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Abstract. Axons and dendrites contain dense microtu- 
bule (MT) arrays that are not attached to a traditional 
MT nucleating structure such as the centrosome. 
Nevertheless, the MTs within these neurites are 
highly organized with respect to their polarity, and 
consist of a regular 13-protofilament lattice, the two 
known characteristics of MTs nucleated at the centro- 
some. These observations suggest either that axonal 
and dendritic MTs arise at the centrosome, or that 
they are nucleated locally, following a redistribution 
of MT nucleating material from the centrosome dur- 
ing neuronal development. To begin distinguishing be- 
tween these possibilities, we have determined the dis- 
tribution of 3,-tubulin within cultured sympathetic 
neurons. 3,-tubulin, a newly discovered protein which 
is specifically localized to the pericentriolar region of 
nonneuronal cells (Zheng, Y., M. K. Jung, and B. R. 
Oakley. 1991. Cell. 65:817-823; Stearns, T., L. 
Evans, and M. Kirschner. 1991. Cell. 65:825-836), 
has been shown to play a critical role in MT nu- 

cleation in vivo (Joshi, H. C., M. J. Palacios, L. 
McNamara, and D. W. Cleveland. 1992. Nature 
(Lond.). 356:80-83). Because the 3,-tubulin content of 
individual cells is extremely low, we relied principally 
on the high degree of resolution and sensitivity 
afforded by immunoelectron microscopy. Our studies 
reveal that, like the situation in nonneuronal cells, 
3,-tubulin is restricted to the pericentriolar region of 
the neuron. Furthermore, serial reconstruction analy- 
ses indicate that the minus ends of MTs in both axons 
and dendrites are free of 3,-tubulin immunoreactivity. 
The absence of "),-tubulin from the axon was confirmed 
by immunoblot analyses of pure axonal fractions ob- 
tained from explant cultures. The observation that 
~-tubulin is restricted to the pericentriolar region of 
the neuron provides compelling support for the notion 
that MTs destined for axons and dendrites are nu- 
cleated at the centrosome, and subsequently released 
for translocation into these neurites. 

M 
ICROTUBULES (']VlTs) 1 a re  highly organized through- 
out the neuron, but are organized differently in 
each of its compartments. In the axon, the MTs 

are all oriented with their plus ends distal to the cell body 
(Heidemann et al., 1981; Burton and Paige, 1981; Baas 
et al., 1987, 1988, 1989, 1991), whereas in the dendrite, 
roughly equal proportions of the MTs are of each orientation 
(Baas et al., 1988, 1989, 1991; Burton, 1988). The minus- 
end distal MTs in the dendrite arise later in development than 
the plus-end distal MTs (Baas et al., 1989) suggesting that 
dendrites contain two populations of MTs of uniform but op- 
posite orientation. In the cell body, MTs also appear to have 
a complex organization, funneling from the cell center to- 
ward the axons and dendrites (Bartlett and Banker, 1984; 
Stevens et al., 1988). Because MTs are key to the establish- 
ment of cellular architecture and directing organdie trans- 
port, these unique MT patterns provide a foundation for 
defining the shape and cytoplasmic composition of each neu- 

1. Abbreviations used in this paper: CBM, cell body mass; MT, micro- 
tubule. 

ronal compartment (for reviews, see Lasek, 1988; Black and 
Baas, 1989). Therefore, there is great interest in elucidating 
the mechanisms by which MTs are organized in each of these 
compartments. 

Most current knowledge about the organization and as- 
sembly of MTs derives from in vitro studies, or from studies 
on normeuronal cells. In the test tube, MT assembly can oc- 
cur de novo by self-association of free subunits, but preferen- 
tially occurs by elongation from a nucleating structure (for 
review see Kirschner, 1978). Studies on nonneuronal cells 
indicate that self-association is strongly suppressed in favor 
of nucleated assembly, and that MT nucleation is spatially 
regulated by discrete templates or nucleating structures such 
as the centrosome (for review see Brinkley, 1985). Nuclea- 
tion from these structures results in MT arrays of uniform 
polarity orientation (Heidemarm and McIntosh, 1980; Eu- 
teneuer and Mclntosh, 1981), and also results in a regular 
lattice structure of each MT within the array. With regard to 
the latter issue, in vitro studies on MT nucleation in the 
presence or absence of centrosomes indicate that the 13 
protofilament lattice of the MT results from centrosomal 
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nucleation, and that in the absence of the centrosome, 
protofilament number varies (Evans et al., 1985; see also 
Scheele et al., 1982). The extent to which these observations 
on protofilament number can be extended to living cells is 
unclear. However, the observations that axonal and dendritic 
MTs typically have a regular 13-protofilament lattice (Tilney 
et al., 1973; Burton et al., 1975), and are highly organized 
with respect to their polarity are nevertheless provocative, 
suggesting the likelihood that axonal and dendritic MTs are 
nucleated by a structure or substance comparable in function 
tO the ccntrosome. 

