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A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for
quantum state tomography. In this method, quantum state reconstruction is converted into a parameter
estimation problem of a linear regression model and the least-squares method is employed to estimate the
unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be
estimated is given analytically, which depends explicitly upon the involved measurement bases. This
analytical MSE upper bound can guide one to choose optimal measurement sets. The computational
complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that
LRE is much faster than maximum-likelihood estimation for quantum state tomography.

O
ne of the essential tasks in quantum technology is to verify the integrity of a quantum state1. Quantum
state tomography has become a standard technology for inferring the state of a quantum system through
appropriate measurements and estimation2–8. To reconstruct a quantum state, one may first perform

measurements on a collection of identically prepared copies of a quantum system (data collection) and then infer
the quantum state from these measurement outcomes using appropriate estimation algorithms (data analysis).
Measurement on a quantum system generally gives a probabilistic result and an individual measurement outcome
only provides limited information on the state of the system, even when an ideal measurement device is used. In
principle, an infinite number of measurements are required to determine a quantum state precisely. However,
practical quantum state tomography consists of only finite measurements and appropriate estimation algorithms.
Hence, the choice of optimal measurement sets and the design of efficient state reconstruction algorithms are two
critical issues in quantum state tomography.

Many results have been presented for choosing optimal measurement sets to increase the estimation accuracy
and efficiency in quantum state tomography9–11. Several sound choices that can provide excellent performance for
tomography are, for instance, tetrahedron measurement bases, cube measurement sets, and mutually unbiased
bases11. However, for most existing results, the optimality of a given measurement set is only verified through
numerical results11. There are few methods that can analytically give an estimation error bound12–14, which is
essential to evaluate the optimality of a measurement set15–17 and the appropriateness of an estimation method.

For estimation algorithms, several useful methods including maximum-likelihood estimation (MLE)2,18–21,
Bayesian mean estimation (BME)2,22,23 and least-squares (LS) inversion24 have been proposed for quantum state
reconstruction. The MLE method simply chooses the state estimate that gives the observed results with the
highest probability. This method is asymptotically optimal in the sense that the estimation error can asymptot-
ically achieve the Cramér-Rao bound. However, MLE usually involves solving a large number of nonlinear
equations where their solutions are notoriously difficult to obtain and often not unique. Recently, an efficient
method has been proposed for computing the maximum-likelihood quantum state from measurements with
additive Gaussian noise, but this method is not general21. Compared to MLE, BME can always give a unique state
estimate, since it constructs a state from an integral averaging over all possible quantum states with proper
weights. The high computational complexity of this method significantly limits its application. The LS inversion
method can be applied when measurable quantities exist that are linearly related to all density matrix elements of
the quantum state being reconstructed24. However, the estimation result may be a nonphysical state and the mean
squared error (MSE) bound of the estimate cannot be determined analytically.

Here, we present a new linear regression estimation (LRE) method for quantum state tomography that can
identify optimal measurement sets and reconstruct a quantum state efficiently. We first convert the quantum state
reconstruction into a parameter estimation problem of a linear regression model25. Next, we employ an LS
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algorithm to estimate the unknown parameters. The positivity of the
reconstructed state can be guaranteed by an additional least-squares
minimization problem. The total computational complexity is O(d4)
where d is the dimension of the quantum state. In order to evaluate
the performance of a chosen measurement set, an MSE upper bound
for all possible states to be estimated is given analytically. This MSE
upper bound depends explicitly upon the involved measurement
bases, and can guide us to choose the optimal measurement set.
The efficiency of the method is demonstrated by examples on qubit
systems.

Results
Linear regression model. We first convert the quantum state
tomography problem into a parameter estimation problem of a
linear regression model. Suppose the dimension of the Hilbert

space H of the system of interest is d, and Vif gd2{1
i~0 is a complete

basis set of orthonormal operators on the corresponding Liouville

space, namely, Tr V{
i Vj

� �
~dij, where { denotes the Hermitian

adjoint and dij is the Kronecker function. Without loss of

generality, let Vi~V{
i and V0~ 1=dð Þ

1
2I, such that the other bases

are traceless. That is Tr(Vi) 5 0, for i~1, 2, � � � , d2{1. The
quantum state r to be reconstructed may be parameterized as

r~
I
d

z
Xd2{1

i~1

HiVi, ð1Þ

where Hi 5 Tr(rVi). Given a set of measurement bases

Yj i Yh j nð Þ
n oM

n~1
, each jYæ ÆYj(n) can be parameterized under the

bases Vif gd2{1
i~0 as

Yj i Yh j nð Þ
~

I
d

z
Xd2{1

i~1

y
nð Þ

i Vi, ð2Þ

where y
nð Þ

i ~Tr Yj i Yh j nð ÞVi

� �
.

