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Abstract

In plants, mammals and insects, some genes are methylated in the CG dinucleotide context, a phenomenon called gene body methylation
(gbM). It has been controversial whether this phenomenon has any functional role. Here, we took advantage of the availability of 876 leaf
methylomes in Arabidopsis thaliana to characterize the population frequency of methylation at the gene level and to estimate the site-
frequency spectrum of allelic states. Using a population genetics model specifically designed for epigenetic data, we found that genes
with ancestral gbM are under significant selection to remain methylated. Conversely, ancestrally unmethylated genes were under selection
to remain unmethylated. Repeating the analyses at the level of individual cytosines confirmed these results. Estimated selection coefficients
were small, on the order of 4 Nes ¼ 1.4, which is similar to the magnitude of selection acting on codon usage. We also estimated that
A. thaliana is losing gbM threefold more rapidly than gaining it, which could be due to a recent reduction in the efficacy of selection after a
switch to selfing. Finally, we investigated the potential function of gbM through its link with gene expression. Across genes with polymor-
phic methylation states, the expression of gene body methylated alleles was consistently and significantly higher than unmethylated alleles.
Although it is difficult to disentangle genetic from epigenetic effects, our work suggests that gbM has a small but measurable effect on
fitness, perhaps due to its association to a phenotype-like gene expression.
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Introduction
Cytosine DNA methylation is a type of epigenetic mark in which a

methyl group is added to the 5th carbon of cytosines. In plants, it

can occur in three sequence contexts—CG, CHG, and CHH (where

H stands for A, T, or C)—but levels and patterns of DNA methyla-

tion vary among genomic regions. In flowering plants, methylation

in all three contexts has a well-established repressive function on

transposable elements (TEs) and regulatory elements (Luo et al.

2018; Schmitz et al. 2019). Both CHG and CHH methylation within

genes are associated with reduced expression levels in angio-

sperms, together with CG methylation in the promoter region

(Niederhuth et al. 2016). In contrast, exons in plants, insects and

mammals are sometimes methylated only in the CG context; this

gene body methylation (gbM) can be found within moderately and

constitutively expressed housekeeping genes (Zhang et al. 2006;

Neri et al. 2017; Schmitz et al. 2019) and is linked to active tran-

scription in plants (Zhang et al. 2006; Zilberman et al. 2007; Cokus

et al. 2008; Lister et al. 2008). However, it is not yet clear if gbM has

a function, because the study of mutants deprived of gbM has

failed to reveal a clear effect on phenotype (Teixeira and Colot

2009; Bewick and Schmitz 2017; Zilberman 2017).
The mechanisms responsible for the establishment of gbM in

plants have recently been clarified, due in large part to studies

in Eutrema salsugineum, a close relative of Arabidopsis thaliana that
lacks both gbM and the CHROMOMETHYLASE 3 (CMT3) gene
(Bewick et al. 2016). The CMT3 protein has previously been shown
to be involved in a self-reinforcing feedback loop: the histone
mark H3K9me2 is recognized by CMT3 which then de novo meth-
ylates nearby cytosines in the CHG context and in turn leads to
H3K9 methylation (Kawashima and Berger 2014). The deposition
of CHG methylation typically suppresses transcription, but it is
removed within transcribed genic regions by INCREASED IN
BONSAI METHYLATION 1 (IBM1) (Saze et al. 2008; Miura et al.
2009).

The critical role of CMT3 in gbM establishment is supported
by the facts that not just one but two Brassicaceae species have
independently lost CMT3 and both lack gbM (Bewick et al. 2016;
Niederhuth et al. 2016). Moreover, transgenic reinsertion of CMT3
into E. salsugineum re-establishes genic methylation in all three
contexts in a subset of genes that tend to be orthologous to gbM
genes in A. thaliana (Wendte et al. 2019). This subset of genes has
been called “CHG-gain” genes (Wendte et al. 2019), and remark-
ably, these genes remained methylated only in the CG context
following the loss of the CMT3 transgene (Wendte et al. 2019). It
remains unclear how CMT3 (and/or H3K9me2) is directed to a
specific subset of genes for de novo DNA methylation and how
these CHG-gain genes also become de novo methylated in the
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CG and CHH contexts (Wendte et al. 2019), but cmt3 mutants in
A. thaliana clearly demonstrate that CMT3 does not affect the
maintenance of gbM once it is established (Stroud et al. 2013).
Once CG methylation is established, it is maintained by
METHYLTRANSFERASE 1 (MET1), which adds a methyl group on
the symmetrical CG dinucleotide of a complementary DNA
strand during cell division (Kawashima and Berger 2014).
Maintenance by MET1 is an inherently error-prone process, as il-
lustrated by epimutation accumulation in A. thaliana (Becker et al.
2011; Schmitz et al. 2011; van der Graaf et al. 2015). The accumula-
tion of these epimutations over time illustrates that CG methyla-
tion is heritable.

Although gbM is widespread across species and relatively
common within a genome—it is found for example in �20% of A.
thaliana genes (Takuno and Gaut 2012)—it remains unclear
whether gbM is functionally relevant (Teixeira and Colot 2009;
Bewick and Schmitz 2017; Zilberman 2017). The question of its
potential function has focused on three interrelated hypotheses.
The first is that gbM affects gene expression. This hypothesis is
supported by the fact that gbM genes exhibit a positive correla-
tion between methylation and expression levels across genes
(Zhang et al. 2006; Zilberman et al. 2007; Takuno and Gaut 2012),
suggesting either that gbM might cause higher expression or,
conversely, that active transcription drives gbM (Teixeira and
Colot 2009). However, further tests of this association have led to
contradictory results. For example, not all highly expressed genes
have gbM in A. thaliana (Zhang et al. 2006; Zilberman et al. 2007),
illustrating that any association is not absolute. The association
has also been tested experimentally in epigenetic recombinant
inbred lines (epiRILs) that were developed from the cross of a
met1 mutant and wild-type (WT) A. thaliana, followed by eight
generations of inbreeding (Reinders et al. 2009). The resulting
epiRILs had a mosaic methylome, with regions that have normal
CG methylation derived from the WT parent and other regions
derived from the met1 mutant that originally lacked gbM.
Analysis of gene expression in these lines detected no significant
changes in the met1 derived regions of epiRILs compared to
orthologous WT regions (Bewick et al. 2016). Moreover, the
epiRILs did not reestablish the original pattern of gbM after eight
generations of epimutations (Bewick et al. 2016), suggesting that
expression was not sufficient to drive gbM reestablishment, at
least not within a few generations. However, Zilberman et al.
(2007) found that both methylated and unmethylated genes were
upregulated in met1 mutants using microarray data, suggesting
met1 methylation mutants may have unanticipated global ex-
pression effects that make them a poor system for studying the
association between gbM and expression.

Another approach to test for associations between gbM and
expression has been comparative genomics, which has the ad-
vantage of integrating effects over evolutionary time. Here, again
the results have been inconsistent. For example, Bewick et al.
(2016) and Bewick et al. (2019) found no effect of the loss of gbM
on gene expression in E. salsugineum compared to A. thaliana.
In contrast, Muyle and Gaut (2019) found a small but significant
decrease in expression associated with genes that lost gbM in
E. salsugineum, based on a reanalysis of the data from Bewick et al.
(2016). In another effort, Takuno et al. (2017) identified genes that
changed methylation status between A. thaliana and Arabidopsis
lyrata. They found a trend: genes that had gained gbM between
species tended to also shift toward higher expression levels.
Finally, Seymour and Gaut (2019) studied eight grass species and
found that genes that were gbM in all eight species tended to
have higher and less variable expression, although the effect

is small. This last observation is consistent with previous
observations that gbM is associated with less variable gene ex-
pression both within and between species (Zilberman et al. 2008;
Coleman-Derr and Zilberman 2012; Steige et al. 2017; Takuno
et al. 2017; Horvath et al. 2019; Seymour and Gaut 2019), suggest-
ing it has a homeostatic effect on expression (Zilberman 2017).

