
fnins-15-724391 September 30, 2021 Time: 15:29 # 1

ORIGINAL RESEARCH
published: 06 October 2021

doi: 10.3389/fnins.2021.724391

Edited by:
Liang Zhan,

University of Pittsburgh, United States

Reviewed by:
Yuhui Du,

Shanxi University, China
Chunfeng Lian,

Xi’an Jiaotong University, China

*Correspondence:
Shu Zhang

shu.zhang@nwpu.edu.cn
Tuo Zhang

tuozhang@nwpu.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 13 June 2021
Accepted: 24 August 2021

Published: 06 October 2021

Citation:
Zhang S, He Z, Du L, Zhang Y,

Yu S, Wang R, Hu X, Jiang X and
Zhang T (2021) Joint Analysis

of Functional and Structural
Connectomes Between Preterm

and Term Infant Brains via Canonical
Correlation Analysis With Locality

Preserving Projection.
Front. Neurosci. 15:724391.

doi: 10.3389/fnins.2021.724391

Joint Analysis of Functional and
Structural Connectomes Between
Preterm and Term Infant Brains via
Canonical Correlation Analysis With
Locality Preserving Projection
Shu Zhang1*†, Zhibin He2†, Lei Du2, Yin Zhang2, Sigang Yu1, Ruoyang Wang1, Xintao Hu2,
Xi Jiang3 and Tuo Zhang2*

1 Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical
University, Xi’an, China, 2 School of Automation, Northwestern Polytechnical University, Xi’an, China, 3 School of Life
Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China

Preterm is a worldwide problem that affects infants’ lives significantly. Moreover, the
early impairment is more than limited to isolated brain regions but also to global and
profound negative outcomes later, such as cognitive disorder. Therefore, seeking the
differences of brain connectome between preterm and term infant brains is a vital step
for understanding the developmental impairment caused by preterm. Existing studies
revealed that studying the relationship between brain function and structure, and further
investigating their differentiable connectomes between preterm and term infant brains
is a way to comprehend and unveil the differences that occur in the preterm infant
brains. Therefore, in this article, we proposed a novel canonical correlation analysis
(CCA) with locality preserving projection (LPP) approach to investigate the relationship
between brain functional and structural connectomes and how such a relationship differs
between preterm and term infant brains. CCA is proposed to study the relationship
between functional and structural connections, while LPP is adopted to identify the
distinguishing features from the connections which can differentiate the preterm and
term brains. After investigating the whole brain connections on a fine-scale connectome
approach, we successfully identified 89 functional and 97 structural connections, which
mostly contributed to differentiate preterm and term infant brains from the functional
MRI (fMRI) and diffusion MRI (dMRI) of the public developing Human Connectome
Project (dHCP) dataset. By further exploring those identified connections, the results
innovatively revealed that the identified functional connections are short-range and
within the functional network. On the contrary, the identified structural connections
are usually remote connections across different functional networks. In addition, these
connectome-level results show the new insights that longitudinal functional changes
could deviate from longitudinal structural changes in the preterm infant brains, which
help us better understand the brain-behavior changes in preterm infant brains.

Keywords: canonical correlation analysis, locality preserving projection, human connectome, preterm and term,
function and structure
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INTRODUCTION

Preterm birth is a worldwide problem that affects infants
throughout their lives significantly. It is highly associated
with adverse neurodevelopmental outcome in the brain and
the neurodevelopmental impairment remains with the preterm
birth infants which even persists into adulthood (Karolis
et al., 2016). To better understand the differences caused
by preterm birth in a non-invasive way, brain imaging
techniques have been widely used, such as magnetic resonance
imaging (MRI) (McRobbie et al., 2007), electroencephalography
(EEG) (Niedermeyer and Lopes da Silva, 2005), computerized
tomography (CT) (Berrington de González et al., 2009), and
functional near-infrared spectroscopy (FNIRS) (Villringer and
Chance, 1997). Among them, functional MRI (fMRI) and
diffusion MRI (dMRI) are widely adopted to provide both
reasonable temporal resolution as well as satisfying spatial
resolution and tissue contrast to investigate brain function and
structure (Le Bihan and Breton, 1985; Thomas, 1993; Basser et al.,
2000; Sharoh et al., 2019).