Curiously, MTs in the axon and dendrite are not attached 
to any observable nucleating structure (Lyser, 1968; Sharp 
et al., 1982), but rather appear to be free in the cytoplasm, 
stopping and starting all along the lengths of these neurites 
(Bray and Bunge, 1981; Sasaki et al., 1983). Moreover, no 
evidence has emerged for any kind of structural cap at the 
minus end of the MT. These observations have resulted in 
much interest over the past several years with regard to the 
mechanisms by which the nucleation, assembly, organiza- 
tion, and lattice structure of axonal and dendritic MTs are 
regulated. In recent studies (Baas et al., 1989; Bans and Ah- 
mad, 1992), we have discussed two possibilities with regard 
to the sites where new MTs for axons and dendrites may 
arise. One possibility is that axonal and dendritic MTs are, 
in fact, nucleated at the centrosome, after which they detach 
from this structure and move into axons and dendrites by an 
active transport mechanism. Alternatively, the MT nucleat- 
ing material of the centrosome may redistribute during neu- 
ronal development, permitting new MTs to be nucleated lo- 
cally within axons and/or dendrites. These two possibilities 
have clearly different implications with regard to the cascade 
of events by which the axonal and dendritic MT arrays are 
elaborated. 

To begin to distinguish between these possibilities, we 
have focused our attention on ~/-tubulin. -/-tubulin is a re- 
cently discovered member of the tubulin family (Oakley and 
Oakley, 1989), which has been shown to be associated with 
MT nucleating structures such as spindle-pole bodies in fun- 
gal ceils (Oakley et al., 1990) and centrosomes in vertebrate 
cells (Zheng et al., 1991; Steams et al., 1991; Horio et al., 
1991). Genetic and immunocytochemical evidence suggests 
that ~-tubulin directly interacts with B-tubulin, and thereby 
nucleates the assembly of plus-end distal MT arrays (Oaldey 
et al., 1990; Zheng et al., 1991; Stearns et al., 1991). In sup- 
port of this view, the microinjection of a "y-tubulin antibody 
into cultured mammalian cells blocks the reassembly of 
MTs from the centrosome following MT depolymerization 
(Joshi et al., 1992), confirming the requirement of func- 
tional gamma-tubulin for the nucleation of MTs from this 
structure. 

In the present study, we have determined the distribution 
of V-tubulin within cultured sympathetic neurons. We have 
identified "y-tubulin as a component of the pericentriolar ma- 
terial of the neuron, and have analyzed axons, dendrites, and 
other regions of the cell body in an effort to determine 
whether 3,-tubulin is also present at any other locations in the 
neuron. Our results provide provocative new information re- 
garding the origins of axonal and dendritic MTs. 

