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SUMMARY

Hundreds of transcription factors (TFs) are expressed in each cell type, but cell identity can be induced through the activity of just a small
number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a
foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we
describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential
impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human
fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting
point for studying transcriptional control of cell identity and reprogramming in many human cell types.

INTRODUCTION

Cell identity is controlled in large part by the action of tran-
scription factors (TFs) that recognize and bind specific se-
quences in the genome and regulate gene expression.
While approximately half of all TFs are expressed in any
one cell type (Vaquerizas et al., 2009), a small number of
core TFs are thought to be sufficient to establish control
of the gene expression programs that define cell identity
(Buganim et al., 2013; Graf and Enver, 2009; Morris and
Daley, 2013; Sancho-Martinez et al., 2012; Vierbuchen
and Wernig, 2012; Yamanaka, 2012). It would be valuable
to identify these core TFs for all cell types; an atlas of candi-
date core regulators would complement the Encyclopedia
of Regulatory DNA Elements (ENCODE) (Rivera and Ren,
2013; Stergachis et al., 2013), guide exploration of the prin-
ciples of transcriptional regulatory networks, enable more
systematic research into the mechanistic and global func-
tions of these key regulators of cell identity, and facilitate
advances in direct reprogramming for clinically relevant
cell types (Henriques et al., 2013; Iwafuchi-Doi and Zaret,
2014; Soufi et al., 2012; Xie and Ren, 2013).

Core TFs that control individual cell identity have been
identified previously, but systematic efforts to do so for
most cell types have been relatively rare until recently.
Early efforts focused on the experimental identification
of genes that were differentially expressed in one cell
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type, compared to a small range of other cell types, and
shown to have roles in controlling specific cell identities.
Examples include MyoD1, which can convert fibroblasts
to muscle cells upon overexpression in fibroblasts (Taps-
cott et al., 1988), and Oct4, whose loss results in the loss
of the pluripotent cell population in the mammalian em-
bryo (Nichols et al., 1998). More recently, cellular reprog-
ramming experiments, where ectopic expression of TFs
converts cells from one type to another, arose as a particu-
larly stringent test of the ability of TFs to establish cell
identity (Buganim et al., 2013; Graf and Enver, 2009; Mor-
ris and Daley, 2013; Sancho-Martinez et al., 2012; Vierbu-
chen and Wernig, 2012; Yamanaka, 2012). While powerful
demonstrations of the role of TFs in control of cell identity,
these experimental approaches are necessarily focused on
specific cell types.

The development of genome-scale technologies has
enabled more global attempts to predict candidate factors
that control cell identity. Genome-wide gene expression
and epigenome analysis across multiple cell types have
been used to identify candidate core factors via computa-
tional methods (Cahan et al., 2014; Heindniemi et al.,
2013; Lang et al., 2014; Morris et al., 2014; Roost et al.,
2015). While broad in scope, these studies assess their pre-
dictions using more easily scalable methods and typically
do not assess whether predicted factors are sufficient to
establish cell identity.
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We describe here the identification of candidate core TFs
across the largest collection of different human cell types to
date. A computational approach was devised to systemati-
cally identify candidate core TFs for most known human
cell types. Importantly, we demonstrate with ectopic
expression experiments that these predictions can identify
factors capable of converting cell identity, thus satisfying a
stringent criterion that is not tested with most other ap-
proaches to identify key TFs. Expression of core factors
identified for retinal pigment epithelial (RPE) cells was suf-
ficient to reprogram human fibroblasts into RPE-like cells.
These cells were functionally characterized for their
similarity to RPE cells derived from healthy individuals
and were shown to share many features—including
morphology, gene expression, and the ability to perform
canonical RPE processes—and to integrate into the host
RPE layer in transplantation experiments. These results
suggest that the atlas of candidate core TFs should be useful
for reprogramming additional clinically important cell
types and for systematically discovering the regulatory cir-
cuitries for these cells.