In addition to a potential—but unresolved—association with
gene expression, a second hypothesis of gbM function is that it
prevents aberrant internal and/or antisense transcription (Tran
et al. 2005; Maunakea et al. 2010). Here, again the evidence is
unclear because studies comparing gbM mutants to WT mouse
embryonic stem cells have been contradictory (Neri et al. 2017;
Teissandier and Bourc’his 2017). In plants, Bewick et al. (2016)
found no evidence that gbM prevents antisense transcription in
met1 derived regions of A. thaliana epiRILs compared to ortholo-
gous WT regions. However, Choi et al. (2020) has shown that gbM
and histone H1 jointly suppress antisense transcription in a
comparison of met1, h1 double mutants to WT A. thaliana.

The third hypothesis is that gbM improves splicing fidelity and
prevents intron retention. There is some evidence for this
hypothesis, because the alteration of DNA methylation impacts
alternative splicing in honey bee and mouse embryonic stem
cells (Li-Byarlay et al. 2013; Yearim et al. 2015). Horvath et al.
(2019) has found evidence to support this hypothesis by compar-
ing gbM genes to unmethylated genes in A. thaliana, but Bewick
et al. (2016) found no evidence for this effect by comparing met1
epiRILs to WT plants. Overall, the contradictory findings
regarding the possible function of gbM suggest that its effects, if
any, must be relatively small.

While assays of the functional relevance of gbM have provided
mixed results, evolutionary patterns of gbM have provided con-
sistent but indirect evidence of its potential importance. Across
plant species, gbM genes are generally longer, enriched for house-
keeping and other important functions and evolve more slowly
than unmethylated genes (Takuno and Gaut 2012, 2013; Takuno
et al. 2017; Seymour and Gaut 2019). Moreover, comparative anal-
yses have shown that gbM is conserved for orthologous genes
between species as distantly related as ferns and angiosperms
(Takuno and Gaut 2013; Seymour et al. 2014; Niederhuth et al.
2016; Takuno et al. 2016; Seymour and Gaut 2019). This last
characteristic of gbM is surprising because DNA methylation is
mutagenic and elevates C to T substitutions (Bird 1980). Hence,
the conservation of gbM over millions of years suggests that the
mutagenic feature of methylation is counterbalanced by an
advantageous effect that acts to maintain gbM in specific genes
(Zilberman 2017). However, another possible explanation for the
strong conservation of gbM within a specific set of genes is
that de novo methylation biases, such as those that target the
CHG-gain genes of E. salsugineum (Wendte et al. 2019), have been
conserved across species over vast periods of evolutionary time.

Clearly several questions about gbM function and evolution
remain unresolved. Here, we move away from experiments and
comparative studies and employ population genetic approaches
to study gbM. Thus far, the tools of population genetics have
been applied to epigenetic phenomena in only a handful of stud-
ies. For example, van der Graaf et al. (2015) found similar epimu-
tation rates between A. thaliana populations and >31 generations
of epimutation accumulation lines, suggesting that selection has
not impacted global patterns of CG methylation diversity in that
species. They nonetheless argued, based on the rate of epimuta-
tion events, that selection of epiallelic states could be an impor-
tant process. Wang and Fan (2014) developed a modification of
Tajima’s D for application to methylation data and used it to
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demonstrate that new genes have an excess of rare epialleles,
which they interpreted was consistent with directional selection
on an epigenetic state. Two other studies have used site fre-
quency spectra (SFS) to test for selection on methylation data. In
the first, Vidalis et al. (2016) estimated the SFS of cytosine sites
within genes of a sample of 92 A. thaliana individuals, but they did
not detect a deviation from neutrality. More recently, studies
have hinted at selection on methylation, because an SFS analysis
at the level of 100 bp regions detected weak but significant selec-
tion on methylation levels (Xu et al. 2020) and because germline
promoter methylation was inferred to be deleterious in humans
(Boukas et al. 2020).

Here, we extend the SFS approach to data from the 1001 meth-
ylomes project in A. thaliana (Kawakatsu et al. 2016), to test two
features of gbM. The first is whether there is evidence that gbM is
subject to selection. To do so, we focus on the methylation state
of genes, rather than individual sites. We focus on genes because
previous work has shown that methylation is evolutionary
conserved at the level of genes and not within individual sites,
suggesting that the methylation state of a gene region could be
the unit under selection (Takuno and Gaut 2013). However, we do
not rely solely on gene-level analyses but also analyze the SFS of
individual cytosines, as did Vidalis et al. (2016), but with a much
larger dataset. The second is that we provide an intraspecific test
of the association of gbM and gene expression by comparing the
methylation state of alleles to their level and variability in ex-
pression. By harnessing the power of an extensive A. thaliana
dataset, we uncover new information on the evolutionary forces
that may act on epigenetic phenomena and the potential func-
tional significance of gbM.

Materials and methods
Datasets
Methylation and expression files for A. thaliana were retrieved
from data banks indicated in Supplementary Table S1. The files
consisted of tables with one line per cytosine showing the num-
ber of methylated and unmethylated bisulfite sequencing (BS-
seq) reads for each methylome, and tables with one line per gene
showing the number of reads mapping for each transcriptome.
The dataset included a total 1211 samples sequenced by BS-seq
and 1195 by RNA-seq (see Supplementary Table S1 for a synthe-
sis). More precisely, 927 A. thaliana were grown at 22�C and their
methylomes were sequenced by BS-seq at the SALK Institute
(Kawakatsu et al. 2016), of which 876 came from leaves and 51
from flower buds (with only a partial overlap in accessions
between the two tissues). One hundred and forty-four of these
samples had their leaf transcriptome profiled with the SOLiD sys-
tem (Schmitz et al., 2013), and 728 samples had their leaf
transcriptome sequenced by Illumina RNA-seq (Kawakatsu et al.
2016). Another set of accessions, most of which were from
Sweden, had their leaf BS-seq data generated at the Gregor
Mendel Institute (GMI) (Dubin et al. 2015). These included 152
accessions that were grown at 10�C and another 120 accessions
grown at 16�C. Some accessions had replicates sequenced, result-
ing in a total of 284 methylomes from GMI. These had corre-
sponding leaf transcriptome data from 160 accessions grown at
10�C and from 163 accessions grown at 16�C, for a total of 323
samples sequenced by Illumina RNA-seq (Dubin et al. 2015).
While the total dataset was 1211 accessions, we detected a strong
Institute-of-origin effect in the data (see Results). We therefore
opted to treat data from the two institutes separately and fo-
cused our analyses on leaf data from the Salk Institute (the “Salk

dataset” of 876 accessions, Supplementary Table S1) and also

analyzed a dataset from GMI (the “GMI dataset”) consisting of the

120 accessions grown at 16�C.
For outgroup data, we retrieved A. lyrata MN47 and Capsella ru-

bella MTE �10-day-old seedling shoot methylation files (Seymour

et al. 2014). For each species, two replicates grown at 23�C were

used.

Inference of cytosine methylation
Cytosine methylation calls were already in the downloaded files

from the Salk institute, and these calls were based on the method

of Kawakatsu et al. (2016). For A. thaliana data from GMI (273 sam-

ples plus 11 replicates) as well as for A. lyrata and C. rubella data,

we inferred cytosine methylation using the same method. Briefly,

methylation was inferred for each site by performing a binomial

test on the number of methylated and unmethylated reads, while

taking into account the no-conversion rate (Lister et al. 2008). For

the GMI data, the average no-conversion rate of 0.0041 was used

for all samples (Dubin et al. 2015). P-values were corrected for

multiple tests using Benjamini and Hochberg correction. Sites

with �2 reads were considered as unmethylated, and sites with a

corrected P-value under 0.001 were considered to be methylated.