When one performs measurements with measurement set

Yj i Yh j nð Þ
n oM

n~1
on a collection of identically prepared copies of a

quantum system (with state r), the probability to obtain the result of
jYæ ÆYj(n) is

pn~Tr Yj i Yh j nð Þr
� �

~
1
d

z
Xd2{1

i~1

Hiy
nð Þ

i ¼
D 1

d
zH>Y nð Þ: ð3Þ

Assume that the total number of experiments is N and N/M experi-
ments are performed on N/M identically prepared copies of a
quantum system for each measurement basis jYæ ÆYj(n). Denote the

corresponding outcomes as x nð Þ
1 , � � � , x(n)

N=M , which are independent

and identically distributed. Let p̂n~
x nð Þ

1 z � � �zx nð Þ
N=M

N=M
and

en~p̂n{pn. According to the central limit theorem26, en converges
in distribution to a normal distribution with mean 0 and variance
pn{p2

n

N=M
. Using (3), we have the linear regression equations for

n~1, 2, � � � , M,

p̂n~
1
d

zY nð Þ>Hzen, ð4Þ

where i denotes the matrix transpose.
Note that p̂n, d and Y(n) are all available, while en may be consid-

ered as the observation noise whose variance is asymptotically
pn{p2

n

N=M
. Hence, the problem of quantum state tomography is

converted into the estimation of the unknown vector H. Denote

Y~ p̂1{
1
d

, � � � , p̂M{
1
d

� �>
, X~ Y 1ð Þ, � � � ,Y Mð Þ

� �>
, e~ e1, � � � , eMð Þ>.

We can transform the linear regression equations (4) into a compact
form

Y~XHze: ð5Þ

We define the MSE as ETr r̂{rð Þ2, where r̂ is an estimate of the
quantum state r based on the measurement outcomes and E(?)
denotes the expectation on all possible measurement outcomes.
For a fixed tomography method, ETr r̂{rð Þ2 depends on the state
r to be reconstructed and the chosen measurement bases. From a
practical viewpoint, the optimality of a chosen set of measurement
bases may rely upon prior information but should not depend on any
specific unknown quantum state to be reconstructed. In this paper,
no prior assumption is made on the state r to be reconstructed. Given
a fixed tomography method, we use the maximum MSE for all pos-
sible states (i.e., suprETr r̂{rð Þ2) as the index to evaluate the per-
formance of a chosen set of measurement bases.

Linear regression estimation. To give an estimate with high level of
accuracy and low computational complexity, we employ the LS
method, where the basic idea is to find an estimate ĤLS such that

ĤLS~ argmin
Ĥ

Y{XĤ
� �>

W Y{XĤ
� �

, ð6Þ

where Ĥ is an estimate of H, and W is a diagonal weighting matrix.
Since the objective function is quadratic, one has the LS solution as
follows:

ĤLS~ X>WX
� �{1

X>WY : ð7Þ

The LS solution (7) can be calculated in a recursive way (see the
Methods section). In practical experiments, the cost of time can be
greatly reduced by employing a recursive reconstruction protocol
since the estimate can be calculated recursively based on available
data at the same time of performing measurements to acquire data.

Note that if pn 5 1, we have already reconstructed the state as
jYæ ÆYj(n); if pn 5 0, we should choose the following measurement
basis from the orthogonal complementary space of jYæ ÆYj(n).
Hence, in general the smaller the variance of en is, the more the
information can be extracted by jYæ ÆYj(n). Therefore, the corres-
ponding weight of the n-th regression equation should be bigger. It
can be verified that if all pn are known, the LS soution ĤLS satisfying

ĤLS~ argmin
Ĥ

Y{XĤ
� �>

V Y{XĤ
� �

is asymptotically the min-

imum variance unbiased estimator of H, where V is the inverse of
diag p1{p2

1, � � � , pM{p2
M

� �
. Hence, an appropriate choice of W is

the inverse of diag p̂1{p̂2
1, � � � , p̂M{p̂2

M

� �
.