Previous MRI studies have focused on either structural or
functional differences between preterm and term infant brains.
For example, Kashou et al. (2016) pointed out that the activation
response latency is longer in preterm infants. Mahmoudzadeh
et al. (2013) found that preterm infants reacted differently to
voice stimuli. Similarly, a study (Saito et al., 2009) revealed
that there was decreased activity in response to speech stimuli
in the right temporal region and increased interhemispheric
connectivity between preterm and term brains. Besides the
studies above which focused on the functional perspective,
tractography has also been successfully adopted in neonates to
delineate major white matter tracts including the corticospinal
tracts and corpus callosum (Berman et al., 2005; Aeby et al., 2009;
Bassi et al., 2011; Hasegawa et al., 2011; Thompson et al., 2011).
Furthermore, white matter microstructural alterations may be
associated with suboptimal neurologics in certain domains at
term-equivalent age (TEA) in infants born preterm (Kelly et al.,
2019). However, existing studies merely focused on one single
perspective (structural or functional) while the joint analysis of
both functional and structural characteristics between preterm
and term infant brains is very scarce. Since the brain has a specific
structural substrate that provides a foundation for functional
information (Calhoun, 2018), it is crucial and necessary to
adopt multi-modality analysis on investigating the complex
relationship between brain structure and function and further
exploring such differences between preterm and term brains. In
recent years, integration of both brain function and structure has
been widely adopted to study the brain’s working mechanism
(Groves et al., 2011; Adali et al., 2015; Calhoun and Sui, 2016) or
to identify the brain alterations in diseases compared to the health
controls (Calhoun et al., 2006; Arbabshirani et al., 2017; Qi et al.,
2018). For example, Zhang et al. (2018a; 2018b; 2019a) proposed
a framework to integrate the DICCCOL system (structural
perspective) into the HAFNI system (functional perspective),
and successfully obtained the consistent common landmarks
with both structural and functional consistency across different
individual brains. Furthermore, hierarchical representation of

such multimodal representation has been proposed to show
the relationship between function and structure (Zhang et al.,
2019a). Kubera et al. (2019) used structure MRI and resting
state fMRI to study the structure/function inter-relationships
in patients with schizophrenia who have persistent auditory
verbal hallucinations and achieved satisfying performance. Liu
et al. (2019) proposed an advanced multimodal approach, named
“Linked 4-Way Multimodal,” to identify brain differences in
schizophrenia. In general, they all claimed that studying the
relationship between function and structure can offer unique
perspectives that may not be achieved by separated unimodal
analyses. Thus, we hypothesize that joint analysis of brain
function and structure can help unveil the differences between
preterm and term brains.

Another important issue to explore the differences between
preterm and term brains is choosing the appropriate learning
algorithm. Deep learning approaches are demonstrated to
be powerful and reliable for classification problems (LeCun
et al., 2015; Schmidhuber, 2015). However, it always requires
plenty of data to train the model adequately, which is usually
a big issue in the scenario of medical imaging analysis.
Independent component analysis (ICA), such as infomax (Bell
and Sejnowski, 1995) and fastICA (Hyvärinen and Oja, 1997),
is another widely used data-driven approach that includes
two complementary constraints, independence (i.e., the maps
are maximally independent of one another) and sparsity (i.e.,
the maps have a small number of regions with high values).
Although achieving reasonable performances to study function
or structure separately, ICA may not be well proposed to
investigate the relationship between function and structure. To
our best knowledge, canonical correlation analysis (CCA) and
CCA-related approaches are most suitable methods to study the
relationship among multiple profiles (Knapp, 1978; Lin et al.,
2013; Zhao et al., 2017; Zhuang et al., 2017, 2020). Moreover, in
order to explore the distinguishing features to differentiate the
preterm and term brains, it is desirable to further modify the CCA
by adding the locality preserving projection (LPP).