Materials and Methods 

Cell Culture 
Cultures of sympathetic neurons from the superior cervical ganglia of new- 
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born rat pups were grown in two different ways. Dissociated cultures were 
used for immunoelectron microscopy because they permit the identification 
of individual axons, dendrites, and cell bodies. Explants cultures were used 
for biochemical analyses because they permit the separation of pure axonal 
and higkly enriched soma~odendritic fractions. For dissociated cultures, 
ganglia were treated with 0.25 mg/mi collagenase for I h followed by 0.25 
mg/ml trypsin for 45 rain, and then triturated with a Pasteur pipette into 
a single cell dispersion. The neurons were plated onto collngen-coated plas- 
tic dishes in N2 medium (Moya et al., 1980) supplemented with 2.5 % FBS, 
5 % human placental serum, and 50 ng/ml nerve growth factor. Neurons 
were plated at a particularly high density (2-3 ganglia per 35-mm dish) to 
promote rapid dendritic outgrowth. On the morning after plating, the cul- 
tures were fed with the same medium further supplemented with 5 /an  cyto- 
sine arabinoside to reduce nonneuronal contamination. For biochemical 
analyses, each ganglion was cut into three pieces, and plated as explants 
onto collagen-coated dishes (six explants per dish). The explants were 
plated into N2 medium supplemented with 1% human placental serum, 50 
ng/ml nerve growth factor, and 0.6 % methyl cellulose. The following morn- 
ing, the cultures were fed with N2 medium supplemented with 50 ng/mi 
nerve growth factor and I0 van cytosine arabinoside. Axons were permitted 
to grow for I0 d, a time over which it has been determined that the protein 
content of the axonal halo becomes roughly equivalent to that of the cell 
body mass (CBM) (Pang et al., 1986). 

Sample Preparation for EM 
For immunoelectron microscopy, cultures were rinsed briefly in a MT 
stabilizing buffet termed PHEM (60 mM Pipes, 25 mM Hepes, 10 mM 
EGTA, 2 mM MgClz, pH 6.9), and then extracted for 5 rain in PHEM 
containing 10 #M taxol and 1% Triton X-100, Cultures were fixed by the 
addition of an equal quantity of PHEM containing 4% paraformaldehyde 
and 0.4% glutaraldehyde. After 10 rain, the cultures were rinsed briefly in 
PHEM, treated for 15 rain with 2 mg/mi sodium borohydride, rinsed briefly 
in TBS-1 (10 mM Tris, 140 mM NaCl, pH 7.6), treated for three times, 10 
rain each with blocking solution containing 2 % normal goat serum, 3 % 
BSA, and 0.1% fish gelatin in TBS-1, and then incubated for 90 rain at 37~ 
with our polyclonal 7-tubulin antibody (Joshi et al., 1992) diluted 1:50 in 
blocking solution. In a limited number of experiments, the blocking solution 
contained 5 % normal goat serum in TBS-1, the ,y-tubulin antibody was used 
at dilution of 1:25, and the incubation was at 4oc overnight. After antibody 
incubation, cultures were rinsed three times for 10 rain each in TBS-2 (20 
mM Tris, 140 mM NaC1, pH 8.2) containing 0.1% Triton X-100, treated 
with blocking solution (same protein composition, but dissolved in TBS-2), 
and then incubated for 3 h at 37~ with 5 nm gold-conjngated goat 
anti-rabbit second antibody (Amersham Corp., Arlington Heights, IL) 
diluted 1:2 in blocking solution. The cultures were then rinsed three times 
for 10 rain each with TBS-2, fixed in 0.1 M cacodylate containing 1% 
glutaraldehyde and 2 rng/ml tannic acid, postiixed in 2% OsO4 for 10 rain, 
dehydrated in ethanols, and embedded in LX-112 resin (Ladd Research Inc., 
Burlington, VT). 

For conventional EM, cultures were fixed for 15-20 rain in 0.1 M caco- 
dylate buffer containing 2% glutaraldehyde and 2 mg/ml tannic acid, 
postfixed for 10 rain in 1% OsO4, dehydrated in ethanols, and embedded 
in LX-112 resin. 

EM and Serial Reconstruction 
After curing, the resin was removed from the plastic dish, and regions of 
interest were relocated by phase-contrast microscopy, circled with a 
diamond-marker objective, and sectioned using a Reichert Jung Ultracut E 
Ultramicrotome (Reichert Jung, Vienna). Serial sections roughly 140-nm 
thick (about twice as thick as a typical thin section) were picked up on 
butvar-coated slot grids, and stained with uranyl acetate and lead citrate. 
Initial observations were made on the 7 1 McV high voltage electron micro- 
scope at the University of Wisconsin (Madison, WI) HVEM facility. Most 
observations and all micrographs were taken using a conventional JEOL 
CX-100 electron microscope (JEOL USA Inc., Peabody, MA), which was 
found to provide sufficient resolution for our purposes. 