RESULTS

To identify candidate core TFs, we searched for TFs that fit
two basic characteristics of known core TFs: the genes en-
coding known core TFs are typically expressed in a rela-
tively cell-type-specific fashion and at relatively high levels
(Figure 1A). The algorithm we developed quantifies both
cell type specificity and the relative level of gene expression
by using an entropy-based measure of Jensen-Shannon
divergence (Cabili et al., 2011; Fuglede and Topsoe, 2004)
to compare the expression of a TF in a cell type of interest
(the query dataset) to the expression of that factor across
a range of cell types that represent the diversity of human
cell types and tissues (the background dataset) (Supple-
mental Information). The idealized case is when a TF is ex-
pressed at a relatively high level in the query dataset and
not expressed in any other cell type in the background
dataset. The algorithm generates a specificity score for
each TF based on how well the actual expression data
match with this idealized case and ranks each TF using a
nonparametric rank-product approach to aggregate the re-
sults from multiple query datasets for a given cell type (Brei-
tling et al., 2004).

This approach was used to score TFs for over 200 cell
types/tissues collated from the Human Body Index collec-
tion of expression data, together with additional well-stud-
ied cell types (Figure 1B; Figure 2; Table S1; Supplemental
Information). The complete atlas contains the scores for
all TFs in all cell types, but for simplicity of additional ana-
lyses and manageability of experimental validation, we

focused on the ten top-scoring TFs in each cell type as the
primary candidate core TFs.

503 different TFs were considered candidate core TFs for
one or more cell types or tissues. As expected given our
methodology, the candidate core TFs were expressed at
higher levels than non-core TFs (Figure 3A), and individual
factors were generally considered candidate core TFs in
limited numbers of cell or tissue types (Figure 3B). DNA-
binding domain analysis indicates that the candidate
core TFs have a different distribution of DNA binding
domains compared to other TFs, with relatively increased
frequencies of domains frequently associated with devel-
opmental regulators (homeobox and helix-loop-helix)
and relatively decreased frequencies of other domains
such as SCAN, KRAB, and C2H2 zinc finger (Figure 3C).
The candidate core TFs are generally well conserved, as or-
thologs typically exist for the factors through vertebrate
and metazoan species (Figure 3D). The genes encoding
candidate core TFs are generally associated with super-en-
hancers, transcriptional regulatory elements that are asso-
ciated with genes that play important roles in cell identity
(Hnisz et al., 2013; Parker et al., 2013; Whyte et al., 2013).
Gene set enrichment analysis (GSEA) shows that super-en-
hancers of each cell type are enriched among the highest
scoring TFs in the atlas, and this enrichment occurs in a
cell-type-specific manner (Figure 3E). These data are consis-
tent with the highest scoring TFs in the atlas having roles in
control of cell identity. More extensive characterization
and discussion of the set of candidate core TFs is included
in the Supplemental Information and Figure S1.

We examined whether factors from this atlas could
induce a new cell identity as a stringent test of whether
the atlas successfully identifies TFs that control cell iden-
tity. Ectopic expression of core TFs in fibroblasts can repro-
gram gene expression and produce cells with functional
states similar to those that normally express those TFs (Bu-
ganim et al., 2013; Graf, 2011; Morris and Daley, 2013;
Vierbuchen and Wernig, 2012; Yamanaka, 2012). Examina-
tion of the list of candidate core TFs predicted for embry-
onic stem cells shows good overlap with factors already
used to reprogram murine or human fibroblasts to pluripo-
tent stem cells (Table S2). Similar results are seen for several
other cell types, including cardiomyocytes and hepato-
cytes (Table S2), and a comparison to a set of TFs that
have been used for lineage reprogramming in human
cells—summarized in Xu et al. (2015)—shows that roughly
70% of these lineage reprogramming factors are called
candidate core TFs in the atlas (Table S3). To test factors
from this atlas, RPE cells were chosen as the target cell
type due to their growing relevance to cell therapy applica-
tions. Progressive degeneration of RPE cells is a major cause
of age-related macular degeneration (AMD), and several
clinical trials are currently assessing transplantation of
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Neural factors: ASCL1, NEUROD1,
MYT1L, FOXG1, SOX3, ZIC1
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~| ESC factors: SALL4, POU5F1, SOX2
NANOG, OTX2, ZIC2/3

