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Abstract

Purpose

To evaluate whether the combination of imaging biomarkers obtained by means of different
3 Tesla (3T) Magnetic Resonance Imaging (MRI) advanced techniques can improve the
diagnostic accuracy in the differentiation between benign and malignant single ring-enhanc-
ing brain masses.

Materials and Methods

14 patients presenting at conventional 3T MRI single brain mass with similar appearance as
regard ring enhancement, presence of peri-lesional edema and absence of hemorrhage
signs were included in the study. All lesions were histologically proven: 5 pyogenic
abscesses, 6 glioblastomas, and 3 metastases. MRI was performed at 3 Tesla and included
Diffusion Weighted Imaging (DWI), Dynamic Susceptibility Contrast -Perfusion Weighted
Imaging (DSC-PWI), Magnetic Resonance Spectroscopy (MRS), and Diffusion Tensor
Imaging (DTI). Imaging biomarkers derived by those advanced techniques [Cerebral Blood
Flow (CBF), relative Cerebral Blood Volume (rCBV), relative Main Transit Time (rMTT),
Choline (Cho), Creatine (Cr), Succinate, N-Acetyl Aspartate (NAA), Lactate (Lac), Lipids,
relative Apparent Diffusion Coefficient (rADC), and Fractional Anisotropy (FA)] were
detected by two experienced neuroradiologists in joint session in 4 areas: Internal Cavity
(IC), Ring Enhancement (RE), Peri-Lesional edema (PL), and Contralateral Normal Appear-
ing White Matter (CNAWM). Significant differences between benign (n = 5) and malignant
(n =9) ring enhancing lesions were tested with Mann-Withney U test. The diagnostic accu-
racy of MRI biomarkers taken alone and MRI biomarkers ratios were tested with Receiver
Operating Characteristic (ROC) analysis with an Area Under the Curve (AUC) > 0.9 indicat-
ing a very good diagnostic accuracy of the variable.
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Results

Five MRI biomarker ratios achieved excellent accuracy: IC-rADC/PL-NAA (AUC = 1), IC-
rADC/IC-FA (AUC = 0.978), RE-rCBV/RE-FA (AUC = 0.933), IC-rADC/RE-FA (AUC =
0.911), and IC-rADC/PL-FA (AUC = 0.911). Only IC-rADC achieved a very good diagnostic
accuracy (AUC = 0.909) among MRI biomarkers taken alone.

Conclusion

Although the major limitation of the study was the small sample size, preliminary results
seem to suggest that combination of multiple 3T MRI biomarkers is a feasible approach to
MRI biomarkers in order to improve diagnostic accuracy in the differentiation between
benign and malignant single ring enhancing brain masses. Further studies in larger cohorts
are needed to reach definitive conclusions.

Introduction

Single ring-enhancing brain masses include benign and malignant lesions of different aetiol-
ogy. Imaging differentiation among them is crucial for treatment planning and prognosis
estimation.

Single pyogenic abscesses are the most frequent “benign” lesions showing ring-enhance-
ment at MRI [1]. Surgical drainage and administration of high doses of intravenous antibiotics
ensure a full recovery in 70% of patients and a 10% fatality rate [2, 3].

Conversely, the most frequent “malignant” masses presenting similar imaging findings are
metastases and glioblastomas (GBM) [4, 5]. Chemotherapy, surgery, whole brain radiation
therapy, and stereotactic radiosurgery [6, 7] are therapeutic options for metastases treatment,
whose median survival varies from a few months to less than two years on the basis of numer-
ous demographic and clinical prognostic factors [8]. Despite the proven benefit of surgical
resection, radiation therapy and temozolomide chemotherapy, GBM prognosis remains very
poor [9].

Discrimination of these entities on the basis of conventional MRI findings other than con-
trast enhancement and solitary presentation is often possible. Typically, pyogenic abscesses
have a smooth inner margin of the ring and a hypointense signal of the rim on T2-weighted
images [10], while malignant lesions have irregular margins of the ring and lack a dark rim on
T2-weighted images. When those findings cannot be clearly identified, the final diagnosis
remains uncertain.