In one set of studies, we wished to identify the minus ends of M'Is in 
axons and dendrites. Because portions of individual MTs may be present 
on more than one section, serial reconstruction was necessary for this 
identification. The use of thicker sections substantially eased the task of 
reconstruction, with the MTs from an individual axon typically occupying 
<6 sections and a typical dendrite typically occupying <20 sections. To 
identify minus ends of MTs, we used an abbreviated version of our previ- 
ously described method for reconstructing axonal MTs (Joshi et al., 1986; 
Bans and Heidemann, 1986). Sets of three consecutive sections were 
aligned using non-MT structures (any membranous elements or other cellu- 
lar debris remaining after extraction) as registration markers (see Bans and 
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Abroad, 1992). Any MT terminating in the middle section (not continuous 
onto either of the two flanking sections) was known to be a true MT end. 
Lengths of reconstructed axons or dendrites were 20-60 #m, and generally 
0-3 MT ends were identified in each trio of sections. In the axon, all of the 
MTs have a plus-end distal orientation (Bans et al., 1991), and thus the mi- 
nus ends were known to be those directed toward the cell body. In the den- 
drite, roughly half the ends are expected to be of each type (Baas et al., 
1991), so the ends we identified were assumed to be a mixture of both plus 
and minus ends. The direction of axon growth, needed to determine MT 
polarity orientation, was not always apparent at the phase level, and there- 
fore was assessed at the electron microscopic level based on continuity of 
the proximal region of the axon with the cell body. 

Biochemical Analyses 

To further analyze the 3,-tubulin content of the axonal and somatodendritic 
compartments of the neuron, we performed immunoblot analyses on pure 
axonal and highly enriched somatodendritic fractions obtained from explant 
cultures. For these analyses, the cell body masses (CBMs) were dissected 
with forceps from the explant cultures, and collected in an epindorph tube. 
The CBMs and axon halos were then separately dissolved/homogenized in 
1% SDS containing a cocktail of protease inhibitors (0.2 TIU aprotinin and 
10 tLg/ml each of leupeptin, antipain, and chymostatin). The samples were 
precipitated with nine volumes of cold methanol, dissolved in Ix Laemmli 
gel sample buffer, and boiled for 3 rain. SDS-PAGE was then performed 
as described by Laemmli (1970). Proteins were transferred (3 h at 1 Amp) 
to nitrocellulose (BA83; Schleieher and Schuell, Inc., Keene, NH) in half- 
strength Laemmli gel running buffer plus 20% methanol. Nitrocellulose 
filters containing transferred samples were stained with Poncean S (0.2% 
Ponceau S in 3% TCA) to identify the positions of molecular weight stun- 
dards. Nonspecific protein binding sites were blocked by incubation for 15 
rain with PTX-BSA (0.2% Triton X-100, 0.15 M NaC1, 10 mM NaH2PO4, 
pH 7.5, 1 mM EGTA, 4% BSA). After blocking, the filters were incubated 
overnight with primary ~r antibody diluted in PTX-BSA. The fol- 
lowing morning, unbound primary antibody was removed, and the filters 
were washed four times, 15 rain each in wash buffer (0.5% Triton X-100, 
50 mM triethanolamine, pH 7.4, 0.1 M NaCI, 0.1 mM EDTA, 0.1% SDS). 
The filters were then incubated for 1 h at room temperature with 1251- 
labeled protein A in PTX-BSA, and then washed four times 15 rain each 
in wash buffer to remove unbound protein A. Binding was detected by auto- 
radiography using Dupont Lightening Plus intensifying screens (Dupont In- 
struments, Wilmington, DE) and Kodak XAR film (Eastman Kodak Co., 
Rochester, NY). 

Figure 1. Phase-contrast micrograph of a dissociated culture of rat 
sympathetic neurons grown on a collagen-coated plastic culture 
dish as described in Materials and Methods. Cell bodies, axons, 
and dendrites are readily identifiable by morphological criteria. 
Axons are longer, thinner processes that are uniform in diameter, 
while dendrites are thicker, shorter processes that taper with dis- 
tahoe from the cell body. Smaller arrows mark examples of axons, 
while larger arrows mark examples of dendrites. The reliability of 
these morphologic criteria to distinguish the axons and dendrites 
of these cultures from one another has been confirmed by immuno- 
logical and ultrastructural criteria fBaas et al., 1991). Bar, 20/~m. 