| Heart factors: GATA4, GATAS,
TBX5, NKX2-5, ANKRD1

= -| Mammary factors: ELF5, IRX1/2/3,
= IRX5, TFAP2C

Ovary factors: GATA4/6, FOXL2, TCF21

Liver factors: HNF4A, FOXA2, NR112/3

Pancreas factors: MNX1, FOXA3, RFX6

Lymph node factors: POU2F2, IKZF1,
= PAXS5, SPIB

=] Testis factors: DMRTB1, SPZ1,
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Figure 1. A General Approach to Identify Candidate Core TFs in Human Cells

(A) Computational approach used to identify candidate core TFs in human cells. Left panel: collection of gene expression profiles of a query
cell type and representative cell types from the Human Body Index collection of expression data. Middle panel: expression profile of a
single TF across a query dataset and a range of background datasets. The idealized case of expression level of a TF (gray circle, dashed line)
is compared to the observed data to calculate the expression-specificity score of the TF. Right panel: plot depicting the distribution of
significance scores of expression specificity for all TFs. Factors are arranged on the x axis in order of significance scores. Significance scores
are indicated on the y axis. The highest scoring TFs are considered the best candidate core TFs and highlighted in the red circle.

(B) Representation of the collection of candidate core TFs for 233 tissue and cell types. Tissue and cell types are arranged on the x axis and
ordered according to anatomical groups, represented by the colored bar at the top. Genes are arranged on the y axis. Blue dashes represent
candidate core TFs in a cell type. Clusters of candidate core TFs in cell types representing an anatomical group are boxed. Representative
genes are listed on the side.

RPE cells and stem-cell-derived RPE cells as a treatment for  selected and cloned into doxycycline-inducible lentiviral
ocular disorders (Cyranoski, 2013, 2014). expression vectors (Figure 4A). Human foreskin fibro-

For ectopic expression experiments, nine of the top- blasts (HFF) were then transduced with a cocktail of
scoring RPE core TF candidates—PAX6, LHX2, OTX2, all nine factors. Colonies showing a “cobblestone”-like
SOX9, MITF, SIX3, ZNF92, GLIS3, and FOXDIl—were morphology characteristic of RPE cells were evident after
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Tissue and cell types were grouped into categories corresponding to different anatomical systems in the human body. Within each
category, tissue and cell types were ordered using hierarchical clustering. The distance matrix was calculated by first rank-ordering the
specificity scores for all TFs in each tissue and cell type within a category and then finding the Kendall tau correlation coefficient for each
pairwise comparison of tissue and cell types within the category. For each individual tissue or cell type, the ten top-scoring candidate core

TFs are listed.

2 weeks of doxycycline induction (Figure 4A). Colonies
were manually picked and further expanded into six
independent RPE-like cell lines. Genotyping analysis
showed that all six cell lines contained the PAX6, OTX2,
MITF, SIX3, GLIS3, and FOXD1 expression constructs
(Figure 4B).

Two of the induced RPE (iRPE)-like cell lines, iRPE-1
and iRPE-2, were subjected to additional analysis. The
iRPE cell lines exhibited characteristic expression of mem-
brane-associated TJP1 (ZO-1), together with a “cobble-
stone” sheet morphology involving individual cells
connected by tight junctions (Figure 4C), and maintained
an RPE-like morphology in the presence of doxycycline
for over 6 months (12 passages). Additionally, immuno-
staining indicates that the iRPE cells showed co-expres-
sion of CRALBP and RPE65 (Figure 4D), two well-known
markers for RPE cells (Sparrow et al., 2010). Expression
analysis shows that the candidate core TFs are expressed

in both iRPE lines, and genes considered part of the RPE
gene expression signature (Strunnikova et al.,, 2010)
show substantial upregulation compared to fibroblasts
(Table S$4). Principal-component analysis (PCA) of
genome-wide gene expression revealed that the two
iRPE lines were as similar to primary RPE cells and
induced pluripotent stem-cell-derived RPE cells as induced
pluripotent stem cells are to embryonic stem cells (Fig-
ure 4E). Analysis of the genes differentially expressed be-
tween iRPE and fibroblasts shows that differentially
expressed genes are enriched for genes considered part
of the RPE gene expression signature (Figure 4F) (Strunni-
kova et al., 2010).