The Biomarkers Definitions Working Group (BDWG) of the National Institutes of Health
defines a biomarker as “a characteristic that is objectively measured and evaluated as an indica-
tor of normal biological processes, pathogenic processes, or pharmacologic responses to a ther-
apeutic intervention” [11].

Nowadays, MRI is no longer considered just a qualitative diagnostic imaging method but
also a quantitative tool.

Advanced MRI technique allow the quantification of metabolite rates, perfusion parameters
and water diffusivity indices, opening new scientific applications with a shift from qualitative
imaging to quantitative imaging [12, 13]

Diffusion Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), Magnetic Resonance
Spectroscopy (MRS), and Perfusion Weighted Imaging (PWI) provide quantitative, reliable
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and reproducible information about microvascularity, neoangiogenesis, metabolism, necrosis
and cellularity of brain masses [14]. Parameters obtained by means of these advanced MRI
techniques can be considered as “biomarkers” to all effects.

Growing efforts have been addressed to define MRI biomarkers that can improve the differ-
entiation between benign and malignant ring enhancing brain masses. Apparent Diffusion
Coefficient (ADC), a biomarker derived from DWI, and Fractional Anisotropy (FA), a bio-
marker derived from DTI, are respectively significantly lower and higher in the central cavity
of pyogenic abscesses than in the central cavity of necrotic tumours [15-19]; aminoacids, bio-
markers derived from MRS, are usually revealed only in the central cavity of pyogenic abscesses
and not in the central cavity of malignant tumors [17]; Cerebral Blood Volume (CBV), a bio-
marker derived from PWI, if measured in ring enhancement and perilesional edema, is gener-
ally higher in malignant lesions than in pyogenic abscesses [20, 21].

Biomarkers combination is a commonly used approach in many scientific fields in order to
allow more accurate diagnostic judgment [22, 23, 24].

Nowadays, in none of the MRI studies focused on the discrimination of ring enhancing
brain masses, biomarkers from different advanced MRI techniques have been combined each
other. As in other medical research fields [25], we hypothesize that microstructural heterogene-
ity of a lesion can be described in a more comprehensive way by combining information from
different MRI biomarkers.

In this study, we proposed to combine, by both univariate and multivariate approaches,
each MRI biomarkers with the other ones in order to further improve the diagnostic accuracy
of MRI advanced techniques, for the differentiation between benign and malignant single ring-
enhancing brain masses.

Materials and Methods
Patients

This study was performed retrospectively. All data collected for clinical purpose were anony-
mous and the readers were the ones who performed all clinical examinations.

The study was approved by the Ethics Committee of the University “G. d’Annunzio” of
Chieti—Pescara (Chieti, Italy)[26]. All patients or caregivers were aware that their data will be
used for possible research purpose other than clinical diagnosis and they signed an informed
consent.

The study included fourteen patients (11 men and 3 women; aged 33-78 years; mean age 62
years) presenting a single brain mass indistinguishable at conventional MRI and characterized
by ring enhancement (Fig 1), peri-lesional edema, and absence of haemorrhage signs. None of
the patients underwent surgery or biopsy before the MRI scan.

All lesions were histologically proven. 5 lesions were benign and all of them were pyogenic
abscesses. 9 lesions were malignant and they included 6 GBMs, and 3 metastases.

All patient underwent the same advanced 3T MRI scan protocol.

MRI data were obtained with a 3T scanner (Philips Achieva X Series, Philips Medical Sys-
tem, Best, Netherlands) using a SENSE (Sensitivity Encoding) dedicated eight-channel head
coil.

All patients underwent conventional and advanced MR techniques.