Inference of gene body methylation
For each gene, the methylation state was inferred using data

from coding sequences (CDS), which included exons but excluded

both untranslated terminal regions and introns. We used the an-

notation of the longest transcript to define the CDS. For each ac-

cession separately, we computed an expected methylation rate

for each context (CG, CHG, and CHH) across all CDSs annotated

in the genome, and we used binomial tests to assess whether

gene CDSs had a significantly higher proportion of methylated

cytosines than the genome-wide background level of CDS meth-

ylation (Takuno and Gaut 2012). This was performed for each ac-

cession and cytosine context separately. P-values were corrected

for multiple tests using the Benjamini and Hochberg correction

for each accession separately.
Given the binomial results, a gene within an accession was in-

ferred to be gene body methylated (gbM) if: (i) it had �20 CG sites,

(ii) CG methylation was significantly higher than the background

(one-sided binomial P� 0.05), and (iii) CHG and CHH methylation

were not significantly higher than the background (one-sided

P> 0.05). Similarly, a gene was inferred to be CHG methylated if it

had �20 CHG sites, if CHG methylation was higher than the

background (one-sided P� 0.05) and CHH methylation was not

significantly higher than the background (one-sided P> 0.05).

CHG methylated genes also tended to be CG methylated, but CG

methylation was not required in our categorization. A gene was

inferred to be CHH methylated if it had �20 CHH sites and if CHH

methylation was higher than the background (one-sided P� 0.05).

CHH methylated genes also tend to be CG and CHG methylated.

Finally, a gene was inferred to be unmethylated (UM) if it had

�20 CG sites and if CG, CHG, and CHH methylation were not

significantly higher than the background (one-sided P> 0.05).

In any other case, the gene methylation state was not inferred.

Altogether, by applying this approach, we identified the fre-

quency of methylation states across alleles among 1211 acces-

sions and for �27,000 genes. Note, however, that we focused our

analyses on the subset of accessions that we called the Salk and

GMI datasets (Supplementary Table S1).
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Inference of ancestral methylation state
For each gene and each dataset, the ancestral methylation state

in A. thaliana was inferred using methylation data from A. lyrata

and C. rubella. To this end, we used the CoGe tool SynMap3D

(Lyons and Freeling 2008) to infer orthologous syntelogs among

A. thaliana, A. lyrata and C. rubella. We differentiated between

orthologs and out-paralogs (paralogs caused by duplications that

predate speciation) using pairwise dS values between syntelogs.

Based on the distribution of dS values (Supplementary Figure S1),

log10(dS) values were filtered to be lower than �0.39 for all spe-

cies pairwise comparisons, which is equivalent to dS values lower

than 0.407. After this filtering, 14,718 orthologous syntelogs were

identified among the three species.
Two shoot replicates grown at 23�C were available for each

outgroup species (A. lyrata and C. rubella) (Seymour et al. 2014).

For every gene, the ancestral methylation state was inferred as

the shared state between the two outgroups and their replicates.

If the two replicates of a species had different methylation states

for a gene, or if the gene had different methylation states be-

tween A. lyrata and C. rubella, we classified the gene as having an

ambiguous ancestral state.

Inference of genes undergoing CG methylation
epimutations
We also investigated the set of CHG-gain genes from E. salsugi-

neum CMT3 overexpressing transgenic lines by retrieving the list

of 8704 CHG-gain genes from Wendte et al. (2019). The best blast

hit—as provided in the genome reference—was used to infer the

ortholog in A. thaliana for 8025 of these CHG-gain genes.

Site frequency spectrum
Most of our analyses were done at the genic level, so that the

SFS was based on gene allelic states (i.e., epialleles). The un-

folded SFS was drawn for two gene methylation states, gbM and

UM. mCHG and mCHH states were excluded from the SFS. For

the Salk dataset, which consisted of 876 leaf methylomes, we

only included genes in the SFS when they had �600 accessions

with a UM or gbM methylation state; for the GMI dataset, the

corresponding number was �80 of the 120 accessions. The dis-

tribution of the proportion of mCHG and mCHH accessions

across all genes in the Salk dataset after applying this filter is

shown in Supplementary Figure S2. For both datasets, genes

that had >70% of accessions with mCHG or mCHH methylation

state were discarded as possibly being pseudogenes or misanno-

tated TEs.
The number of accessions with an inferred methylation state

n varied among genes due to missing data, so that the site fre-

quency spectrum sample size varied among genes. To cope

with this missing data, we defined n’, the minimum required

number of accessions with characterized methylation, and ap-

plied a hypergeometric projection of the observed SFS into a

subsample of size n’¼600 for the Salk dataset and n’¼80 for the

GMI dataset. This is a mathematical transformation that down-

samples all genes to have the same sample size. Genes sampled

in less than n’ accessions were discarded. Given the frequency k

of the derived allele in the original sample of size n, the proba-

bility that i copies are observed in the reduced sample of size n’

is (Hernandez et al. 2007):

P
i
n0
j k
n

� �
¼

Ci
kCn0�i

n�k

Cn0
n

(1)

Estimation of selection using the site frequency
spectrum
Given the SFS, we estimated the strength of selection acting on
methylation variants using the model of Charlesworth and Jain
(2014). The model was designed to characterize the evolutionary
forces acting on epigenetic markers, which evolve at much higher
rates than DNA sequences when single sites are considered
(Becker et al. 2011; Schmitz et al. 2011). We adapted the model for
application to our biological question of whether selection acts
on gene methylation states. Genes, which were the predominant
unit considered here, can either be gbM or UM, with l the muta-
tion rate from UM to gbM and � the mutation rate from gbM to
UM.

The model assumes a randomly mating diploid population of
constant effective population size Ne which is at mutation-selec-
tion equilibrium. The model further assumes that alleles are
semi-dominant and that sites are independent. We estimated Ne

using available polymorphism measures in A. thaliana (Alonso-
Blanco et al. 2016): 10,707,430 total SNPs were detected in 1135
genomes of size 135 Mb, resulting in a Watterson theta hw ¼
0.00955 (Charlesworth and Charlesworth 2010). Using a mutation
rate l¼ 7 � 10�9 (Ossowski et al. 2010) and hw¼4Nel, we estimated
Ne � 341,000. These values were similar to previous diversity
measurements in A. thaliana, where intronic hw was estimated to
be 0.0082 (Nordborg et al. 2005), but the actual hw may be higher
due to biases in its estimation (Korunes and Samuk 2020).

If the UM state is advantageous over the gbM state, the proba-
bility that a sample of n individuals segregates for k UM variants
and (n-k) gbM variants at a given gene is (Charlesworth and Jain
2014):

p kð Þ ¼ n
k

� �
F1 bþ k; aþ bþ n; cð Þ bð Þk að Þn�k

F1 b; aþ bþ n; cð Þ aþ bð Þn
(2)

Where F1 is the confluent hypergeometric function, (x)n is
Pochhammer’s symbol, a¼ 4 Nel, b¼ 4 Ne� and c¼ 4 NesUM with
sUM the selective advantage of the UM methylation state over
gbM. The model can easily be adapted to a case where the gbM
state is advantageous over the UM state by switching a and b in
Equation (2) and defining sgbM the selective advantage of the gbM
state.

The likelihood of the model is:

L ¼
Yn

k¼0
p kð Þdk (3)

Where dk is he number of genes observed with k UM acces-
sions and (n-k) gbM accessions.