Ectopic expression of the RPE candidate core TFs results
in cells that are functionally similar to RPE cells. RPE play
crucial roles in the maintenance and function of retinal
photoreceptors, including phagocytosis of shed outer seg-
ments of photoreceptors (Bok, 1993), transepithelial
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Figure 3. Characterization of Candidate Core TFs

(A) Box plots depicting the expression levels of candidate core TFs and non-core TFs. The significance of the difference between two groups
was determined using a two-tailed Mann-Whitney test. For each plot, the top and bottom box edges mark the first and third quartiles, while
the solid black line within the box marks the median. The top whisker line marks the largest data point that is within 1.5-fold of the
interquartile range from the third quartile. The bottom whisker line marks the smallest data point that is within 1.5-fold of the inter-
quartile range from the first quartile. Candidate core TFs are shown in gold. Non-core-TFs are shown in gray.

(B) Pie chart depicting the number of cell types in which a TF is considered as a candidate core TF.

(C) Bar chart representing the percentage of candidate core TFs and non-core TFs that are associated with different classes of DNA binding
domains. The significance of the difference in distribution between candidate core TFs and non-core TFs across these categories is
p <0.003 and was determined using a chi-square test. The gray oval indicates the percentage of all TFs that are associated with the class of
DNA binding domains as a point of comparison. Abbreviations for protein domains are: HOX, homeodomain; HLH, helix-loop-helix; BRLZ,
basic region leucine zipper; HOLL, ligand binding domain of hormone receptor; ZnF_C4, c4 zinc finger in nuclear hormone receptors; HMG,
high mobility group; ETS, erythroblast transformation specific; FH, forkhead; TBOX, T-box; POU, Pit-Oct-Unc; ZnF_GATA, zinc finger
binding to DNA consensus sequence [AT]GATA[AG]; DWB, domain B in dwarfin family proteins; SANT, SWI3-ADA2-N-CoR-TFIIB DNA-
binding domain; SCAN, SCAN domain; KRAB, Krueppel-associated box; ZnF_C2H2, zinc finger C2H2.

(legend continued on next page)
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transport of nutrients and ions between the neural retina
and the blood vessels (Strauss, 2005), and secretion of
growth factors and hormones (Ford et al., 2011). For assay-
ing phagocytosis, mouse rod outer segments (ROS) were
incubated with iRPE cells or HFF cells. ROS incorporation
was measured using an antibody against rhodopsin, which
specifically recognizes a component of ROS. Both iRPE cell
lines stained positive for rhodopsin, indicating binding
and incorporation of ROS into the iRPE cells by phagocy-
tosis (Figure 5A; Figure S2). To measure ion transport barrier
function, we analyzed transepithelial electrical resistance
(TER), which detects functional tight junctions (Stevenson
et al., 1986). iRPE cells demonstrated effective barrier func-
tion that was significantly higher than fibroblasts and was
as effective as that observed for RPE cells (Figure 5B). To
evaluate secretion of growth factors, iRPE cells were exam-
ined for production of vascular endothelial growth factor
(VEGF), which is released preferentially to the basolateral
side of RPE cells to prevent endothelial cell apoptosis in
the blood vessels (Saint-Geniez et al., 2009). No VEGF
release was detected when fibroblasts were assayed (Fig-
ure 5C). The iRPE lines exhibit polarized secretion of
VEGEF similar to that produced by RPE cells (Figure 5C). Sub-
retinal transplantation experiments showed that iRPE cells
survive in vivo when transplanted in albino rats, and some
integrate to the host RPE layer as pigmented cells (Fig-
ure 5D). Taken together, these results provide the most
extensive characterization of iRPE to date and indicate
that cells generated with the factors from our atlas are
similar to RPE cells in terms of morphology, gene expres-
sion, and functionality.