To explore the differences between preterm and term
brains, connectome-level analysis is also important. The
human connectome, which comprises many anatomically and
functionally distinct regions and links by a complex network
of structural white matter pathways, is widely discussed to
interpret the working mechanism of the brain. As a result,
connectome has been one of the fundamental ways to be adopted
in the cognitive neuroscience and neuropsychology field, which
is always proposed for investigating the normal brain function
and disease-related dysfunction. It is worth noting that the
brain connectome will significantly increase our understanding
of the working mechanism of our brain, will interpret the
relationship between function and structure, and will provide
new insights into how brain function and structure affect each
other. More importantly, examining the human brain as an
integrative network of functional/structural interacting brain
regions can provide a method or platform to examine how
functional/structural connectivity and their interaction relates
to human behavior, and how this organization may be altered
during brain diseases (Sporns et al., 2005; Leergaard et al., 2012).
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However, many existing works merely focused on dozens of the
ROIs across the whole brain, which are far from enough to model
the brain’s activity globally and comprehensively (Hasegawa et al.,
2011; Oishi et al., 2012; Ball et al., 2014; Jiang et al., 2015), and
it will be even harder to represent the real connectivity of the
whole brain. Despite the great success those works contributed,
fine-scale connectome analysis is eagerly needed to interpret the
working mechanism of the brain.

To tackle the abovementioned issues, in this article, we
proposed a novel fine-scale CCA with LPP approach to identify
the differences of brain connectome between preterm and term
brains via functional and structural profiles. The advantages of
the proposed method are threefold: (1) The proposed fusion
framework combines both functional and structural profiles;
(2) advanced CCA-LPP approach is designed to evaluate the
relationship between multimodal connections, as well as consider
the classification performance between preterm/term; and (3)
we perform the investigation of the whole-brain differences at
a finer connectome scale. The proposed method was applied
to 64 subjects from Developing Human Connectome Project
(dHCP) datasets (Hughes et al., 2017; Makropoulos et al.,
2018), of which 32 are preterm infants and the rest are term
infants. Some of our findings are in line with previous reports
demonstrating that preterm/term differences can be successfully
identified through our proposed framework. More importantly,
our new findings that were not reported before also provide new
knowledge to understand the difference of a preterm infant’s
brain from term controls.

MATERIALS AND METHODS

Overview
The overview of the proposed framework is illustrated in
Figure 1. In this work, the CCA with LPP approach is designed
to identify the brain connectomes which can distinguish the
preterm and term infant brains. The major steps are shown in
the Figure 1.

Data Processing
A total of 64 infant subjects were selected, including structural
MRI, dMRI, and resting state fMRI (rs-fMRI) from the dHCP
dataset (Hughes et al., 2017; Makropoulos et al., 2018) to perform
and validate our algorithms. All individuals were scanned at TEA,
which is around 40 weeks. Of them, 32 are preterm infants with
birth ages ranging from 28 to 36 weeks. The others are full-term
infants over 37 weeks.

For T2-weighted structural MRI, basic parameters are as
follows: TR = 1,200 ms, TE = 156 ms, SENSE factor 2.11 (axial)
and 2.60 (sagittal), image matrix = 290 × 290 × 203 and
resolution = 0.5 mm × 0.5 mm × 0.5 mm. Diffusion weighted
data consist of three shells of b = 400, 1,000, and 2,600 s/mm2 and
interspersed with an approximately equal number of acquisitions
on each shell within each run. For the rs-fMRI data, basic
parameters are provided here: TR = 392 ms, TE = 38 ms,
total volume = 2,300, image matrix = 67 × 67 × 45, and,
resolution = 2.16 mm× 2.16 mm× 2.15 mm. The pre-processing

of rs-fMRI data includes skull removal, motion correction, slice
time correction, and spatial smoothing. All these steps were
implemented by FMRIB Software Library (FSL) FEAT (Jenkinson
et al., 2012). For the dMRI, basic parameters are provided here:
TR = 3,800 ms, TE = 90 ms, total slice = 300, SENSE factor
1.2 and partial Fourier 0.86, image matrix = 128 × 128 × 64,
and resolution = 1.17 mm × 1.17 mm × 1.5 mm. A spherically
optimized set of directions on 4 shells (b0: 20, b400: 64, b1000:
88, b2600: 128) was split into four optimal subsets (one per phase
encoding direction). DMRI was used as intra-subject standard
space, to which the other data modalities are aligned. T2 weighted
MRI volumes were linearly warped to FA map of dMRI. Then,
the surface could be transposed to dMRI space by applying the
transformation matrix onto it.

It is worth noting that cortical surfaces have been
reconstructed from T2-weighted MRI data and provided in
the dHCP dataset, following the steps of skull removal, tissue
segmentation, and surface reconstruction. A white matter
surface was then parcellated to the resolution of 200 K vertices
on each hemisphere. Registration across the individual surfaces
via spherical registration method and the aligned surfaces
were resampled to the same number of vertices, to provide a
vertex-to-vertex cross-subject correspondence. For dMRI data,
skull-strip and eddy current corrections via FSL (Jenkinson
et al., 2012) were applied followed by deterministic fiber tracking
(6 × 106 fibers in each subject) via DSI Studio (Yeh, 2020).