Parameters of the model l, �, and sUM (or sgbM) were estimated
using a Markov Chain Monte Carlo (mcmc) random walk with
100,000 generations as in Xu et al. (2020). The first 25% of mcmc
generations were removed as burn-in. Parameters were sampled
every 100 generations, providing around 750 samples for the pos-
terior distributions of parameters (see Supplementary Figure S3
for an example of mcmc run diagnostics). The lambda parame-
ters for scale proposal distribution were adjusted to obtain pa-
rameter acceptance rates between 20 and 70%. Both segregating
and fixed sites of the SFS were used in the model. Final parameter
values were obtained from the mean of the posterior distribution
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and the credible interval from the 95% margins of the posterior
distribution. We ran the algorithm three times with random
starting points to ensure that the global maximum was found. In
order to infer whether selection acting on the UM or the gbM
state was significant, we compared the inferred value of 4.Ne.s to
1.0. If 1.0 was lower than 4.Ne.s and outside of its credibility inter-
val (hereafter abbreviated 4.Ne.s	1), then we inferred that there
was significant selection on methylation state, as values of 4.Ne.s
lower than 1.0 are typically interpreted as cases of neutral evolu-
tion (Charlesworth and Charlesworth 2010). For each run, the
expected SFS (using inferred parameter values from the best
model) was compared to the observed SFS using a Pearson’s v2

test in R.

SFS analysis on individual cytosines
The previous two sections used genes as the unit to draw the SFS
and their methylation state as epialleles. In an attempt to gener-
alize our results, we also analyzed the SFS of individual cytosines
at CG sites for the Salk dataset. To this end, we (i) isolated CG
cytosines with 3 or more read coverage within the CDS of genes;
(ii) separated cytosines inside ancestrally gbM and ancestrally
UM genes; and (iii) excluded the cytosines of accessions where
the CDS had either mCHG or mCHH methylation state (as in-
ferred at the gene level). CG cytosines were assigned to be either
unmethylated or methylated as indicated in the Salk Institute
methylation files. After inferring the SFS for individual cytosines
within different genic sets, we applied the same mcmc approach
as described above to estimate selection coefficients (smC for ad-
vantageous methylated cytosines and sC for advantageous unme-
thylated cytosines). The state of the individual cytosines in the
outgroup was not considered here because we analyzed sepa-
rately cytosines that fell within ancestrally gbM and ancestrally
UM genes.

Statistical study of the link between gbM and
gene expression level
We measured the effect of gbM on expression level using the Salk
dataset, which consisted of 679 accessions with both leaf methyl-
ation data and leaf expression data in the form of raw RNA-seq
read counts. This number of accessions differed from the previ-
ous 876 Salk accessions used for the SFS analysis due to missing
leaf expression data for some accessions. We constructed a linear
model with mixed effects (Equation 4) to examine the data, which
was run with the R package lme4 (Bates et al. 2015). We did not
normalize gene expression and used raw read numbers, but the
results were equivalent when using normalized read numbers as
provided in GEO expression files. The aim of the model was to
test, within each gene, for an association between a change in
gene methylation state and gene expression across A. thaliana
samples. To account for expression variability among genes, the
model incorporated a random gene effect (see Equation 4). The
random gene effect captures variability in gene expression due to
average differences among genes. We also defined a fixed effect
called gene methylation state (Equation 4), which consists of the
states described above (e.g., gbM, mCHG, mCHH, and UM) and
applies to each gene epiallelic state within each accession.
Significance for the fixed effect was determined by comparing
the fit of the full model to a nested model without the fixed ef-
fect, using the anova function in R. Expression level was mea-
sured as raw read counts and log transformed. The R package
lsmeans (Lenth 2016) was used to estimate pairwise differences
between each pair of methylation states (i.e., gbM vs UM, UM vs
mCHG, and so on).

Our linear model can be expressed as:

log ðGene Expression þ 1Þ � gene methylation stateþ ð1jGeneÞ
(4)

We also developed two linear mixed-effects models to investi-
gate the potential relationship between genetic and epigenetic
states of alleles. The model included the number of CG dinucleo-
tides (#CG) and the epiallelic methylation state, as fixed effects,
and the random gene effect:

CG � gene methylation stateþ ð1jGeneÞ (5)

log ðGene Expression þ 1Þ � CGþ gene methylation state
þ ð1jGeneÞ (6)

Data availability
All data used in this manuscript were previously published (GEO
accessions GSE43857, GSE80744, GSE54292, GSE43858, GSE54680).
Supplementary material is available at figshare: https://doi.org/
10.25386/genetics.14390681 (last accessed 29 April 2021).

Results
Detection of selection acting on gene methylation
level
We used publicly available methylation datasets (Supplementary
Table S1) to infer the methylation state of genes in A. thaliana
accessions and two closely related outgroups. We first recognized
that BS-seq of A. thaliana methylomes was carried out by two re-
search Institutes (Salk and GMI), and so we compared methyla-
tion patterns and levels between their data. We found that the
global rate of CHH methylation was significantly higher in acces-
sions sequenced by GMI (2.3%) compared to the Salk Institute
(0.28%, Supplementary Figure S4), regardless of the geographic
origin of accessions (Supplementary Figure S5). This heterogene-
ity in the raw data had the potential to impact downstream gene
methylation inferences (Supplementary Figure S6). We therefore
focused most of our analyses on a single source—i.e., the Salk
data—because it had the highest number of samples. We also fo-
cused on methylome data from only a single tissue (leaf), leading
to total analysis sample of 876 accessions in the Salk dataset
(Supplementary Table S1).

Given the data, we inferred the gbM status for each gene in
each accession separately to calculate the unfolded SFS for two
gene methylation states—gbM and UM—after using a mathemat-
ical transformation to downsample all genes to a sample size of
600 accessions (see Materials and Methods for details). Altogether,
we plotted the SFS based on 22,609 genes and found that, after
the hypergeometric transformation, many genes were fixed for
the UM methylation state in A. thaliana wild populations (10,090
genes), but there was also a subset of 652 genes fixed for gbM
alleles (Figure 1A). Given the inferred SFS, we applied the model
of Charlesworth and Jain (2014) to infer the selection coefficient,
which is sUM in a model where the UM state is advantageous and
sgbM in a model for which the gbM state is advantageous. Based
on all 22,609 genes together (ancestrally UM, ancestrally gbM and
genes with ambiguous or missing ancestral states), we found that
the model that best fit the data was one without selection on
gene methylation state, with estimated values of 4.Ne.s close to
zero (Table 1). Note that the expected SFS based on fixing s to
zero and estimating other parameters fit the observed SFS quite

A. Muyle et al. | 5

https://doi.org/10.25386/genetics.14390681
https://doi.org/10.25386/genetics.14390681


well (Figure 1A), with no significant difference between them
(Pearson’s v2 test P¼ 0.406).

Our SFS illustrates that gbM is bi-modal, which is consistent
with the fact that gbM is associated with a finite but conserved
set of orthologous genes across angiosperms (Takuno et al. 2016).
It seems reasonable to presume, then, that genes that are evolu-
tionary conserved as gbM may be under different selection
regimes than those that are evolutionary conserved as UM.