Conventional MRI

Imaging protocol of conventional MRI included a 3D turbo field echo (TFE) T1-weighted
sequence acquired on the sagittal plane [7.6 ms TR, 3.7 ms TE, 256x256 matrix, FOV
250x250x160, scan time of 1 min and 52 s] before and after gadolinium-based contrast agent
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Fig 1. 3D TFE T1-weighted sequence in the axial plane before and after contrast agent administration. Single ring-
enhancing brain masses with surrounding edema. Histology proved in A. GBM, in B. metastasis, and in C. abscess.

doi:10.1371/journal.pone.0159047.g001

i.v. administration; T2-weighted turbo spin-echo (TSE) sequence acquired on the three orthog-
onal planes [3000 ms TR, 80 ms TE, 300x256 matrix, 3 mm slice thickness with 1 mm gap,
scan time of 2 min and 6 s]; a fluid attenuated inversion recovery (FLAIR) sequence acquired
on the axial plane [11000 ms TR, 125 ms TE, 2800 ms T1T, 320x200 matrix, 3 mm section thick-
ness with 1 mm intersection gap, FOV 240x222x139, scan time of 5 min and 8 s] and a T2*
weighted fast field echo (FFE) sequence [1039 ms TR, 16 ms TE, 35 slices with 3 mm slice
thickness, gap 1 mm, 256x197 matrix, scan time of 3 min and 30 s].

Advanced MRI techniques

Advanced techniques included DWI, DTI, MRS and PWI.

DWTI sequence [3700 ms TR, 67 ms TE, 128x128 matrix, 28 slices of 4 mm thickness with 1
mm gap, b values of 0 and 1000 s/mm?, scan time of 44 s] was acquired in three orthogonal
directions (axial, coronal, and sagittal). The resulting images were averaged in a DWTI isotropic
map in order to suppress effect due to anisotropy and to increase the signal to noise ratio.
Firstly, an ADC isotropic map was calculated by finding the average ADC from all the available
gradient directions. Then, this average ADC map was used together with the b = 0 image to cre-
ate the DWT isotropic map.
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Axial DTI was obtained by using a single-shot spin-echo EPI sequence [6245 ms TR, 60 ms
TE, 128x128 matrix, b values of 0 and 800 s/mm?, 15 diffusion sensitive directions, scan time
of 3 min and 58 s].

2D spectra were obtained by using a multivoxel Point-Resolved Spectroscopic Sequence
(PRESS) [1700 ms TR, 144 ms TE, 19x22 acquisition matrix, 24x24 reconstruction matrix, 10
mmx10 mmx12 mm voxels size, scan time of 11 min and 57 s]. Automated optimization of
gradient shimming, transmitter pulse power and water suppression were used.

Before acquiring PWTI an intravenous saturation bolus injection of 3 ml gadobutrol (Gado-
vist"™; Bayer Schering 1mMol/L, Berlin, Germany) was injected by means of a power injector
(Medrad™ Spectris Solaris™ MR injection system) at a flow rate of 2 ml/s, followed by a 20 ml
saline flush at same rate. About three minutes later a second bolus of 0.1 ml/kg b.w. contrast
medium, followed by 20 ml saline flush, was i.v. automatically injected at a flow rate of 4 ml/s.
A T2* weighted Fast Field Echo-Echo Planar Imaging (FFE-EPI) sequence was acquired during
the second bolus passage [50 dynamic scans, 1576 ms TR, 40 ms TE, 25 slices with 4 mm slice
thickness, 96x96 matrix, scan time of 1 min and 25 s].

Image Analysis

DTI, MRS, and PWI maps were overlayed on post-contrast 3D TFE T1-weighted sequence;
this permitted to place ROIs at the same anatomical level and position as respect to the lesion
architecture. Post contrast 3D TFE T1 images were also used as reference to place ROIs on
ADC images.

Conventional and advanced 3T MRI images were analyzed on a dedicated workstation
(Extended MR WorkSpace, release 2.6.3.2; Philips Medical Systems, Best, Netherlands) in joint
session by two experienced neuro-radiologists, with respectively 10 and 15 years of advanced
MR imaging training, who manually placed regions of interest (ROIs) in 4 areas: Ring
Enhancement (RE), Internal Cavity (IC), Peri-Lesional edema (PL), and Contralateral Normal
Appearing White Matter (CNAWM). ROIs dimensions were guided by each area size and ran-
ged from 20 mm? to 40 mm?>,

Lesions diameters ranged from 25 mm to 47 mm for abscesses, from 15 mm to 37 mm for
GBMs, and from 12 mm to 42 mm for metastases.