Results 

7-tubulin Is Present in the Pericentriolar Material 
of the Neuron 
Our goal in the present studies was to determine the dis- 
tribution of 3,-tubulin in the neuron. For these studies, immu- 
noelectron microscopic analyses were performed on dis- 
sociated cultures of rat sympathetic neurons. These neurons 
extend distinct axons and dendrites that are readily distin- 
guished from one another both at the light and electron mi- 
croscopic levels (Fig. 1). Axons are longer, thinner processes 
of uniform diameter, whereas dendrites are shorter, broader 
processes that taper with distance from the cell body. In 
previous studies using immunoelectron microscopy to local- 
ize 7-tubulin in nonneuronal cells, it was found that 3,-tubu- 
lin is specifically localized to the pericentriolar region of 
these cells (Stearns et al., 1991). Therefore, our first efforts 
herein were focused at determining whether the pericentrio- 
lar region of the neuron also contains ~/-tubulin. These 
studies were more problematic on neurons compared with 
nonneuronal cells because of the comparatively larger size 
and rounder geometry of the neuronal cell body. The cell 
body of the neuron is a slightly flattened sphere, ,~20-40 #m 
in diameter, and as such, occupies hundreds of typical thin 
sections (70-nm thick). The centrosome lies on roughly five 
of these sections. To better our chances of observing the cen- 
trosome, we used somewhat thicker sections (140 nm), and 
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analyzed serial sections picked up on butvar-coated slot 
grids (see Materials and Methods). 

We initially wished to explore whether our extraction pro- 
tocol altered the appearance or integrity of the centrosome 
and/or the pericentriolar material. For this reason, we com- 
pared the appearance of centrosomes in extracted cultures 
with their appearance in unextracted cultures. Fig. 2 a shows 
a centrosome from an unextracted culture. The pericentrio- 
lar cloud is not dramatic in appearance, but is apparent as 
a hazy substance asymmetrically surrounding the centro- 
some. In some sections, the centrosome was manifest as only 
one centriole of the pair, while in other cases, both centrioles 
appeared in a single section. In all cases, and as expected in 
the case of a postmitotic cell, the centrioles were not per- 
fectly perpendicular to one another. MTs were generally ob- 
served in the region of the centrosome, and throughout the 
cell body, but it was unclear whether or not individual MTs 
were emanating directly from the centrosome. In extracted 
neurons, the appearance of the eentrosome was essentially 
similar to that in unextracted neurons with regard to all of 
the features discussed here (Fig. 2, b arm c). 

Fig. 2 b shows an extracted culture immunolabeled for 
"y-tubulin using the antibody at 1:25 and a blocking solution 
consisting of 5% normal goat serum (see Materials and 
Methods). The pericentriolar regions of this and all other 
neurons examined were labeled with gold particles. In addi- 
tion, we occasionally found small clusters of gold particles 
situated on MTs, neurofilaments, or cellular debris. The lack 
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Figure 2. Electron micrographs of cen- 
trosomes and surrounding regions from 
the cell bodies of cultured rat sympathetic 
neurons, a shows a conventional elec- 
tron micrograph of a centrosome from 
an unextracted culture, while b and c 
show immunoelectron micrographs of 
centrosomes from extracted cultures ira- 
munostained with a polyclonal ~,-tubulin 
antibody (Joshi et al., 1992), and an ap- 
propriate 5-nm gold-conjugated second 
antibody. In both unextracted and ex- 
tracted ceils, the centrosome is clearly 
identifiable, and is asymmetrically sur- 
rounded by a cloud of pericentriolar ma= 
terial (see Results for more details). In 
all immunostain experiments, the peri- 
centriolar material labeled for "),-tubu- 
lin. The protocol used in b resulted in a 
higher density of staining of this mate- 
rial, but also resulted in higher levels of 
background staining (manifest as small 
clusters of gold particles of apparently 
random distribution). The protocol used 
in c resulted in a somewhat lower den- 
sity of staining at the centrosome, but 
also resulted in the reduction of back- 
ground staining to negligible levels. (It 
is worth noting that higher levels of gold 
particles are present within the pericen- 
triolar material than are apparent upon 
casual examination of our micrographs. 
For example, in c, there are '~15 gold 
particles that are readily noticeable. In 
addition, however, several more gold 
particles are buried within darkly osmi- 
cated pericentriolar material, and are 
difficult to accentuate in micrographs of 
our thick sections.) Bar, 0.25/(m. 
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Figure 3. Immunoelectron mi- 
croscopic analyses for'y-tubu- 
lin in a region of an axon. a 
shows the middle section of 
three consecutive sections, 
while b shows a serial recon- 
struction of MTs on all three 
sections. Ends of MTs were 
identified on the middle section 
by their lack of continuity onto 
either of the two surrounding 
sections. Minus ends were 
distinguished from plus ends 
by the orientation of the former 
toward the cell body. Two mi- 
nus ends are indicated by ar- 
rows. Neither of these ends, or 
any of the other 10 minus ends 
observed, labeled for ~/-tubu- 
lin. Bar, 0.15 #m. 