Accordingly, we repeated analyses after splitting ancestrally gbM
and UM genes (Figure 1, B and C). To infer the ancestral state, we
used two outgroups (A. lyrata and C. rubella), identified syntelogs
for 14,718 genes among the three species, and then inferred the
ancestral methylation state by parsimony when both outgroups
and their replicates had the same methylation state. After ex-
cluding 3699 genes for either missing methylation state infer-
ences or for having ambiguous ancestral state, we applied the

Figure 1 Expected and observed SFS of gbM based on the Salk dataset of 876 accessions at the gene level. The x-axis provides the number of UM
accessions, out of a sample of 600. For these data, accessions that are not UM are gbM, meaning that genes with 600 UM accessions are fixed for the UM
state in A. thaliana and genes with 0 UM accessions are fixed for the gbM state. The number of genes is provided on the y-axis. (A) All genes (22,609
genes with either UM, gbM, missing or ambiguous ancestral state), (B) Ancestrally gbM genes (3,243 genes), and (C) Ancestrally UM genes (7,626 genes).
For visualization purposes, a gap was introduced in the x-axis from 30 to 570. The expected SFS were drawn using the parameters estimated by the
mcmc, using the inferred selection pressure shown in Table 1. All three expected SFS fit the observed SFS well and did not differ significantly from the
observed distribution (Pearson’s v2 test P> 0.4).

Table 1 Estimation of selection acting on gene methylation state on the Salk dataset

Gene number Mean 4.Ne.s 4.Ne.s credible
interval

Conclusion

All genes 22,609 4.Ne.sUM ¼ 0.064 0.011–0.127 No selection on gene methylation
(4.Ne.s
 1)

Ancestrally gbM genes 3,243 4.Ne.sgbM ¼ 1.637 1.359–1.896 gbM state advantageous (4.Ne.sgbM	 1)
Ancestrally UM genes 7,626 4.Ne.sUM ¼ 1.896 1.514–2.237 UM state advantageous (4.Ne.sUM	 1)
CHG-gain orthologs 7,534 4.Ne.sgbM ¼ 0.286 0.176–0.393 No selection on gene methylation

(4.Ne.s
 1)
No-CHG-gain orthologs 15,093 4.Ne.sUM ¼ 0.355 0.246–0.468 No selection on gene methylation

(4.Ne.s
 1)
Ancestrally gbM CHG-gain orthologs 1,984 4.Ne.sgbM ¼ 1.623 1.337–1.910 gbM state advantageous (4.Ne.sgbM	 1)

no-CHG-gain orthologs 1,250 4.Ne.sgbM ¼ 1.637 1.266–2.005 gbM state advantageous (4.Ne.sgbM	 1)
Ancestrally UM CHG-gain orthologs 2,184 4.Ne.sUM ¼ 3.437 2.905–3.915 UM state advantageous (4.Ne.sUM	 1)

no-CHG-gain orthologs 5,349 4.Ne.sUM ¼ 3.178 2.728–3.601 UM state advantageous (4.Ne.sUM	 1)

Parameters of the SFS model were estimated using an mcmc approach (see Materials and Methods for details). The estimated mean selection efficacy (either
4.Ne.sUM or 4.Ne.sgbM, depending on which is higher) is shown and its 95% credible interval. If 4.Ne.s>1.0 and if 1.0 is not included in the credible interval, then
significant selection is inferred to act on methylation state (either the UM or the gbM state is advantageous). Details on inferred values of other parameters of the
model can be found in Supplementary Table S2. These results come from one mcmc run and are equivalent to results obtained from two independent runs with
random parameter initiation values (Supplementary Table S2).
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model to a set of 3243 genes that were inferred to be ancestrally
gbM, estimating a small selection coefficient (sgbM ¼ 1.2 � 10�6)
but significant selection (4.Ne.sgbM 	 1, Table 1). This result
implies that there is weak but detectable selection to maintain
methylated alleles within genes that are ancestrally gbM. In con-
trast, 7626 ancestrally UM genes were estimated to be under se-
lection to maintain UM alleles in A. thaliana wild populations (sUM

¼ 1.39 � 10�6, 4.Ne.sUM	 1, Table 1).

Additional analyses confirm selection on gene
methylation states
We have mentioned both that there is no gbM in E. salsugineum
due to the loss of CMT3 (Bewick et al. 2016) and that complemen-
tation of E. salsugineum with a functional copy of A. thaliana CMT3
leads to the accumulation of DNA methylation in “CHG-gain”
genes (Wendte et al. 2019). These results suggest that DNA meth-
ylation epimutation rates are not homogeneous among genes,
which could be problematic for our model. We therefore repeated
the previous analyses separately for CHG-gain and for no-CHG-
gain genes in A. thaliana, based on identifying the 8,025 orthologs
of CHG-gain genes from E. salsugineum (see Materials and Methods).
After excluding genes with <600 accessions with a gbM or UM
methylation state, we found that 7,534 CHG-gain genes were un-
der no selection on gene methylation state (4.Ne.s
 1, Table 1).
Similarly, the set of 15,093 no-CHG-gain genes were estimated to
be under no selection to retain UM nor gbM status (4.Ne.s
 1,
Table 1). The model also estimates epimutation rates; consistent
with implications of the E. salsugineum experiment (Wendte et al.
2019), we found that the mutation rate m from the UM state to the
gbM state was �1.79 times higher in CHG-gain compared to no-
CHG-gain genes. In contrast, the epimutation rate v from gbM to
UM was �0.79 times lower in CHG-gain compared to no-CHG-
gain genes (Supplementary Table S2).

Recognizing that CHG-gain and no-CHG-gain genes have dif-
ferent epimutation rates, we repeated the analyses after splitting
CHG-gain and no-CHG-gain genes into ancestrally gbM and an-
cestrally UM genes. Ancestrally gbM genes were under significant
selection to remain gbM (4.Ne.sgbM 	 1), regardless of whether
they were targeted by additional methylation epimutations
(CHG-gain) or not (no-CHG-gain, Table 1). Conversely, ancestrally
UM genes were under significant selection to remain UM
(4.Ne.sUM 	 1), regardless of their epimutational bias (Table 1).
Our results were therefore confirmed after splitting the dataset
into sets of genes that differ in epimutation rates.

Thus far, all of our results have been based on the Salk
dataset. To confirm these results with an independent dataset,
we ran the same gene-level SFS analyses on the GMI dataset
(i.e., for 120 accessions grown at 16�C; Supplementary Table S1).
The observed SFS fit well to the expected SFS drawn from the
parameter values estimated with the mcmc (Pearson’s v2 test
P> 0.3, Supplementary Figure S7). This dataset was expected to

be less statistically powerful due to the lower number of acces-
sions and because fewer genes were included in the SFS after fil-
tering for having �80 accessions with UM or gbM methylation
state (Table 2). We could nonetheless confirm some of our previ-
ous conclusions based on the Salk dataset (Table 2). Ancestrally
UM genes are under selection to remain UM and all genes taken
together were under no selection for methylation state. However,
unlike the Salk dataset, ancestrally gbM genes did not yield
evidence for significant selection on the gbM state, perhaps
because the datasets were smaller (Table 2). These results for the
GMI dataset were consistent across three independent mcmc
runs (Supplementary Table S3).

Finally, we recognized that tests of allelic states may violate
one of the assumptions of Charlesworth and Jain (2014), which is
high mutation rates. Hence, as a final analysis, we ran the SFS
analysis on individual cytosines rather than entire genes, again
using the Salk dataset (see Materials and Methods). We analyzed
separately cytosines within ancestrally gbM genes (361,038
cytosines) and cytosines within ancestrally UM genes (602,890
cytosines) and plotted their SFS (Figure 2). The model inferred
that cytosines inside ancestrally gbM genes were under signifi-
cant selection to be methylated (4.Ne.smC ¼ 2.101, with credible in-
terval 2.073–2.114, hence 4.Ne.smC 	 1, Supplementary Table S4).
The inferred selection coefficient acting on individual cytosines
(smC ¼ 1.54 � 10�6, Supplementary Table S4) was similar to
the one estimated on entire genes (sgbM ¼ 1.2 � 10�6, Table 1).
Conversely, cytosines inside ancestrally UM genes were under
significant selection to be unmethylated (4.Ne.sC ¼ 2.51, with
credible interval 2.482–2.537, hence 4.Ne.sC 	 1, Supplementary
Table S4). These results were also consistent across three
independent mcmc runs (Supplementary Table S4). Overall, our
results provide evidence that the methylation state of alleles is
associated with natural selection within genes.