From DSC data, blood volume maps, blood flow maps and mean transit time maps were
generated and relative CBV (rCBV = CBV/CBV ¢awm)> Cerebral Blood Flow (CBF) and relative
Mean Transit Time (rMTT = MTT/MTT . 2wm) Were assessed in each area.

For the analysis of MRS data, the peak heights and the peak areas at six metabolite reso-
nances [Choline (Cho) at 3.2 ppm, Creatine (Cr) at 3.0 ppm, Succinate at 2.4 ppm, N-Acetyl
Aspartate (NAA) at 2 ppm, Lactate at 1.33 ppm, and Lipids at 1.2 ppm] were estimated in vox-
els corresponding to IC and PE. We didn’t consider RE spectroscopic parameters for analysis
because the voxel size was not small enough to allow separation between RE and IC or PE.

Cr peak area was used as internal reference for the quantification of the other metabolites.

From DWI data, ADC maps were generated and relative ADC values (rADC = ADC/
ADC_,awm) Were assessed in each area.

For analysis of DTI data, FA values were calculated in each area from the respective map.

Statistical analysis

Significant differences between malignant lesions and benign lesions as well as between metas-
tases and GBMs were assessed by using Mann-Withney U test.

Principal component analysis (PCA) and Partial Least Square Discriminant Analysis
(PLS-DA) were performed in order to find MRI variables discriminating between malignant
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and benign lesions. Data were mean centered, scaled to unit variance, and log transformed
before analysis.

The diagnostic accuracy of MRI biomarkers taken alone or combined by calculating the
ratios between pairs of MRI biomarkers, were also investigated by using the Receiver Operating
Characteristic (ROC) curve analysis. ROC curve provides the sensitivity (true positive rate)
and the specificity (false positive rate) of a diagnostic test, representing the ability of a variable
to discriminate between two groups; an Area Under the Curve (AUC) > 0.9 indicates a very
good diagnostic accuracy.

ROC curve analysis was performed by using the ROC curve analysis tool [ROC Curve
Explorer and Tester (ROCCET) available at http://www.roccet.ca]. Softwares used for statisti-
cal analysis were SIMCA P™ version 11.0 (Umetrics, Umed, Sweden), and Statistica 6.0 (Stat-
soft, Tulsa, OK).

Results

Abscesses showed significant increase of PL-rADC value, decrease of IC-rADC value, and
decrease of PL-FA value if compared to malignant masses (Table 1; Fig 2A). Furthermore,
abscesses showed a trend toward decrease of RE-rCBV and increase of IC-FA respect to malig-
nant masses without reaching statistical significance (Table 1).

Metastases showed significant increase of PL-rADC (1.7+0.2; Mann-Withney U test,

p = 0.048) and decrease of PL-rCBV values (0.5+0.3; Mann-Withney U test, p = 0.048) as com-
pared to GBMs (PL-rADC = 1.3£0.3; PL-rCBV = 1.3+0.7).

Multivariate data analysis such as PCA and PLS-DA did not show any discrimination
between benign and malignant lesions (data not shown). Therefore, we tested the predictive
power of single MRI variables or ratios between pairs of MRI variables by ROC analysis.

On the basis of our knowledge, ratios between pairs of MRI variables have not been investi-
gated as potential biomarkers until now. However, ratios of variable pairs have been widely
used in clinical chemistry and medicine and have been often proved to be better indicators for
physiological or pathological conditions [27, 28]. This technique has been favoured in metabo-
lomic studies employing a hypothesis-free approach for bulk analysis of all possible combina-
tions of molecule pairs [29, 30]. Furthermore, it has been hypothesized that metabolite ratios
may better describe individual metabolic status as compared to absolute concentrations of indi-
vidual metabolites alone, since they inherently correct for individual variations of metabolite
levels [31]. Therefore we chose this approach as the more efficient to identify potential MRI
biomarkers of malignant lesions.