However, for simplicity we consider the case where W 5 I, and the
corresponding LS solution is

ĤLS~ X>X
� �{1

X>Y~ X>X
� �{1XM

n~1

Y nð Þ p̂n{
1
d

� �
, ð8Þ

where X>X~
X

M
n~1Y

nð ÞY nð Þ> .

If the measurement bases Yj i Yh j nð Þ
n oM

n~1
are informationally

complete or overcomplete, XTX is invertible. Using (5), (8) and the
statistical property of the observation noise enf gM

n~1 (independent

and asymptotically Gaussian), the estimate ĤLS has the following
properties for a fixed set of chosen measurement bases:
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1. ĤLS is asymptotically unbiased;

2. The MSE E ĤLS{H
� �>

ĤLS{H
� �

of ĤLS is asymptotically

M
N

Tr X>X
� �{1

X>PX X>X
� �{1

h i
, ð9Þ

where P~diag p1{p2
1, � � � , pM{p2

M

� �
.

Note that pn depends upon the state to be reconstructed and the
measurement basis jYæ ÆYj(n) for n~1, � � � , M. Recall that the
optimality of a chosen set of measurement bases should not depend
upon any specific unknown quantum state to be reconstructed. We
can take the supremum of equation (9) under all possible states to get
the performance index for any given set of measurement bases

Yj i Yh j nð Þ
n oM

n~1
as

M
4N

Tr X>X
� �{1

~
M
4N

Tr
X

M
n~1Y

nð ÞY nð Þ>
� �{1

.

Positivity and computational complexity. Based on the solution
ĤLS obtained from (8), we can obtain a Hermitian matrix m̂ with
Trm̂~1 using (1). However, m̂ may have negative eigenvalues and be
nonphysical due to the randomness of measurement results. In this
sense, m̂ is called pseudo linear regression estimation (PLRE) of state
r. A good method of pulling m̂ back to a physical state can reduce the
MSE. In this paper, the physical estimate r̂ is chosen to be the closest
density matrix to m̂ under the matrix 2-norm. In standard state
reconstruction algorithms, this task is computationally intensive21.
However, we can employ the fast algorithm in21 with computational
complexity O(d3) to solve this problem since we have obtained a
Hermitian estimate m̂ with Trm̂~1.

Since an informationally complete measurement set

Yj i Yh j nð Þ
n oM

n~1
requires M being O(d2), the computational com-

plexity of (1) and XTY in (8) is O(d4). Although the computational
complexity of calculating (XTX)21 is generally O(d6), (XTX)21 can be
computed off-line before the experiment once the measurement set is
determined. Hence, the total computational complexity of LRE after
the data have been collected is O(d4). It is worth pointing out that for

n-qubit systems, X>X~
PM

n~1Y
nð ÞY nð Þ> is diagonal for many pre-

ferred measurement sets such as tetrahedron and cube measurement

sets. Fig. 1 compares the run time of our algorithm with that of a
traditional MLE algorithm. Since the maximum MSE could reach 2
for the worst estimate, it is clear that our state reconstruction algo-
rithm LRE is much more efficient than MLE with a small amount of
accuracy sacrificed.

Optimality of measurement bases. One of the advantages of LRE
is that the MSE upper bound can be given analytically as
M
4N

Tr
X

M
n~1Y

nð ÞY nð Þ>
� �{1

, which is dependant explicitly upon

the measurement bases. Note that if the PLRE m̂ is a physical state,
then the MSE upper bound is asymptotically tight for the evaluation
of the performance of a fixed set of measurement bases. Hence, to

choose an optimal set Yj i Yh j nð Þ
n oM

n~1
, one can solve the following

optimization problem:

Minimize Tr
XM

n~1

Y nð ÞY nð Þ>
 !{1

s:t: Y nð Þ>Y nð Þ~
d{1

d
, for n~1, � � � , M:

ð10Þ

The optimization problem can be solved in an off-line way by
employing appropriate algorithms though it may be computati-
onally intensive. We will discuss this problem in other work.