Connection Reconstruction and Feature
Dimension Reduction
In this article, the white matter surface was parcellated to the
resolution of 500 patches of equal area on each hemisphere.
Due to the cross-subject surficial alignment and resampling, the
index of the patches had cross-subject correspondence as well.
The cortical patches were used as graphic nodes. For functional
connectome matrix, each functional connection between two
nodes was weighted by the Pearson correlation coefficient of two
mean fMRI signals averaged within each patch, respectively; for
structural connectome matrix, each structural connection was
weighed by diffusion tensor imaging (DTI) connective strength,
defined as the count of DTI fibers linking the two patches.

Since the dimensions of the functional and the structural
connectome matrix were as huge as 1000 × 1000, the total
number of the connections was around 5 million, which would
be very hard for the CCA-based approach to deal with. Thus, to
reduce the dimension, in this article, we used two sample t-test (p-
value < 0.05) as the constraint to exclude the connections which
have least possibility to distinguish the preterm brains from term
ones on both function and structure perspectives. This step was
performed on function and structure matrices simultaneously,
and then we selected around 5,000 common initial connections.

Then, we picked up those functional initial connections and
transformed those connections with their functional connectivity
features into a vector. For the functional perspective, functional
initial connections with their functional connectivity features
denoted by x ∈ R1×m (m = 5,000 initial connections). Similarly,
for the structural perspective, structural initial connections with
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FIGURE 1 | The overview of the proposed method. The major steps are summarized as follows: data preprocess, feature reconstruction, feature selection, weights,
and data analysis.

their structural connectivity features are also transformed into
a vector, which is defined as the structural connective feature,
denoted by y ∈ R1×m. Piling the features across all subjects gives
the feature matrices (X,Y ∈ Rn×m, n = 64) of the cohort.

Identification of Significant Connections
Through the Canonical Correlation
Analysis-Locality Preserving Projection
Approach
To identify the significant connections, in this work, we designed
the CCA-LPP approach. CCA is to identify the maximal
correlation between Xu and Yv which are linear transformations
ofX andY .X andY are the functional connectivity feature matrix
and structural connectivity feature matrix accordingly (size of
n × m, where n is the number of subjects and m represents
the number of the initial connections obtained from the last
subsection). u and v are the canonical weights which provide
the contribution of each feature in modeling the correlation. At
the beginning, we introduced the objective function to show the
whole architecture of the CCA-LPP approach. In addition, we
then interpret each part of the objective function. The objective
function is written as:

min
u,v
−uTXTYv+ λ1 ||Xu||22 + λ2 ||Yv||22 +

2∑
i =1

βiPi +
2∑

i =1

γiRi

+ω1||u||1 + ω2||v||1 (1)

s.t. uTXTXu = 1, vTYTYv = 1

Next, we introduce each component in detail. First, the first
component and its constraints are from the conventional CCA
model which is defined as follows:

min
u,v
−uTXTYv, s.t. uTXTXu = 1, vTYTYv = 1 (2)

Second, besides the relationship between brain function and
structure, one of the major goals of this proposed approach is
to identify the features which can differentiate the preterm and
term brains. To achieve this, we adopted the LPP constraint (He
and Niyogi, 2003). Specifically, two graphs Gw and Gb (both are
size of n× n) are established to quantify the relationship between
subjects. For Gw, subjects within the same group are connected.
For Gb, subjects from different groups are connected. In detail,
for Gw, if subject i and subject j are in the same group:

Gw
(
i, j
)
= 1, Gw

(
j, i
)
= 1 (3)

Similarly, for Gb, if subject i and subject j are in different groups:

Gb
(
i, j
)
= 1, Gb

(
j, i
)
= 1 (4)

According to Gw and Gb, we proposed two constraints p1 and p2
for between-group discrimination:

p1(u) = ||u||D = αuTXTLwXu− (1− α)uTXTLbXu
p2(v) = ||v||D = αvTYTLwYv− (1− α)vTYTLbYv

(5)

where α is the trade-off parameter. The effect is to balance
between the within-group similarity and the between-group
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dissimilarity. Lw and Lb are the Laplacian graphs of Gw and
Gb, respectively.