ROC curve analysis showed that IC-FA, RE-rCBV, PL-rADC, and PL-FA were poor predic-
tor biomarkers for the differentiation between benign and malignant ring enhancing lesions
(AUCs did not significantly differ from 0.5 for p>0.050) (Table 2). Conversely, IC-rADC

Table 1. Mean values, standard deviations, and standard errors of the mean for PL-rADC, IC-rADC, RE-rCBV, PL-FA, and IC-FA in malignant
lesions (n = 9) and abscesses (n =5). The significance of differences (95% confidence level) was assessed by Mann-Withney U test. SD: standard devia-

tion. SEM: standard error of the mean.

Variable Mean
PL-rADC 1.4
IC-rADC 1.8
RE-rCBV 10
PL-FA 0.20
IC-FA 0.15

doi:10.1371/journal.pone.0159047.t001

Malignant Lesions Abscesses
SD (SEM) Mean SD (SEM) Mann-Withney U test, p
0.3(0.1) 2.1 0.5(0.2) 0.029
0.7 (0.2) 0.6 0.3(0.1) 0.004
9(3) 2.4 0.9 (0.4) 0.083
0.07 (0.02) 0.14 0.02 (0.09) 0.019
0.09 (0.03) 0.3 0.2 (0.1) 0.089
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Fig 2. Changes of PL-rADC, IC-rADC, RE-rCBV, PL-FA, and IC-FA between abscesses vs malignant lesions (A) and ROC analysis for
IC-rADC (B). Bar graphs show mean values + standard error (SEM; Npaiignant Lesions = 9; Nabscesses = 5). * indicates statistically significant
differences as assessed by Mann-Withney U test (95% confidence level). § indicates p<0.100. The insert shows an enlarged view of the bar
graph. The value of the area under curve (AUC) with the 95% confidence interval, the optimal threshold of IC-rADC, and the corresponding
sensitivity and specificity are shown in the panel B.

doi:10.1371/journal.pone.0159047.g002

proved to be an effective biomarker of abscesses (AUC of 0.909), and a cut-off value of 0.85 for
IC-rADC provided a sensitivity of 1 and a specificity of 0.8 (Fig 2B).

When we tested the predictor ability of combined MRI biomarkers, IC-rADC/PL-NAA, IC-
rADC/IC-FA, RE-rCBV/RE-FA, IC-rADC/RE-FA, IC-rADC/PL-FA achieved higher AUCs
compared to IC-rADC (Table 3).

The best predictor was the ratio IC-rADC/PL-NAA that provided the maximum AUC
value (AUC = 1) and sensitivity and specificity of 1 with optimal cut-off value of 0.359
(Table 3).

Table 2. Receiver operating characteristic (ROC) analysis of individual MRI variables. Significance of
the area under curve (AUC) was determined by the Student’s t-test taking as the null hypothesis that

AUC = 0.500. IC-rADC is the only potential classifier with an AUC significantly greater then 0.500 (95% confi-
dence level).

Variable AUC t-test, p
IC-rADC 0.909 (0.822-1) 0.002
PL-FA 0.889 (0.667-1) 0.052
PL-rADC 0.867 (0.699-1) 0.065
RE-rCBV 0.800 (0.566-1) 0.11
IC-FA 0.789 (0.466-0.978) 0.070

doi:10.1371/journal.pone.0159047.t002

Table 3. Receiver Operating Characteristic (ROC) analysis of significant combined MRI biomarkers calculated as ratios between pairs of single
variable. The calculated Area Under the Curve (AUC), p values from the Student’s t-test, and fold changes calculated for the 5 best predictors are shown.
The optimal cut-off point selected for the classification of malignant lesions and abscesses and the corresponding sensitivity and specificity are also shown.

Ratio

IC-rADC/PL-NAA
IC-rADC/IC-FA
RE-rCBV/RE-FA
IC-rADC/RE-FA
IC-rADC/PL-FA

doi:10.1371/journal.pone. 0159047 1003

AUC t-test, p Fold Change Cut-off Specificity Sensitivity
0.008 -3.025 0.359 1 1

0.978 (0.867-1) 0.001 -2.401 2.62 1 0.9
0.933 (0.733-1) 0.011 -2.022 4 1 0.9
0.911 (0.667-1) <0.001 -2.197 2.11 0.8 1
0.911 (0.711-1) 0.013 -1.241 2.07 0.8 0.9
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Discussion

PL-rADC, IC-rADC, and PL-FA values were significantly different in the two groups (benign
vs malignant), but only IC-rADC reached significant diagnostic accuracy.