With the help of the analytical MSE upper bound, we can ascertain
which one is optimal among the available measurement sets. This is
demonstrated when we prove the optimality of several typical sets of
measurement bases for 2-qubit systems.

For 2-qubit systems, it is convenient to chose Vi~
1ffiffiffi
2
p sl6

1ffiffiffi
2
p sm, where i 5 4l 1 m; l, m 5 0, 1, 2, 3; s0 5 I232, s1~

0 1
1 0

� �
, s2~

0 {i
i 0

� �
, s3~

1 0
0 {1

� �
.

If the form of the measurement bases is not restricted, the min-

imum of the MSE upper bound
M
4N

Tr X>X
� �{1

for all possible mea-

surement bases is
75
N

. This minimum can be reached by using the
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Figure 1 | The run time and MSE of LRE and MLE for random n-qubit pure states mixed with the identity21. The realization of MLE used the iterative

method in2. The measurement bases are from the n-qubit cube measurement set and the resource is N 5 39 3 4n. The simulated measurement

results for every basis |Yæ ÆY | (i) are generated from a binomial distribution with probability pi 5 Tr( |Yæ ÆY | (i)r) and trials N/M. LRE is much more

efficient than MLE with a small amount of accuracy sacrificed since the maximum MSE could reach 2 for the worst estimate. All timings were performed

in MATLAB on the computer with 4 cores of 3 GHz Intel i5-2320 CPUs.
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mutually unbiased measurement bases. While as in many practical
experiments, if only local measurements can be performed, the min-

imum of the MSE upper bound
M
4N

Tr X>X
� �{1

is
99
N

. This min-

imum can be reached by using the 2-qubit cube or tetrahedron
measurement set.

Fig. 2 shows the dependant relationships of the MSEs for Werner
states on q (varying from 0 to 1) and different number of copies N
using the cube measurement bases9. The fact that the MSE of PLRE is
larger than that of LRE demonstrates that the process of pulling m̂
back to a physical state further reduces the estimation error.

Discussion
In the LRE method, data collection is achieved by performing mea-
surements on quantum systems with given measurement bases. This
process can also be accomplished by considering the evolution of
quantum systems with fewer measurement bases. For example, sup-
pose only one observable s is given, and the system evolves according
to a unitary group {Ut}. At a given time t,

sth i~Tr U{ tð ÞsU tð Þr
� �

~Tr strð Þ: ð11Þ

Suppose one measures the observable s at time t t~1, � � � , Mð Þ on m
identically prepared copies of a quantum system. Denote the
obtained outcomes as st

1, � � � , st
m, and their algebraic average as

�st~
st

1z � � �zst
m

m
. Note that st

1, � � � , st
m are independent and

identically distributed. According to the central limit theorem26,
et~�st{ sth i converges in distribution to a normal distribution with

mean 0 and variance
s2

t

	 

{ sth i2

m
. We have the following linear

regression equations

�st~Tr strð Þzet , t~1, � � � , M, ð12Þ

which are similar to (4). Hence, we can use the proposed LRE method
to accomplish quantum state tomography.

The LRE method can also be extended to reconstruct quantum
states with a prior information12,27–29 or states of open quantum sys-
tems. Actually, LRE can be applied whenever there are measurable
quantities that are linearly related to all density matrix elements of
the quantum system under consideration.

In conclusion, an efficient state reconstruction algorithm of linear
regression estimation has been presented for quantum state tomo-
graphy. The computational complexity of LRE is O(d4), which is
much lower than that of MLE and BME. We have analytically pro-
vided an MSE upper bound for all possible states to be estimated,
which explicitly depends upon the used measurement bases. This
analytical upper bound can assist to identify optimal measurement
sets. The LRE method has potential for wide applications in real
experiments.