For Lw and Lb :

Lw = Dw − Gw, Lb = Db − Gb (6)

where Dw is the degree matrix of Gw, Db is the degree matrix of
Gb. Lw and Lb further represent the similarity of subjects within
the same group and subjects between different groups.

Third, our hypothesis was that those preterm brains were
not the same with term brains at its TEA. Thus, we regressed
the features in canonical spaces {Xu,Yv} to the birth ages of
preterm infants to eliminate the differences and maximize their
similarities. By using L2-norm to the regression, we had the
following objectives:

R1(u) = ||X1u – A||22
R2(v) = ||Y1v – A||22

(7)

where X1,Y1 ∈ Rn1×m (n1 = 32) are features from preterm
group, and A ∈ Rn1×1 is a birth time vector, which records the
birth time of all the preterm subjects.

Fourth, this objective is convex in u if we fix v, and it is
the same situation for v. Thus, we can solve Equation 1 by the
alternating iteration algorithm (Basser et al., 2000). By fixing
u and v alternatively, we solved two minimization problems as
follows:

min
u
−uTXTYv+ λ1||Xu||22 + β1P1 + γ1R1 + ω1||u||1

min
v
−uTXTYv+ λ2||Yv||22 + β2P2 + γ2R2 + ω2||v||1

(8)

Algorithm 1 shows the implementation procedure, where we
used 10−6 as stop criteria. It is worth noting that parameters λ

, β , γ , ω are designed empirically, they are chosen to ensure: (1)
the projected features yield the best classification results between
preterm and term groups; (2) the projected features are strongly
correlated with each other; (3) the preterm infants’ birth ages are
well fitted by the projected features. λ = 0.9, β = 0.8, γ = 0.8, and
ω = 0.8 are suggested.

Algorithm 1 | Locality preserving projection CCA.

1: Given the normalized data matrices X, Y, parameter λ , β , γ , ω ,
group-relation matrices Gw and Gb and preterm age vector A

2: Calculate Lw and LG as the graph Laplacian of Gw and Gb, respectively

3: Calculate gradient of LPP in Eq. (2)

4: Set t = 1, initialize u, v ∈ <N×1

5: While not converge | | t < 100 do

6: Solve Eq. 5 alternately to obtain u and v;

7: Scale u = u.
√

uT XT Xu
, v = v.

√

vT YT Yv

8: t = t+ 1;

9: End while

Connectome Distance Analysis
Since local connections and global connections had huge
functional and structural differences (Lu et al., 2012;
Deng et al., 2014; Zhang et al., 2019b), the goal of calculating

the connectome distance was to measure the distance of each
connection on the cortical surface. We used Cij to denote the
Euclidean distance of two patches (i and j) of a connection, and
the equation of calculating the Cij was shown in Equation 9.
The distance Cij would reveal whether the connections were
anatomically close.

Cij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2,

e.g.Xi = (Xi1 + Xi2 + ... + Xin)/n (9)

where x, y, z represent the corresponding coordinates of a
patch, and each patch is consisting of n vertexes, the location
of the patch is obtained by averaging those n vertexes (e.g., i1,
i2, and i3 ).

Comparison Experiment With
Resting-State Networks
Since in Section 0, u and v were obtained and used to
identify distinguishing connections. To relate these identified
connections to functional networks, we chose 9 typical resting
state networks (Raichle et al., 2001; Zhang et al., 2014) as
the reference (please refer to Supplementary Figure 1). These
brain networks were consistently observed across the subjects
and tasks from fMRI scans (Lv et al., 2015a,b; Zhao et al.,
2015; Zhang et al., 2016). The motivation of using 9 typical
resting state networks is shown here: (1) those selected resting-
state networks functionally linked brain regions that show a
continuous activation during rest, e.g., DMN network and
auditory network; (2) those selected resting-state networks may
show an important topology that is strongly organized to their
sub-functions (van den Heuvel and Hulshoff Pol, 2010). Thus,
interpreting the relationship between identified connections and
resting-state networks (RSN) helps to better understand the
meaning of the identified connections. On this reference, we
identified which two networks an identified connection links such
that a 9 × 9 matrix was produced, the element of which was
the count of the identified connections. Self-connection of the 9
networks, the diagonal element, was allowed.