DISCUSSION

The atlas of candidate core TFs presented here (Supple-
mental Information) provides a powerful starting point
for studies of transcriptional regulation of cell identity
and eventual applications for therapeutic purposes. The

atlas itself is easily expanded with additional genome-
wide expression data, which are relatively easy to obtain
compared to other data types, especially for cell types
that may be available in limited quantities. The approach
is easy to implement and can be adapted to next-genera-
tion sequencing data as sufficient numbers and variety
of datasets become available and may, thus, be generally
useful for a wide range of researchers. The approach pre-
sented here capitalizes on basic principles of the expression
level of known core TFs: relatively high expression and rela-
tively cell-type-specific expression. Additional principles
commonly associated with core TFs, such as autoregula-
tion, binding in regulatory regions, or motif enrichment
in regulatory regions may be useful to integrate in future
versions.

The iRPE cells here represent the results of a stringent test
for whether our approach successfully identifies TFs that
can control cell identity. The factors here differ from, but
overlap with, a set of factors previously used for RPE reprog-
ramming (Zhang et al., 2014). Significantly, known onco-
genic TFs such as MYC and signaling molecules such as
activin A or retinoid acid together with Sonic hedgehog
(SHH) were components of previous factor cocktails but
are not required here. The iRPE cells generated here were
characterized for morphology and gene expression and
found to be largely similar to RPE. Moreover, the iRPE cells
generated here were shown to have functional similarity to
RPE cells and, thus, represent a step forward in the charac-
terization of iRPE cells and our understanding of their po-
tential use. These cells require continued expression of
the transgenes, as withdrawal of doxycycline causes the
cells to revert back toward a fibroblast morphology. This de-
pendency is similarly observed for many other transdiffer-
entiated cells (Buganim et al., 2012; Huang et al., 2011;
Lujan et al., 2012; Sheng et al., 2012; Vierbuchen et al.,
2010) and indicates that establishment of a fully self-sus-
taining RPE identity will require additional study. We antic-
ipate that analysis of additional factors from our ranked
list, as well as analysis of additional transdifferentiated

(D) Heatmap depicting the presence (blue) or absence (white) of orthologous genes in a species for each candidate core TF. The candidate
core TFs are arranged as rows, and species are shown as columns. Species labels are colored using the following scheme: blue (primate),
orange (mammal), purple (vertebrates), green (metazoa), and black (eukaryote). In the image, rows are clustered according to k-means
clustering (k = 3).

(E) GSEA enrichment plots depicting the relationship between super-enhancer associated genes and high expression-specificity scores.
Top panel: GSEA plot for genes associated with super-enhancers in CD4+ naive T cells and expression-specificity score. Enrichment score is
plotted on the y axis. The x axis represents genes ordered by specificity score. The relationship when ordered by the expression specificity
scores from CD4+ naive T cells is shown in blue. The relationship when ordered by the expression specificity scores from a non-matching cell
type (embryonic stem cells) is shown in gray for comparison. p values for each are shown. Subsequent panels show similar relationships in
different cell types. For each panel, the cell type is indicated. Super-enhancer associated genes are from that cell type. Blue curves
represent the relationship when ordered by expression-specificity scores for that cell type. Gray curves represent the relationship when
ordered by expression-specificity scores for a non-matching cell type (embryonic stem cells). p values for each are shown. E.S., enrichment
score.
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Figure 4. Ectopic Expression of RPE Candidate Core TFs Is Sufficient to Drive the Morphology and Gene Expression Program of
Fibroblasts toward an RPE-like State

(A) Schematic outlining the ectopic expression of candidate core TFs in HFF. Lentiviral constructs were induced to express candidate core
TFs with doxycycline (Dox). Scale bar, 50 pum.

(B) PCR and gel analysis of transgene integration for iRPE lines. Positive control (DNA of the constructs used to generate lentivirus) and
negative control reactions are shown. Six different iRPE lines, labeled 1-6 are shown. Genes are indicated on the side.