Effect of gene methylation state on gene
expression level in A. thaliana wild populations
E. salsugineum lacks gbM due to the loss of CMT3 (Bewick et al.
2016), but there has been some debate about the effects of this
gbM loss on gene expression. Bewick et al. (2016) found no effect,
a result upheld by later analyses (Bewick et al. 2019). However, us-
ing different statistical approaches, Muyle and Gaut (2019) found
evidence for a small but significant decrease in expression level
for E. salsugineum genes that had lost gbM relative to the same
gbM genes in A. thaliana. We further investigated the possible as-
sociation between gbM and gene expression by analyzing expres-
sion levels. To make this assessment, we focused on accessions
within the Salk dataset that had both RNAs-eq data and methyla-
tion data from leaves. The dataset consisted of 679 accessions
(Supplementary Table S1) and 23,261 genes with polymorphic
methylation states (i.e., genes fixed for a given methylation state
were removed from consideration). The availability of these data

Table 2 Estimation of selection acting on gene methylation state on the GMI dataset

Gene number Mean 4.Ne.s 4.Ne.s credible interval Conclusion

All genes 15,720 4.Ne.sgbM ¼ 0.199 0.052–0.378 No selection on methylation (4.Ne.s
 1)
Ancestrally gbM genes 1,383 4.Ne.sgbM ¼ 0.866 0.368–1.341 Nonsignificant selection on gbM

state (4.Ne.sgbM � 1)
Ancestrally UM genes 6,078 4.Ne.sUM ¼ 3.751 3.274–4.242 UM state advantageous (4.Ne.sUM	 1)

Parameters of the SFS model were estimated using an mcmc approach (see Materials and Methods for details). The estimated mean selection efficacy (either
4.Ne.sUM or 4.Ne.sgbM, depending on which is higher) is shown with its 95% credible interval. If 4.Ne.s>1.0 and if 1.0 is not included in the credible interval, then
significant selection is inferred to act on methylation state (the UM or the gbM state is advantageous). Details on inferred values of other parameters of the model
can be found in Supplementary Table S3. These results come from one mcmc run and are equivalent to results obtained from two independent runs with random
parameter initiation values (Supplementary Table S3).
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permitted a test of whether epiallelic methylation states are
associated with differences in expression.

We analyzed the data using a linear model with mixed effects
(Equation 4, see Materials and Methods). The model was written to
measure within gene expression variation, and then test for a
significant effect of methylation state across all genes. This
approach is possible due to polymorphisms in gene epiallelic
states (or epialleles) among accessions. Treating genes as random

effects and epiallele state (gbM, UM, mCHG, or mCHH) as a fixed
effect, we found that epiallele methylation state had a significant
effect on gene expression level (v2 ¼ 19,300, P< 2.2 � 10�16 when
comparing a linear model with and without gene methylation
state effect). We repeated these analyses between pairs of meth-
ylation states, comparing along an expected hierarchy of expres-
sion levels defined as gbM > UM > mCHG > mCHH. Our results
confirmed that expected hierarchy, because gene expression in

Figure 2 Expected and observed SFS of individual cytosine methylation in the Salk dataset. The x-axis provides the number of unmethylated (UM)
accessions out of a sample of 600. For these data, accessions that are not UM are methylated, meaning that cytosines with 600 UM accessions are fixed
for the UM state in A. thaliana and cytosines with 0 UM accessions are fixed for the methylated state. The number of cytosines is provided on the y-axis.
(A) Cytosines within ancestrally gbM genes (361,038 cytosines) and (B) Cytosines within ancestrally UM genes (602,890 cytosines). The expected SFS
were drawn using the parameters estimated by the mcmc, using the best model in Supplementary Table S4. Both expected SFS did not differ
significantly from the observed SFS (Pearson’s v2 test P> 0.3).

Figure 3 Normalized expression levels in a random set of genes with both UM and gbM epialleles. To make this figure, a random set of 100 genes was
selected and only genes with both UM and gbM epialleles were retained. Genes with median read number under 10 were also excluded, leaving 57
genes. For each gene, the box plots indicate normalized expression levels for gbM and UM epialleles, with the lines representing the medians and the
width of the boxplot the 1st and 3rd quartile. The figure shows that accessions that have a gbM epiallele tend to have a higher median normalized
expression compared to accessions that have a UM epiallele, because 34 out of 57 genes in the represented random gene set have higher median
expression levels for gbM epialleles. Although the differences are small and some genes show the opposite pattern, the overall effect is significant in a
linear model across genes (see text for details). For each accession, normalized expression level was computed as follows: (accession normalized read
number—median gene normalized read number)/median gene normalized read number.
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accessions that had the gbM epiallelic state was significantly
higher than for accessions that had the UM epiallelic state for
that same gene, globally across all genes (Figure 3). Similarly, we
found that UM alleles had higher expression than mCHG alleles
and that mCHG alleles were more highly expressed than mCHH
alleles (Table 3). Altogether, these results show that within a
gene, an accession with the gbM epiallelic state is consistently as-
sociated with the highest gene expression level, while the mCHH
state is consistently associated with the lowest gene expression
level. Our results are consistent with previous studies that associ-
ate CHG and CHH methylation with a reduced gene expression
level in angiosperms (Niederhuth et al. 2016). However, the esti-
mated differences in expression levels were very small (0.0563 log
read count difference on average between gbM and UM methyla-
tion states, Table 3, which is equivalent to 1.058 raw read count
difference on average). It is important to emphasize that linear
models can detect small mean differences as significant so long
as those differences are prevalent across the entire dataset.

In order to further test the robustness of our results, we per-
formed two additional analyses. First, to confirm that the results
were not an artifact of the linear model, we reran the model after
randomly permuting methylation states without replacement
among accessions and genes. These permutations removed
associations between methylation states of an allele and their
expression, and hence we did not expect to detect significant
effects with permuted data. We ran the model on 1001 permuted
datasets. As expected, the correlation between gene methylation
state and expression was significant at a ¼ 0.05 only �5.0% of
the time, because we detected significance in 54 of 1001 permuta-
tions (Supplementary Figure S8). What is more, the P-value
obtained from the real dataset was more than eight orders of
magnitude lower than the lowest P-value obtained on any of the
permuted datasets. These permutation results illustrate both
that the model is well-behaved and that the observed data are
strongly unexpected under a null hypothesis in which methyla-
tion and expression are not linked. Second, we compared expres-
sion levels between UM and gbM alleles within single genes for
the 11,613 genes that had at least one UM accession and one gbM
accession. We found accessions with gbM epialleles had a higher
median expression level than accessions with the UM state for
6122 out of 11,613 (or 52.72% of genes). This proportion repre-
sents a significant deviation (binomial test, two-sided, P¼ 5 �
10�9) from the expected value of 50% under the null hypothesis
that epiallelic state does not affect expression.