Comparison Experiments With Cortical
Folding (Gyrus/Sulcus) Patterns
Gyri are the name given to the bump ridges on the cerebral
cortex and sulci are the grooves in the cerebral cortex. Each
gyrus is surrounded by sulci and vice versa. Anatomically, the
gyri and sulci are existing to increase the surface area of the
cerebral cortex. Many existing studies have investigated the
functional/structural differences between gyri and sulci, which
support us to better understand the working mechanism of
our brain. For example, Deng et al. (2014) proposed that
gyri are more likely to be the functional connection centers,
which are responsible for exchanging information among remote
structurally connected gyri and nearby sulci; on the contrary,
sulci exchange information directly with their nearby gyri. Zhang
et al. (2019b) proposed similar conclusions from a different
perspective, they found that gyri are more global functional
integration centers while sulci are more local processing units,
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they further reveal that gyri tend to be simpler lower frequency
signal components while sulci are more complex higher
frequency signal components. Hence, it is important and valuable
to study the associated cortical folding patterns on the two ends
of those identified connections, which will help us to better
understand functional meanings of those identified connections.

We related the identified connections with their associated
cortical folding patterns. Since the connection links two cortical
patches, we determined the folding patterns of the patches.
A patch was labeled as “gyrus” or “sulcus” by its mean curvatures
of the vertexes of the patch (>0.5 as gyrus and <0.5 as sulcus).
By this way, a connection can be classified as a “Gyrus-Gyrus”
connection, a “Gyrus-Sulcus” one, or a “Sulcus-Sulcus” one. Every
connection would be measured and given one class label.

RESULTS

Identified Connections via Canonical
Correlation Analysis With Locality
Preserving Projection
By adopting the proposed CCA with LPP approach, 89 functional
connections and 97 structural connections were identified in
total. We highlighted those patches linked by these connections
in Figures 2A,B and denoted them by activation areas. In these
figures, we can clearly see that some patches are connected more
than once, and they are colored red or pink. Activation areas in
Figures 2A,B were found on the parietal lobe, the temporal lobe,
and the occipital lobe from the identified functional connections.
The results revealed that the parietal lobe was an especially
important region to differentiate preterm and term infants, which
is in line with existing studies (Saito et al., 2009; Mahmoudzadeh
et al., 2013; Kashou et al., 2016). Besides, parts of the temporal
lobe and the occipital lobe could also be found that were
activated. These results were also consistent with many existing
preterm studies (Saito et al., 2009; Mahmoudzadeh et al., 2013;
Kashou et al., 2016). By comparison between the results of
Figures 2A,B, it revealed that there are large portions of areas
on which both function and structure are co-activated (visualized
in Figure 2C). The overlap between functional (Figure 2A) and
structural (Figure 2B) activation area is shown in Figure 2C.
The Jaccard similarity and overlap size was about 29.38%,
because some patches were connected more than once. If we
took the total activation times of each patch into consideration,
the overlap rate was rising to 35.64%, which represented the
relatively close relationship between structure and function. To
better locate the activation areas, we used a state-of-the-art infant
brain atlas “Wang17” (Li et al., 2015; Wu et al., 2019) as a
reference. The identified functional/structural connections and
the activation areas were reported and quantified in this atlas
(Figure 2D). According to Figure 2D, activation areas of function
and structure are not the same, and the discrepancy is further
confirmed by using the atlas in Figure 2D as the reference.
The distribution of comparison results clearly shows that the
functional and structural activation areas are quite different in
certain areas. In detail, in areas of “Perisylvian,” “Inferior frontal,

triangularis, and opercularis,” “Sensorimotor,” and “Paracentral
and superior frontal” the function shows a large possibility
of activation; in areas of “Medial occipital,” “Precuneus,” and
“Middle and posterior cingulate,” the structure performs with a
much higher chance to be active.

Furthermore, we investigated the characteristics of these
identified connections between preterm and term groups. On
one hand, for the functional perspective, we paid attention on
the Pearson correlation of two corresponding patches. Identified
functional connections in the term group had significantly higher
average weights than those in the preterm group in which
86 out of 89 connections were term-dominant connections,
and only 3 were preterm-dominant ones. It was suggested
that term brains had more functional similarity on those
identified functional areas. On the other hand, the intensity
of structural connections was the number of the fibers that
connected the corresponding two patches. After the statistical
analysis, among the 97 connections, 68 of them were preterm-
dominant connections, which means preterm has a stronger
structural intensity than the term one. The left 29 connections
were term-dominant connections. These results suggested that
preterm infants have more fiber connections on those identified
structural areas.