of consistency with regard to these latter gold particles ar- 
gues that they are the result of nonspecific background stain- 
ing, which is not an uncommon problem with the use of 
peptide-derived polyclonal antibodies such as ours. To mini- 
mize background, most studies were performed with a lower 
antibody concentration (1:50), and the concentration and va- 
riety of proteins in the blocking solution were increased (see 
Materials and Methods; see also Stearns et al., 1991). This 
resulted in a somewhat lower density of labeling at the cen- 
trosome, but also reduced the background labeling to 
negligible levels (see Fig. 2 c). Careful inspection of multiple 
sections through each cell body examined (n = 20) revealed 
no labeling for y-tubulin anywhere in the cell body other 
than within the pericentriolar material. 

~/-tubulin Is Undetectable in Axons and Dendrites 

We next focused our efforts on axons and dendrites. In 
searching for "y-tubulin in these processes, we initially used 
the same method as was used for the cell body, which en- 
tailed simply scanning multiple sections of several different 
axons and dendrites (n = 10 each). These searches revealed 
virtually no gold particles. Nevertheless, to control for the 
possibility that sites of 3,-tubulin staining were missed due 
to their paucity, we wished to specifically identify the most 
likely sites where 3,-tubulin might be localized in axons and 
dendrites, and then carefully examine these sites for the pres- 
ence or absence of gold particles. Because MT nucleation 
sites are generally attached to the minus ends of MTs, we 
chose to examine these ends as the most likely sites where 
3,-tubulin might be localized in axons and/or dendrites. To 
identify and study the minus ends of MTs, we examined sets 
of three consecutive serial sections, searching for ends of 
MTs on the middle section that were not continuous onto ei- 
ther of the flanking sections (see Materials and Methods). In 
the dendrite, we assumed, because roughly equal levels of 
dendritic MTs are of each orientation (Baas et al., 1991), that 
roughly half the ends that we randomly identified were mi- 
nus ends. In these studies, we identified 12 MT ends (all mi- 
nus) in axons (Fig. 3), and 14 MT ends (,~,half minus) in den- 
drites (Fig. 4). In no case did we find labeling for 3,-tubulin 
(i.e., there were no gold particles) at any of these ends. 

Biochemical Analyses 

In a final set of experiments, we confirmed the absence of 
3,-tubulin from the axon by SDS-PAGE/immunoblot analyses 
of pure axonai fractions obtained from explant cultures. Half 
of a ganglion, containing roughly 104 neurons (see Higgins 
et al., 1991) was used for each explant (Fig. 5 a). Given that 
there is one centrosome per neuron and 104-105 3,-tubulin 
molecules per centrosome (Stearns et al., 1991), and assum- 
ing that all of the ~/-tubulin in the CBM is localized to the 
centrosome, we calculate that each CBM should contain 
108-109 molecules of-y-tubulin. If'y-tubulin were present at 
the minus ends of axonal MTs, how much "y-tubulin would 
we expect to find in the axonal halo? We obtained a rough 
estimate for this value based on the approximate cross- 
sectional areas of the axonal halo (170 ram:) and of an in- 
dividual axon (.006 mm2), the number of axons comprising 
the width of the halo (10-12 axons), the average length of the 
axons (6 mm), the average cross-sectional density of MTs in 
an axon (10; Baas et ai., 1991), the average length of each 
axonal MT (100 gm; Bray and Bunge, 1981), and the mini- 
mum number of ~-tubulin molecules expected to be present 
at the minus end of a MT (13, assuming that at least one 
-y-tubulin molecule is bound to each of the 13 protofilaments 
of axonal MTs). Taking these factors into account, we calcu- 
late that, if'y-tubulin is present at the minus ends of axonal 
MTs, then each halo should contain about 3 x 109 mole- 
cules of -y-tubulin, or at least three times the number of 
~/-tubulin molecules present in the CBM. 