These data also present the opportunity to test the homeosta-
sis hypothesis, which posits that gbM acts to stabilize gene ex-
pression (Zilberman 2017). Under this hypothesis, we expect the
coefficient of variation to be lower across gbM epialleles than for

UM epialleles. To test the hypothesis, we focused on the 10,327
genes that harbored at least two accessions of both UM and gbM
epiallelic states in the population and then controlled for sample
size differences by randomly sampling the same number of
accessions for both epialleles within each gene. We found that
the gbM state had a significantly lower coefficient of variation
than the UM state (one-sided Wilcoxon paired signed rank test
P¼ 4.77 � 10�6). Alternatively, we simply counted the number of
genes that had a higher coefficient of variation for the UM state
compared to the gbM state; 5357 (or 61.56%) genes had more
variable expression among UM epialleles, representing a highly
significant deviation from the null expectation of 50% (binomial
test, two-sided, P¼ 1.5 � 10�4).

Discussion
We have utilized the dataset of 1001 A. thaliana methylomes
(Kawakatsu et al. 2016) to examine features of the population ge-
nomics of epiallelic states, with a focus on gbM. Our analyses
reveal two main observations. The first is that the SFS of allelic
states yields information about selection. We find that all genes
taken together are not under selection for methylation state.
However, we also find that genes with ancestral gbM are under
selection to maintain gbM in A. thaliana. The second observation
is that analysis of this extensive dataset reveals an association
between epiallelic state and patterns of expression, in terms of
both expression level and stability. Both observations have broad
relevance but also have caveats that must be considered.

gbM is under selection in A. thaliana
This study relies on 876 leaf methylomes in A. thaliana to investi-
gate whether gbM is under selection and also on an SFS approach
to detect selection that is specifically designed for epigenomic
data (Charlesworth and Jain 2014). Our work offers the first evi-
dence that ancestrally gbM genes are subject to natural selection
to remain gbM. As selection only acts on traits that impact
fitness, these results suggest that gbM has a function, at least in
A. thaliana and maybe in other organisms that have similar gene
methylation patterns (i.e., plants, mammals, and insects).

The estimated selection coefficient for the advantage of gbM,
sgbM, is small (1.2 � 10�6 on average, based on the Salk dataset,
Supplementary Table S2), resulting in c¼ 4 NesgbM¼1.64. Values of
4 Nes < 1.0 are typically considered neutral (Charlesworth and
Charlesworth 2010). These inferred values of selection coeffi-
cients acting on gbM are similar to values estimated for codon us-
age bias, a phenomenon known to be under weak but significant
selection in species with large enough Ne (Galtier et al. 2018). For
example, leucine, valine, isoleucine, and arginine have estimated
c values for selection on codon usage between 1 and 2 in A. lyrata
(Qiu et al. 2011). GbM is therefore a trait that seems to have a
weak impact on fitness, but natural selection may be substantial
enough to maintain it in a subset of important genes through
time, just like for codon bias.

Our inferences are of course subject to caveats. The first set of
caveats is related to our application of the model of Charlesworth
and Jain (2014), which assumes uniform epimutation rates across
the entire genome. To help address this limitation of the model,
we investigated ancestrally UM and gbM genes separately, and
we also separated the set of CHG-gain genes identified in E. salsu-
gineum from the no-CHG-gain genes. We separated the latter two
because CHG-gain genes may have elevated rates of de novo epi-
mutation (Wendte et al. 2019); indeed, we estimate that CHG-gain
genes have 1.79-fold higher mutation rates from the UM to gbM

Table 3 Pairwise comparison of the effect of gene methylation
state on gene expression level in the A. thaliana Salk dataset

Contrast Estimate Standard error z-ratio P-value

gbM—UM 0.0563 0.0011 51.56 <2.2 � 10�16

UM—mCHG 0.1093 0.0033 33.13 <2.2 � 10�16

mCHG—mCHH 0.2275 0.00359 63.33 <2.2 � 10�16

A generalized linear model with mixed effects was used to estimate the
effect of gene methylation state on gene expression (see Materials and Methods
for details). Gene expression was measured as raw read counts and log
transformed, but the results were equivalent when performed on normalized
read counts. The table shows the average differences in log expression levels
between pairs of methylation states (estimates) and their associated standard
error, t-ratio and P-value after correction for multiple tests. For example, the
gbM state is consistently associated with a 0.0563 higher log read count
compared to the UM state, on average across all genes and accessions.
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state. However, we inferred similar trends from all subsets of the
Salk dataset, including estimates of 4.Ne.sgbM	 1, i.e., selection to
retain methylation for ancestrally gbM genes (Table 1). These
results suggest that heterogeneity in epimutation rates across
genes are unlikely to drive our results, although we advocate for
future investigations into CMT3 targeted genes in A. thaliana, be-
cause their dynamics could differ from E. salsugineum given the
�47 million year divergence between species (Arias et al. 2014).

Additional limitations of the model include assumptions
about outcrossing, semi-dominance, absence of population struc-
ture, independence among sites, demographic equilibrium, and
mutation-selection balance (Charlesworth and Jain 2014).
Clearly, the first three of these assumptions are violated by our
study organism (A. thaliana), which is predominantly selfing with
strongly structured populations. However, we treated each
individual as haploid (in the sense that we did not separate the
two alleles of a gene), which reduces to sampling one allele per
individual from an outcrossed population. We nonetheless find
that the model fits the data well despite these limitations
(Figures 1 and 2; Supplementary Figure S7).

Another set of limitations surround the data and our treat-
ment of the data. For example, we used data from 10-day
shoots—which are a mix of leaves, stems, and leaf buds—to infer
ancestral states of A. thaliana leaves. We therefore assume that
shoots adequately reflect methylation states in leaves, an as-
sumption that appears to be reasonable for genic methylation
states across tissues of Brachypodium distachyon (Roessler et al.
2016). We also treat complete CDS regions as an epiallelic state—
e.g., gbM, UM—and inferred the SFS of those states. We chose to
focus this study on this gene-level approach based on the study
of Takuno and Gaut (2013). This study found that an ortholog
that is gbM in one species is highly likely to be gbM in another
species, even when the two species in question (in this case, rice
and B. distachyon) diverged �50 my ago. The remarkable feature
of this observation is that the methylation of orthologs was con-
served but the methylation of individual nucleotides was not. In
other words, this and subsequent studies have suggested that
gbM is a property of genes, not nucleotide sites nor DMRs (differ-
entially methylated regions), which are an amorphous and often
statistically problematic concept (Roessler et al. 2016). Our focus
on genes is also justified from observations about CHG-gain
genes in E. salsuginuem, which show that epimutation by CMT3
locally spreads over entire genes, rather than methylating
scattered isolated cytosines (Wendte et al. 2019).

We nonetheless repeated the SFS analyses at the level of indi-
vidual cytosines located within CDS. Unlike Vidalis et al. (2016),
we analyzed separately cytosines within ancestrally gbM genes
and cytosines within ancestrally UM genes. This may be one rea-
son why our conclusions differ from Vidalis et al. (2016), because
they analyzed all genes together and they also had a smaller
dataset with presumably less statistical power. Our results on in-
dividual cytosines confirm our results at the gene level: cytosines
within ancestrally gbM genes are under selection to remain
methylated (4.Ne.smC 	 1). We used the ancestral gbM status of
the entire gene to study individual cytosines, rather than the an-
cestral state of each individual cytosine, because—as mentioned
above—methylation of orthologs is conserved over time, but the
state of individual cytosines is not (Takuno and Gaut 2013). The
inferred selection coefficients are also similar between the indi-
vidual cytosines and the gene-level analysis (Supplementary
Tables S1 and S3).