(C) Immunostaining of iRPE-1 and iRPE-2 cells. Cells were immunostained with TIP1 (Z0-1). Scale bar 50 um.

(D) Immunostaining imaging of RPE, iRPE-1, and iRPE-2 cells. Cells were immunostained for RPE cell markers CRALBP (green) and RPE65
(red) and with DAPI (blue). Scale bar, 50 pum.

(legend continued on next page)
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and differentiated versions of RPE cells (Idelson et al., 2009;
Kamao et al., 2014; Zhang et al., 2014), will prove useful in
ultimately unraveling the complete transcriptional cir-
cuitry of RPE cells.

Multiple methods have been developed that can use
high-throughput genomic data to identify factors critical
for cell identity (Benayoun et al., 2014; Cahan et al.,
2014; Davis and Eddy, 2013; Heindniemi et al.,, 2013;
Hwang et al., 2011; Lang et al., 2014; Morris et al., 2014;
Roost et al., 2015; Zhou et al., 2011; Ziller et al., 2015).
Many of these methods focus primarily on quantifying
the differences between cell identities and less on the direct
identification of factors controlling cell identity. Several of
these approaches have experimentally verified that they
are capable of identifying TFs important for cell identity,
although none has demonstrated that the factors can
establish cell identity to the extent shown here, possibly
due to the extreme technical difficulty of these types of re-
programming experiments. Our expectation is that results
for different methods of identifying candidate core TFs will
eventually be compared and used in complementary fash-
ions to gain insight on which TFs are critical for different
cell types and which characteristics best define core TFs.

For the vast majority of human cell types, the core TFs
and the transcriptional programs they control is poorly
understood. Furthermore, much of disease-associated
sequence variation occurs in transcriptional regulatory re-
gions (Farh et al., 2015; Hnisz et al., 2013; Maurano et al.,
2012), but the transcriptional mechanisms that lead to
disease pathology are understood in only a few instances.
The atlas of candidate core TFs described here should,
therefore, facilitate future exploration of the functions of
key regulators of cell identity, mapping of cellular regula-
tory circuitries, and investigation of disease-associated
mechanisms.

EXPERIMENTAL PROCEDURES

Additional details are provided in the Supplemental Experimental
Procedures.

Identification of Candidate Core TFs

Briefly, an entropy-based measure of Jensen-Shannon divergence
(Cabili et al., 2011) was adopted to identify candidate core TFs
based on the relative level and cell type specificity of expression

of a given factor in one cell type compared to a background dataset
of diverse human cell and tissue types. Expression datasets used are
provided in Table S5. Additional details are provided in the Supple-
mental Experimental Procedures.

Cell Culture

Human RPE cells were maintained in epithelial cell medium sup-
plemented with 2% fetal bovine serum, 1x epithelial cell growth
supplement, and 1x penicillin-streptomycin solution. HFF were
maintained in DMEM supplemented with 15% Tet System
Approved fetal bovine serum, 2 mM L-glutamine, and 100 U/ml
penicillin-streptomycin.

Construction of Lentiviral Vectors

The Lenti-X Tet-On Advanced Inducible Expression System was
used. Plasmids containing the full coding sequence of PAX6,
OTX2, LHX2, MITF, SIX3, SOX9, GLIS3, FOXD1, or ZNF92 were ob-
tained from Open Biosystems, Origene, or the Dana Farber/Har-
vard Cancer Center DNA Resource Core. Coding DNA sequences
were amplified and cloned into the target vector via homologous
recombination using the In-Fusion cloning system. Expression
plasmids were transformed and maintained in STBL4 cells.

Viral Preparation and Transduction of HFF

For ectopic expression experiments, a human fetal fibroblast line
expressing rtTA Advanced was generated by viral-mediated inte-
gration of an rtTA-expressing construct (from pLVX-Tet-On-
Advanced). Cells were grown in 1 mg/ml geneticin for 2 weeks to
select for cells harboring the construct.