The usefulness of ADC in the characterization of brain abscesses is well known in literature
[32] and a recent meta-analysis has confirmed that DWT has high sensitivity and specificity in
the differentiation between benign and malignant ring-enhancing brain masses [16]. It is
assumed that the diffusivity of water molecules in pyogenic brain abscesses cavity is restricted
due to the high viscosity of pus, which contains inflammatory cells, bacteria, necrotic tissue
and exudate [33-38]. Conversely, necrotic brain tumors usually show an increase of the diffu-
sivity in their central cavity due to the hydrophilic properties of the necrosis, which is rich in
cellular debris, serum, and haemorrhagic fluid [39, 40]. Consequently, the ADC values in cystic
and necrotic brain tumours can be 4 to 10 times higher than in abscesses [41].

However, it should be stressed that the rate of false positives is not negligible even when the
most effective IC-rADC cut-off value is taken into consideration at ROC curve analysis.

IC-rADC values showed a quite large variability with values ranging from 0.3 to 1.1 for the
abscesses and from 1.0 to 3.2 for malignant lesions. This wide range may be related to different
age of the abscesses at the time of the MRI exam, or related to the degree of host immune
response [42-44].

Concerning IC-rADC changes, conflicting results have been reported in literature [45, 46].
Reddy and colleagues [47] observed ADC values similar to that of normal brain in 4 out of 95
brain abscesses. These findings were addressed to partial volume averaging artifacts or to
intrinsic differences in the properties of diffusion in small abscesses. Park and colleagues [41]
described two cases of cystic brain metastasis with central restricted diffusion, mimicking a
pyogenic abscess. Chang and colleagues [48] reported a ring-enhanced fibrillary low-grade
astrocytoma with a restricted diffusion content proven to be a creamy necrotic material similar
to pus.

Except IC-rADG, in our study neither biomarkers taken alone nor PCA and PLS-DA mod-
els of MRI variables achieved significant diagnostic accuracy in differentiating between benign
and malignant ring enhancing lesions.

In contrast, by combining each MRI biomarker with others, several ratios between pairs of
single variables reached significant diagnostic accuracy with AUC values higher than those
achieved by IC-rADC.

Combined biomarkers showing excellent diagnostic accuracy (AUC>0.9) were IC-rADC/
PL-NAA, IC-rADC/IC-FA, RE-rCBV/RE-FA, IC-rADC/RE-FA, and IC-rADC/PL-FA.

In particular, a cut off value of 0.359 for the ratio IC-rADC/PL-NAA ensured a 100% sensi-
tivity and a 100% specificity with a remarkable increase of diagnostic accuracy respect to IC-
rADC taken alone. NAA is a sensitive biomarker for neurons integrity and its reduction has
been related to different pathologic conditions. Recently, Price and colleagues [49] have
reported a significant reduction of NAA/Cr levels in the invasive margins of GBMs. The
increased diagnostic accuracy of IC-rADC/PL-NAA ratio, as compared to IC-rADC taken
alone, can be attributed to the high predictive power of PL-NAA detected in malignant lesions
and reflects their infiltrative nature.

When IC-rADC was combined with IC-FA, its specificity improved from 80% to 100%. Pre-
vious studies showed higher IC-FA values in abscesses if compared with GBMs and metastases
[17, 19]. It was hypothesized that the higher IC-FA values of abscesses could be due to the pres-
ence of “orientated” inflammatory cells causing anisotropic diffusion in abscesses internal cav-
ity. Primary and secondary brain tumours internal cavity consists of tissue debris and few
inflammatory cells and so diffusion is isotropic [17, 19].
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Conversely, diagnostic accuracy of IC-rADC was only slightly increased when combined to
PL-FA or RE-FA (AUC =0.911 vs AUC = 0.909).