Fig. 5 b shows the immunoblot comparing the "y-tubulin 
content of axons and CBMs. Lanes 1 and 3 contain equal 
amounts of total protein obtained from axons and CBMs 
respectively, while lane 2 contains twice this amount of 
axonai protein. The immunoblots reveal the presence of 
~-tubulin in the CBMs, as expected, but show no detectable 
"y-tubulin present in the axon halos. This point is reinforced 
by the lack of 3,-tubulin signal even when the amount of ax- 
onal material loaded is increased to an amount containing a 
number of minus ends of MTs corresponding to over six 
times the amount of 3,-tubulin estimated to be present in the 
CBM. These results indicate that 3,-tubulin is not present at 
the minus ends of axonai MTs, and thus are entirely consis- 
tent with the immunoelectron microscopic results indicating 
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Figure 4. Immunoelectron mi- 
croscopic analyses for ~/-tubu- 
lin in a region of a dendrite, a 
shows the middle section of 
three consecutive sections, 
while b shows a serial recon- 
struction of MTs on all three 
sections. Ends of MTs were 
identified on the middle section 
by their lack of continuity onto 
either of the two surround- 
ing sections. In the dendrite, 
roughly half the MTs are of 
each orientation (Baas et al., 
1991), so it was impossible to 
distinguish a minus end from 
a plus end. Three MT ends are 
indicated by arrows. None of 
these ends, or any of the other 
twelve ends observed, labeled 
for -y-tubulin. These results 
suggest that neither minus nor 
plus ends of MTs in the den- 
drite contain "y-tubulin. Bar, 
0.15 lzm. 

that "y-tubulin is present exclusively in the pericentriolar re- 
gion of the neuron. 

Discussion 

The results of the present study indicate that the distribution 
of 3,-tubulin in neurons, despite their highly specialized MT 
arrays, is similar to that in normeuronal cells. 3,-tubulin is 
present within the pericentriolar region, but is undetectable 
elsewhere in the cell. We found no 3,-tubulin in the axon, the 
dendrite, or anywhere in the cell body other than at the cen- 
trosome. While we cannot exclude the possibility that-/-tubu- 
lin may be present at levels too low to detect, the follow- 
ing lines of reasoning argue against this possibility. First, 
we have used immunoelectron microscopy as our principal 
means of detection. This method affords very high sensitiv- 
ity and resolution. Moreover, we used two different pro- 
tocols, each with a different balance of signai-to-noise, and 
neither method resulted in the specific labeling for V-tubulin 
at any site other than the pericentriolar material. Second, the 
absence of -y-tubulin from the axon is also indicated by im- 
munoblot analyses; no "t-tubulin was detected in the axonal 
halo of explant cultures. Finally, the levels of ~/-tubulin 
within the neuron are exceedingly low, and are on the order 
of the levels present in nonneuronal cells. If -t-tubulin did 
regulate the assembly of MTs within neuronal processes, 
which grow to be hundreds of microns in length, it seems 
likely that the total levels of "y-tubulin in these processes 
would exceed those present at the centrosome (see Results). 

Thus, all available data are consistent with the conclusion 
that ,y-tubulin is localized exclusively to the pericentriolar 
region of neurons. 