For virus preparation, replication-incompetent lentiviral parti-
cles were packaged in 293T cells in the presence of the
envelope (pMD2) and packaging (psPAX) plasmids. Viral superna-
tants from cultures 36, 48, 60, and 72 hr post-transfection were
filtered through a 0.45-uM filter. High-titer virus preparations
for all nine TFs were then added to HFF in the presence of
5 ng/ml of polybrene (day 1). A second transduction with virus
for all nine factors was performed the next day (day 2). After
2 days, transduced HFF were split and transferred to iRPE medium
(discussed later) (day 3). The following day, iRPE medium was
supplemented with 2 mg/ml doxycycline (day 4). Medium was
replaced every 3 days, and fresh doxycycline was added with
every medium replacement.

iRPE Growth Conditions

iRPE lines were plated on Matrigel Basement Membrane Matrix-
coated plates. iRPE cells were grown on Minimum Essential Me-
dium (MEM) Eagle Alpha Modification containing 5% Tet System
Approved fetal bovine serum, 1x N1 Medium Supplement,

(E) PCA comparing the gene expression profiles of iRPE cells to gene expression profiles of other cell types. Principal components (PC1-
PC3) are shown on the x, y, and z axes. The expression profiles of HFF (black), iRPE cells (blue), RPE cells (light green), induced pluripotent
stem (iPS)-RPE cells (green), iPS cells (red), and ES cells (orange red), and 106 additional cell types (gray) are shown.

(F) GSEA enrichment score of a previously published RPE signature gene set (Strunnikova et al., 2010) compared with genes differentially
expressed between iRPE and fibroblasts. Genes are ranked along the x axis based on differential expression in iRPE cells versus fibroblasts,
with more expressed in iRPE (red) to more expressed in fibroblasts (blue). Black tick marks indicate a gene from the RPE signature set.

Enrichment score is shown on the y axis.
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Figure 5. RPE-like Cells Have Functional
Characteristics

(A) Schematic of the phagocytosis of ROS
assay for iRPE function. Immunostaining for
rhodopsin and DAPI are shown. The top row of
images shows immunostaining for rhodopsin.
The lower row of images shows the same
fields with rhodopsin indicated in red and
DAPI staining for DNA shown in blue. Scale
bar, 25 pum.

(B) Schematic and results of TER assay for
iRPE-1, iRPE-2, and hRPE cells (Salero et al.,
2012). TER values for fibroblasts (gray), hRPE
cells (black), iRPE-1 cells (red), and iRPE-2
cells (gold) are 155.2 + 5 Q/cm?, 211.4 %
4 Q/cm?, 275.6 = 15 Q/cm?, and 232.2 +
8 Q/cm?, respectively. TER was assayed in at
least five biological replicates and is displayed
as mean + SD.

(C) Schematic and results for polarized release
of VEGF assayed by ELISA. Values are shown for
fibroblasts (nearly undetectable) and for hRPE
(black), iRPE-1 (red), and iRPE-2 (gold), with
the apical secretion values indicated with
solid colors and the basolateral secretion
values indicated with striped colors. The ratio
of VEGF release (basolateral/apical) is shown
below each bar. N.D., non detectable. ELISA
was assayed in biological duplicates and is
displayed as mean + SD.

(D) Xenotransplant subretinal transplantations
of wild-type albino Sprague-Dawley rats. H&E
staining show pigmented donor cells iRPE-2
visible in the RPE layer. Single pigmented cells
were identified in the host RPE layer in the
doxycycline-treated group but not in the con-
trol iRPE group that did not receive doxycycline
(data not shown). Pigmented cells are indi-
cated with a “<" sign. Scale bar, 50 pm.



1% sodium pyruvate, 2 mM L-glutamine, 1x MEM Non-Essential
Amino Acids, 1 mg/ml Geneticin, 100 U/ml penicillin-strepto-
mycin and THT (20 mg/l hydrocortisone, 250 mg/l taurine,
0.013 mg/] triiodothyronine). Media was supplemented with
2 mg/ml doxycycline. Cells were incubated at 37°C with 5% CO,
in a humidified incubator.