Identified Connections and Their
Dispersion Characteristics
In addition to the overlap between functional and structural
activated areas in Figures 2A,B, the differences between them
can be observed as well. Regarding their spatial distribution,
structural activation areas were relatively more dispersed than
functional activation areas.

To better quantify this disparity between them, we classified
the connection between two activation areas to low connection
(distance ≤ 10), medium connection (10 < distance ≤ 20),
and long connection (distance > 20). Figure 3 showed the
identified connection on structural and functional matrices,
respectively, as well as those classified into the three length
groups (Xia et al., 2013). To quantitatively, for the functional
connections, the total number of connections in each length
group (from low to long) is 66, 20, and 3, respectively; for the
structural connections, the number is 4, 34, and 59, respectively.
In addition, the average distance of functional connections is
9.52 ± 5.19 (mean ± STD, same to the rest), while the average
distance of structural connections is 26.07 ± 14.93, which is
almost three times larger than the former ones.

By using “Wang17” functional atlas as the reference, we
illustrated the identified connections as well as their connective
patterns among the 17 functional areas in Figure 4. The
components from functional connections were relatively simple,
and a large portion of connections were found within the
functional area, such as “Perisylvian” and “Medial orbitofrontal,”
while the connections between networks were relatively less. On
the contrary, structural connections were relatively complex, with
abundance of connections between networks. To quantitatively,
on one hand, the intensity of intra-area functional connections is
10.7± 9.0, while the intensity of intra-area structural connections

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 724391

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-724391 September 30, 2021 Time: 15:29 # 7

Zhang et al. Analysis of Preterm Infant Brains

FIGURE 2 | The visualization of cortical patches linked by the identified functional connections (A) and structural connections (B). The color-bar from blue to red
represents the indices of cortical patches. (C) The overlapping area between (A,B). (D) The distribution of identified functional and structural connections. The
distribution of the whole brain cortical surface is also provided as a reference in green.

FIGURE 3 | The visualization of identified functional connections and structural connections. The first column is the identified functional/structural connections; the
other three columns are their subdivided levels. Each node represents a patch, and the location of the node is the center of that patch.
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FIGURE 4 | Visualization of connection patterns using Wang17 atlas as a reference. Functional connection map and structural connection map are provided,
respectively. There are 17 areas from Wang17 atlas that are visualized in the wheel chart as seeds. To be simple, abbreviations of areas from Wang17 atlas are used
in the charts. Full names are summarized in the Supplementary Table 1.

is 5.2 ± 5.8, the intensity of intra-area functional connections
is obviously larger than structural connections and the p-value
of significant test of them is obtained as 0.0405. On the
other hand, the intensity of inter-area functional connections
is 0.72 ± 2.15, while the intensity of inter-area structural
connections is 1.07 ± 1.87, we can see that for the inter-
area connections, structural connections are dominant, and the
p-value of the significant test of them is recorded as 0.0507.

Besides, the inter-hemispheric connections and intra-
hemispheric connections are two fundamental connection
types, which represent different meanings. van den Heuvel et al.
(2015) proposed that the majority of all large-scale pathways
from preterm brains (both intra- as well as interhemispheric
tracts) tend to be present at term, together with an adult-like
small-world modular architecture. There are some pathways
(both intra- as well as interhemispheric tracts) that are
distinguished between preterm and term brains, which is
supported in our findings. To our best knowledge, there are
few studies further analyzing those that are distinguished
as intra- as well as interhemispheric tracts between preterm
and term brains. Thus, our findings show some new insights
for further understanding the development of neonatal
connectome. In this work, among the selected 89 functional
connections, 4 (4.49%) functional connections are observed
in the interhemispheric type, and 85 (95.51%) are obtained as
the intra-hemispheric ones. Among the selected 97 structural
connections, 27 (27.84%) and 70 (76.21%) structural connections
are identified with interhemispheric and intra-hemispheric
connections, respectively. Therefore, it is clearly shown

that structural changes have stronger possibilities linking
two hemispheres.