These results have important implications with regard to 
the mechanisms by which the axonal and dendritic MT ar- 
rays are generated. As explained in the Introduction, both the 
organization and regular 13-protofilament lattice of axonai 
and dendritic MTs suggest the likelihood that they are 
nucleated by a structure or substance comparable in function 
to the centrosome. We have recently utilized a functional as- 
say to demonstrate an essential role for -t-tubulin in the 
nucleation of MTs in vivo (Joshi et ai., 1992; see introduc- 
tion). While we cannot completely dismiss the possibility 
that another protein such as a microtubule-associated protein 
(MAP) with the same functional properties may substitute 
for 3,-tubulin in axons and dendrites, such a scenario seems 
unlikely at present. MAPs are abundant throughout cells, but 
do not appear to promote MT nucleation independent of de- 
fined MT nucleating structures (Brinkley, 1985). Assuming 
that neuronal MTs, like nonneuronai MTs, require -r-tubulin 
for their nucleation, one can use the distribution of'y-tubulin 
in the neuron to determine the sites where axonal and den- 
dritic MTs originate. One possibility is that the MT nucleat- 
ing material of the centrosome takes on a widespread distri- 
bution during neuronal development, permitting the local 
nucleation of MTs within axons and/or dendrites. The alter- 
native possibility is that axonal and dendritic MTs are, in 
fact, nucleated by the centrosome, after which they detach 
from this structure and translocate into the neurites. Our re- 
sults on -y-tubulin are inconsl.stent with the former possibil- 
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Figure 5. SDS-PAGE/immuno- 
blot analyses on 3,-tubulin content 
in pure axonal and highly enriched 
somatodendritic fractions obtained 
from explant cultures, a shows a 
phase contrast micrograph of a 
portion of an explant culture of rat 
sympathetic neurons. The CBM 
contains all of the cell bodies, 
dendrites, and initial segments of 
the axons, while the axonal halo 
contains exclusively axonal mate- 
rial (Peng et al., 1986). b shows 
the immunoblot, with CBMs in 
lane 3, and axons in lanes 1 and 
2. Lane 1 has an equivalent 
amount of protein as in lane 3, 
while lane 2 has twice as much 
protein as in lanes 1 or 3. 3,-tubu- 
lin is present in the CBMs, but is 
undetectable in the axonal halo, 
even with twice the amount of 
protein loaded. Bar, 100 #m. 

ity, and therefore provide indirect support for the idea that 
axonal and dendritic MTs are nucleated at the centrosome. 

Several additional lines of evidence support the notion of 
a centrosomal origin for neuritic MTs. In recent studies on 
the regulation of local MT dynamics in the axon, we demon- 
strated that all MT assembly occurs via elongation from the 
plus ends of preexisting stable MTs (Baas and Ahmad, 
1992). The inability of the axon itself to generate entirely 
new MTs (see also Baas and Heidemann, 1986) points to the 
cell body as the only potential source of new MTs for the 
elongating axon. Consistent with this conclusion, the time 
interval between the synthesis and assembly of tubulin in the 
neuron is surprisingly short, suggesting that MT nucleation 
occurs at a site close to tubulin synthesis (Black et al., 1986), 
and tubulin synthesis is known to occur only in the cell body 
(Bruckenstein et al., 1991). Moreover, studies on the sites 
of MT stabilization in the neuron indicate that the net addi- 
tion of new MT polymer to the growing axon occurs prin- 
cipaUy in the cell body and/or most proximal region of the 
axon (Baas, P. W., F. J. Ahmad, T. P. Pienkowski, A. Brown, 
and M. M. Black, 1991. J. CellBiol. 115:174a). All of these 
observations support the long-standing polymer transloca- 
tion model of axon growth (Lasek, 1982), which has recently 
garnered direct experimental support from studies using 
real-time imaging to observe the movement of fluorescently 
labeled MTs in the axon (Reinsch et al., 1991; Tanaka and 
Kirschner, 1991; Sabry et al., 1991). Finally, there is some 
precedent for MT detachment from the centrosome in other 

cell types (McBeath and Fujiwara, 1990), and at least two 
proteins with MT severing capacity have been identified 
(Sanders and Salisbury, 1987; Vale, 1991). 

In conclusion, our results indicate that 7-tubulin is local- 
ized to the pericentriolar region of the neuron, and does not 
redistribute into axons or dendrites. When considered to- 
gether with our previous results indicating that 7-tubulin is 
essential for MT nucleation in vivo, this observation pro- 
vides strong indirect support for the notion that MTs destined 
for axons and dendrites are nucleated at the centrosome, and 
then released for translocation into these neurites. If this is 
correct, then new questions arise regarding the mechanisms 
by which differences in MT organization are established in 
axons and dendrites, in the absence of regional differences 
in MT nucleating capacity. Clearly, substantial efforts will 
be required to resolve this issue, and to test our proposal re- 
garding a centrosomal origin for neuritic MTs. 
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