statistical power
of our study. By using individual genotype data of 26,655

participants, we were able to explore if there are any differences
in the effect between different subgroups. Last, the consistency
of findings across various MR methods, each based on different
assumptions regarding pleiotropy, suggests that potential bias
was unlikely to exist. Meanwhile, our study also has some
limitations. Initially, it is difficult to avoid the influence of
potential pleiotropy completely in any MR study, which may lead
to biased causal effect estimates (Bowden et al., 2015). However,
the pleiotropic effect was not observed in MR-Egger regression,
and similar results were observed in sensitivity analyses using
several other robust models. Furthermore, the findings were
limited because T2DM-associated SNPs were derived from the
Japanese population. For there is currently no large-scale T2DM
GWAS study based on the Chinese population available.

In conclusion, we do not find clear evidence for a causal role
of genetically predicted T2DM in the risk of lung cancer in a
large, well-powered study, suggesting that previous associations
between T2DM and lung cancer are possibly confounded by
potential biases or due to reverse causation.
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