RE-rCBV and RE-FA median values taken alone were not significantly different between
the two groups. Erdogan et al have previously reported that perfusion MRI may allow the dif-
ferentiation of pyogenic brain abscess from cystic brain tumors and show that RE-rCBV was
higher in GBMs compared to abscesses [20]. Partially in agreement with the Erdogan study, we
found that RE-rCBV shows a trend toward increase in malignant lesions compared with
benign lesions. It is well known that rCBV values strongly depend on data acquisition and
post-processing methods, with a large interpatient and interstudy variability, for the same tis-
sue type [50]. Although we follow literature recommendations [51] in both acquisition and
post-processing of data (reduction of the leakage effect by administering a loading dose of con-
trast agent prior to acquiring PWI and normalization of CBV values to the CBV values in nor-
mal-appearing white matter), the large inter-individual variability of RE-rCBV in malignant
lesions probably affected the significance of our results.

However, when RE-rCBV and RE-FA were combined, the corresponding ratio was signifi-
cantly different between the two groups and a cut-off value of 4 provided a 100% specificity
and a 90% sensitivity. A probable reason may be that ratios correct for experimental factors
that are still not well defined and for inter-individual variability.

Previous studies reported the potential of PWI in differentiating abscesses from GBMs and
metastases [52, 53]. It is well known that microvascular blood volume is elevated in malignant
tumors with a clear association between increased tumor neovascularity and malignancy [52, 53].

In one previous study, comparing abscesses with GBMs and metastases, FA values resulted
higher in the enhancing rim of the abscess than in the enhancing rim of GBMs and metastases.
Authors argued that the high FA values in the abscess rim were predominantly due to increased
planar tensor values, which may be secondary to the presence of concentric layers of collagen
fibers, and numerous inflammatory cells [54].

Advanced MRI techniques allow a non-invasive, quantitative method for investigating nor-
mal and pathological tissues. Thanks to the greater signal to noise ratio, 3T MRI provides more
reliable and more reproducible data than 1.5T MRI [55]. Data obtained by advanced MRI tech-
niques are considered as “potential” biomarkers for the assessment of microstructural and
microvascular changes induced by brain lesions.

So far, researchers focused on identifying the best biomarker and the best cut-off value able
to differentiate between different etiologies. But, it is becoming increasingly clear that the
nature of a lesion cannot be fully described by a single biomarker that, inevitably, gives infor-
mation about just one of the many aspects of a lesion.

Hence in this study, we started from the idea that the microstructural heterogeneity of a
lesion can be described in a more comprehensive way by combining information from different
MRI biomarkers, as already done in other medical research fields [22, 23, 24, 28, 29]. To this
end, we proposed to apply this approach to advanced MRI techniques.

A concern of the study could be that advanced MRI data were detected in joint session by
two readers [56, 57]. This modality was not performed to provide for a clinical interpretation,
but, in order to reduce scattering of data and to get more reliable results, an agreement among
the two readers was reached concerning the ROIs placement on MRI images.

Another limitation of the study could be that residual involuntary bias in the inclusion pro-
cess cannot be excluded considering that the readers were also the ones who collected the data.
However, all data were anonymized and the task of the readers was not to establish a second
diagnostic judgment but only to collect the MR signal in standardized ROIs.

Although the major limitation of the study is the small sample size of the study groups and
a higher statistical power is desirable, a trade off with the number of patients, that may
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eventually be recruited, should always be considered. We point out that the smallest measured
difference between the two groups was large enough to statistically validate the sample size, as
regard a pilot study [58], which can be of interest for further investigation in larger cohorts.

Strengths of the study included restrictive inclusion criteria (patients affected by lesions
indistinguishable at conventional MRI undergoing same 3T MRI advanced techniques scan
protocol), clinically well-defined patient groups and combination of multiple imaging
biomarkers.

Aiming to improve the diagnostic accuracy, to better predict the prognosis and to guide the
treatment, this study suggests that combination of multiple 3T MRI biomarkers can be more
reliable than single biomarkers evaluation in the differentiation between benign and malignant
single ring enhancing brain masses.

Despite the limited sample size does not allow definitive conclusion and further studies in
larger cohort are needed, we point out the feasibility of the method and the novelty of this
approach in the field of diagnostic neuroimaging.
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