Interestingly, our results on ancestrally UM genes were oppo-
site to those based on ancestrally gbM genes, both at the gene

and cytosine levels, because the former were inferred to be under
selection to be unmethylated (Supplementary Tables S2 and S4).
We obtained a similar result on the GMI dataset when running
the SFS at the gene level (Supplementary Table S3). However, se-
lection on ancestrally gbM genes was not significant in the GMI
dataset at the gene level, although the trends were in the same
direction as the Salk dataset—i.e., toward an advantage of the
methylated state in ancestrally gbM genes. These results suggest,
first, that the selection on gbM state varies among genes and, sec-
ond, that gbM might be associated with a selective trade-off
(Kiefer et al. 2019). That is, gbM is advantageous for some genes,
but could also be deleterious, perhaps due to the increased muta-
tion rate on methylated cytosines, energetic costs, or effects on
chromatin structure. We therefore argue that the advantages of
gbM outweigh its putatively deleterious mutagenic effects in a
subset of genes, but in other genes gbM offers either no advan-
tage or the advantage is not strong enough to compensate for
higher mutation rates. In other words, gbM could be under stabi-
lizing selection, with varying optima across genes.

Finally, we focus on the use of A. thaliana as a study organism
for studies of methylation. A. thaliana has been used as a model
system for good reason; without its genetic tools, the pathways
and mechanisms of cytosine methylation in plants would not be
nearly as well understood (Law and Jacobsen 2010). Similarly, the
fact that it is selfing with a small genome size makes it ideal for
some applications such as population genomics and epigenomics
(Alonso-Blanco et al. 2016; Kawakatsu et al. 2016), leading to the
generation of unique datasets like the one we have analyzed
here. However, A. thaliana may not be the ideal model to study
methylation mutants precisely because those mutants have less
phenotypic effect in A. thaliana than in some other plants—for ex-
ample, methylation mutants are often lethal in maize (Li et al.
2014). Consistent with this conjecture, a previous study compar-
ing A. thaliana and A. lyrata gene methylation states has inferred
that A. thaliana has lost gbM three times faster than gaining it
(Takuno et al. 2017). Our estimated values of epimutation rates
on all genes (Supplementary Table S2) from gbM to UM (� ¼ 2.09
� 10�7) and from UM to gbM (l ¼ 6.2 � 10�8) exactly reiterate
this threefold difference (�/l ¼ 3.37). Thus, the growing consen-
sus is that A. thaliana is losing gbM through time. We hypothesize
that one reason for this is the recent shift of A. thaliana to an in-
breeding mating system, which has reduced its effective popula-
tion size (Mattila et al. 2020) and likely led to weaker selection on
epigenetic states. The overarching—and more important—point
is that A. thaliana is likely to be a poor model to study the evolu-
tionary forces that act on gbM, and yet our study nonetheless
detects a significant selective effect.

gbM is associated with gene expression
As we noted in the Introduction, the question of gbM function
has been raised in many studies, and gene expression has been
used as the proxy for function in most of these studies. The field
has thus focused on a relatively simple question: Is gbM associ-
ated with gene expression? Unfortunately, the outcome of these
studies has been inconsistent, owing to a wide variety of reasons
that may include that: (i) the effect of gbM on expression is mi-
nor; (ii) some studies are underpowered to detect such an effect,
particularly over short temporal scales, (iii) researchers disagree
on statistical approaches, particularly whether UM genes can be
utilized as a control comparison to gbM genes (Bewick et al. 2019;
Muyle and Gaut 2019); and (iv) independent epigenetic marks
may have redundant functions that hide the effects of gbM loss
in methylation mutants (Choi et al. 2020).
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Our work here has, however, taken a unique approach, which
is to examine the association of intraspecific variation in epial-
leles and expression levels across genes. This approach makes it
possible to test (both within and across genes) whether a change
in methylation state within the population associates with differ-
ences in expression level. To our knowledge, this is the first study
to integrate intraspecific variation in gbM state with expression
level in WT plants. Our linear model consistently identified an
effect of methylation state on expression, whether we investi-
gated all of the defined states or compared pairs of states (e.g.,
gbM vs UM; Table 3). The power of this approach undoubtedly
comes from the extensive data generated by the 1001 methylome
consortium, because the size of the estimated effect is small. In
real terms, the difference between a gbM allele and a UM allele is
about 1 raw sequence read, averaged over the entire dataset.
Nonetheless, it is clear that this result is not an artifact of the ap-
proach, because we permuted the data and found that the ob-
served results are far more extreme (by 1000-fold) than the
permuted data. In short, the evidence for the effect is strong,
even though it is small. This adds to a growing number of experi-
mental and comparative genomic approaches that point consis-
tently to some association between gbM and expression
(Zilberman et al. 2007, 2008; Coleman-Derr and Zilberman 2012;
Steige et al. 2017; Takuno et al. 2017; Horvath et al. 2019; Seymour
and Gaut 2019). We also show that the variation in gene expres-
sion among accessions is lower for the gbM compared to the UM
epiallelic state. This is in agreement with other studies that sug-
gest that gbM stabilizes gene expression (Zilberman et al. 2008;
Coleman-Derr and Zilberman 2012; Steige et al. 2017; Takuno
et al. 2017; Horvath et al. 2019; Seymour and Gaut 2019).

Our results point to selection on gbM perhaps, in part, due to
its association with gene expression. But there remain two diffi-
cult questions. The first is whether selection is on gbM itself—i.e.,
the epigenetic states directly—or on associated factors, such as
chromatin factors or even underlying sequence features that
may contribute to gbM in some unknown way. Unfortunately, we
find no convincing method to discriminate among an associated
vs a direct effect of gbM, and we must thus be careful to conclude
that selection acts directly on the epigenetic state. However, to
investigate this question, we ran a linear model with mixed
effects to study the association between the number of CG dinu-
cleotides (#CG) and gene methylation states in the Salk Institute
data (see Materials and Methods, Equation 5 for details). There was
a significant correlation between #CG and methylation states (v2

¼ 17,262 and P< 2.2 � 10�16 when comparing a linear model with
and without gene methylation state effect). This model also dem-
onstrates that gbM epialleles have more CG dinucleotides than
UM epialleles (linear model pairwise contrast estimate ¼ 1.338,
P< 0.0001). Surprisingly, however, when including both methyla-
tion state and #CG in a linear model to explain expression varia-
tion (see Materials and Methods Equation 6), the methylation state
remains the main influence on gene expression. Moreover, acces-
sions with higher #CG are significantly less expressed (linear
model estimate �5.77 � 10�3, P< 2.2 � 10�16), which opposes the
effect of gbM on expression. Together, these analyses illustrate
that the epiallelic state is not independent of the underlying se-
quence, as measured by #CG, but it also hints that epigenetic
state contributes to phenotype in a way that is not easily
explained by variation in the number of CG dinucleotides alone.

The second difficult question is function: what does gbM actu-
ally do? We cannot yet answer this question, especially given the
inconsistent evidence from a variety of organisms and experi-
ments (Zilberman et al. 2007, 2008; Coleman-Derr and Zilberman

2012; Li-Byarlay et al. 2013; Yearim et al. 2015; Bewick et al. 2016,

2019; Neri et al. 2017; Steige et al. 2017; Takuno et al. 2017;

Teissandier and Bourc’his 2017; Horvath et al. 2019; Muyle and

Gaut 2019; Seymour and Gaut 2019; Choi et al. 2020). We note,

however, that histone H1 was recently shown to have a similar

effect to DNA methylation in TEs and genes (Choi et al. 2020). In

that study, expression of antisense transcripts was activated in

710 genes following methylation loss in h1, met1 double mutants,

at a level that was not positively correlated to sense transcription

changes. This finding demonstrates that, at least for some genes,

gbM can repress antisense transcription in A. thaliana jointly with

H1. We hypothesize that the inhibition of antisense transcription

requires a threshold of cytosine methylation, which we have cap-

tured by studying the methylation state for the entire CDS. Even

if this is true, there are still unanswered mechanistic questions

about how the effect of gbM on anti-sense transcription affects

the level and stability of expression.
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