Figure 2 | Mean squared error (MSE) for Werner states (rq~q Y{j i Y{h jz 1{q
4

I with Y{j i~ HVj i{ VHj iffiffiffi
2
p ) with q (varying from 0 to 1) and

different numbers of copies N. The cube measurement set is used, where the MSE upper bound is
99
N

. It can be seen that the MSE of PLRE is almost

unchanged for q g [0, 1], and is larger than the MSE of LRE.
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Methods
The recursive LS algorithm. For n~1, � � � , M, define Ĥn as

Ĥn~ argmin
Ĥ

Xn

i~1

Wii p̂i{
1
d

{Y ið Þ> Ĥ

� �2

, ð13Þ

where Wii is the i-th element of the diagonal of W, and Ĥ is an estimate of H. Hence,
the LS solution ĤLS is equal to ĤM . From (7), we have

Ĥn~
Xn

i~1

WiiY
ið ÞY ið Þ>

 !{1 Xn

i~1

Y ið ÞWii p̂i{
1
d

� �" #
: ð14Þ

Define

Qn~
Xn

i~1

WiiY
ið ÞY ið Þ>

 !{1

, an~
1

Wnn
zY nð Þ>Qn{1Y

nð Þ
� �{1

: ð15Þ

Using the matrix inversion formula (see, e.g., page 19 of30)

A{BCDð Þ{1
~A{1zA{1B C{1{DA{1B

� �{1
DA{1,

we have

Qn~Qn{1{anQn{1Y
nð ÞY nð Þ>Qn{1: ð16Þ

From (14), (15) and (16), the recursive form of Ĥn can be obtained as

Ĥn~Ĥn{1zanQn{1Y
nð Þ p̂n{

1
d

{Y nð Þ> Ĥn{1

� �
: ð17Þ

Note that Qn is not always invertible, especially when n is small. In order to apply the
recursive algorithm in this case, one may choose the initial value in (16) Q0 being a
given positive matrix, while Ĥ0 being a given vector. From (16) and the matrix inverse
formula, one has

Qn~
Xn

i~1

WiiY
ið ÞY ið Þ>zQ{1

0

 !{1

:

Hence, the recursive LS algorithm can still be applied. Although the solution
obtained from (17) may be slightly different from the solution obtained using (14),
this does not affect the asymptotic properties of the LS solution.

The minimum of the MSE upper bound. The MSE upper bound of 2-qubit states is

M
4N

Tr X>X
� �{1

~
M
4N

Tr
XM

n~1

Y nð ÞY nð Þ>
 !{1

: ð18Þ

Minimizing this MSE upper bound is equivalent to minimizing Tr(XTX)21.
Denote the eigenvalues of XTX as l1§l2§ � � �§l15. Since for all possible mea-

surement bases, we have y
nð Þ

0 ~
1
2

,
X15

i~0
y

nð Þ2
i ~1 for n~1, � � � , M, the problem is

converted into the following conditional extremum problem:

Minimize
X15

i~1

1
li

,

s:t:
X15

i~1

li~
3
4

M:

ð19Þ

It can be proven that
X15

i~1

1
li

reaches its minimum
300
M

when l1~ � � �~l15~
M
20

.

Hence, the minimum of the MSE upper bound
M
4N

Tr X>X
� �{1

for all possible

measurement bases is
75
N
: It can be verified that this minimum MSE upper bound can

be reached by using the mutually unbiased measurement bases.
If only local measurements can be performed, i.e.,

Yj i Yh j nð Þ
~ Yj i Yh j n,1ð Þ

6 Yj i Yh j n,2ð Þ, n~1, � � � , M, where jYæ ÆYj(n,1) and

jYæ ÆYj(n,2) can be parameterized as Yj i Yh j n,kð Þ
~
P3

l~0 y
n,kð Þ

l

slffiffiffi
2
p , k 5 1, 2. And we

have y
nð Þ

i ~y
n,1ð Þ

l |y n,2ð Þ
m , where i 5 4l 1 m.

Due to additional constraints y
n,kð Þ

0 ~
1ffiffiffi
2
p ,

X3

l~0
y

n,kð Þ2
l ~1, for k 5 1, 2, and

n~1, � � � , M, the problem of minimizing the MSE upper bound can be converted
into the following problem:

Minimize
X15

i~1

1
li

,

s:t: ið Þ
X3

i~1

li§
1
4

M, iið Þ
X6

i~1

li§
1
2

M,

iiið Þ
X15

i~1

li~
3
4

M:

ð20Þ

It can be proven that
X15

i~1

1
li

reaches its minimum
396
M

when l1~ � � �~l6~
M
12

,

l7~ � � �~l15~
M
36

. Hence, the minimum of the MSE upper bound
M
4N

Tr X>X
� �{1

is
99
N

. This minimum MSE upper bound can be reached by using the 2-qubit cube or

tetrahedron measurement set.
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