Genotyping

Cells were lysed, and genomic DNA was purified by treating sam-
ples with proteinase K, RNase A, and phenol-chloroform extrac-
tion. DNA was amplified using GoTaq Green Core Mix.

Immunostaining and Imaging

For immunostaining analysis, cells were grown in Corning trans-
well polyester membrane cell culture inserts for 8 weeks in iRPE
medium supplemented with 2 mg/ml doxycycline. Medium was
replaced every 3 days. Cells were then fixed and washed, and a
2-mm biopsy punch of the transwell membrane was transferred
to a glass slide. Slides were incubated in blocking/permeabilizing
solution, washed, treated with antibodies, and mounted. Slides
were visualized under a fluorescence microscope (Zeiss Axio
Observer D1).

Phagocytosis Assay

ROS were isolated following previously described protocols
(Ryeom et al.,, 1996). Retinas were dissected immediately
following sacrifice from 25 mice, ROS were isolated, and approx-
imately 1.0 x 10* ROS were added to the supernatant of
confluent cell cultures in transwells. All work was performed un-
der protocols approved by the institutional animal care and use
committee. The cells were then incubated for 2 hr at 37°C. Trans-
wells were washed to remove all unbound ROS before fixation.
Each transwell was fixed, immunostained for rhodopsin and
DAPI, and visualized.

TER

iRPE and RPE cells (Salero et al., 2012) were grown in Corning
transwell polyester membrane cell culture inserts for 8 weeks in
iRPE medium supplemented with 2 mg/ml doxycycline. Medium
was replaced every 3 days. Resistance was measured using the
EVOM Epithelial Voltohmmeter.

VEGEF-A Release

iRPE and RPE cells (Salero et al., 2012) were grown in Corning
transwell polyester membrane cell culture inserts for 8 weeks
in iRPE medium supplemented with 2 mg/ml doxycycline. RPE
cells were collected from human cadaver donors for research
purposes. The protocol was reviewed and found to be exempt
category 4 by the Albany Medical College Institutional
Review Board. Medium was replaced every 3 days with fresh
doxycycline. Conditioned medium from apical and basal
chambers of the same transwell insert was collected 24 hr
following a complete medium change. VEGF-A protein secretion
in conditioned medium was measured using a Human VEGF
ELISA kit following the manufacturer’s suggested protocol (Life
Technologies).

Transplantation

To study the ability of iRPE to integrate into the native retina, we
have performed subretinal transplantations into the wild-type rat
retina. All animal studies were designed and performed according
to the Association for Research in Vision and Ophthalmology
guidelines for the use of animals in ophthalmic and visual research
and approved by the institutional animal care and use committee.
Three-week-old albino Sprague-Dawley rats (Taconic Biosciences)
were used in these experiments. One day before the surgery, all
animals were switched to cyclosporine-A-supplemented water
(210 mg/1) and remained on immunosuppressive treatment until
the end of the study. One group of iRPE-transplanted animals
also received doxycycline in the water.

For the surgery, animals were anesthetized by intraperitoneal in-
jection of ketamine/xylazine. Topical proparacaine (anesthetic)
and tropicamide (mydriatic agent) drops were applied.

The subretinal injection was performed in one eye per animal
using a 50-um beveled glass needle connected to a 10-pl Hamilton
syringe through polyethylene tubing. The success of the injection
and lack of complications (hemorrhage, retinotomy, leakage of
cells into the vitreous) was assessed by fundus examination. Anti-
biotic ointment was applied to the eye for recovery.

Experimental groups were as follows: iRPE with doxycycline treat-
ment (n = 5), iRPE without doxycycline treatment (n = 5), hRPE
(n = 5) as positive control, vehicle injection (n = 5), and non-in-
jected eyes (n = 5) as negative controls—five groups total.

Two weeks after the injection animals were euthanized by CO,
inhalation, eyes were enucleated and fixed in alcohol fixative
(Excalibur Pathology), embedded in paraffin, and sectioned.
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