Relationship Between
Functional/Structural Connections and
Resting-State Networks
We further investigated whether the distribution of the
connections identified in section “Identified Connections
and Their Dispersion Characteristics” was related to their
concurrency with resting-state functional networks. The
assumption was that long connections may have a higher chance
to be present between these functional networks, while local
connections are most likely to connect the regions within a
network. The relation between connections and resting-state
functional networks is shown in Figure 5. To quantitatively, the
intensity of intra-network functional connections is 13.2 ± 12.0,
while the intensity of intra-network structural connections is
9.2 ± 7.1. However, the intensity of inter-network functional
connections is 3.53 ± 3.38, while the intensity of inter-network
structural connections is 5.32± 4.47.

The results show that more structural connections are
observed between networks, due to heavier connections
distributed off the diagonal. On the contrary, connections
with high intensities could be observed on the diagonal in
the functional connection matrix. Especially for network #5
and network #6, the intensities of intra-network functional
connections are 36 and 29, respectively, which are the highest
ones in the network.
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FIGURE 5 | The interaction pattern of functional connections and structural connections. Nine resting-state networks are utilized here to statistically analyze the
identified connections. The value of each element represents the number of the connection patches located within the corresponding resting-state networks.

FIGURE 6 | The visualization of gyrus/sulcus distributions between t-test connections and identified connections. There are 5000 connections (p < 0.05) counted
for all the connections after the dimension reduction (t-test) step in section “Connection Reconstruction and Feature Dimension Reduction,” identified connections
are the connections identified after the CCA-LPP approach.

Differences of Connectomes Between
Functional and Structural Connections
With Their Associated Cortical Folding
Patterns
We further investigated the relation between cortical folding
patterns and the identified connections. We quantified the
folding patterns as gyrus or sulcus, of the patches linked by
connections. In our previous studies (Lu et al., 2012; Deng et al.,
2014), gyral regions were linked by more long-range structural
and functional connections while sulcal regions were linked
by more local connections. These results were reproduced by
our experiment, and it is shown in the left panel of Figure 6.
In the left panel of Figure 6, 5000 connections are utilized,
which were selected after the step of dimension reduction (t-test)
in section “Connection Reconstruction and Feature Dimension

Reduction.” The “g-g” connections are obviously dominant,
which occupied around 80% connections, “g-s” and “s-s” are
relatively weak, which owned nearly 20% and 1%, respectively.
However, in the right panel of Figure 6, the results reveal
that g-s and s-s connections accounted for a larger proportion
when compared with the left panel which suggests that “g-s”
and “s-s” connections have more possibility to be altered on
preterm infant brains.

In addition, we compared the connection patterns between
function (blue bar) and structure (red bar) on selection
connections. The results in the right panel of Figure 6
support our findings in section “Identified Connections and
Their Dispersion Characteristics,” where the identified functional
connections include more s-s connections while identified
structural connections include more g-s connections. In other
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words, identified functional connections have more local
connections than the identified structural connections.

DISCUSSION AND CONCLUSION

In this article, we proposed a novel strategy to integrate
function and structure profiles together and to investigate the
connectome differences between preterm and term brains. In
total, 89 functional connections and 97 structural connections
were identified through our CCA-LPP approach. “Perisylvian,”
“Inferior frontal, triangularis and opercularis,” “Sensorimotor,”
“Paracentral and superior frontal areas,” “Medial occipital,”
“Precuneus,” and “Middle and posterior cingulate” were the
key regions that we needed to pay more attention to
for investigating the differences between preterm and term
brains. By further investigating the characteristics of those
identified functional/structural connections, we found that the
identified differentiable functional connections were local path
connections, while those differentiable structural connections
were long path connections. Further analysis based on the
RSN and gyrus/sulcus patterns confirmed our hypothesis that
functional differences were usually found within the typical
brain networks and especially for the sulci-sulci connections, but
structural differences were usually found linking the different
typical brain networks, thus less sulci-sulci connections were
found when compared with functional connections, but more
gyrus/sulcus connections were observed.

We want to emphasize that multi-modality analysis is
adopted in this study to investigate both differentiable structural
and functional brain connectomes between the preterm and
term infants. To achieve this, we design a novel CCA
with the LPP approach. In this approach, two major parts
are mentioned. One is CCA; the CCA part is adopted to
integrate brain function and structure together and study their
relationship. Another one is LPP; the LPP part is proposed
to improve the ability to differentiate the preterm and term
brains. Thus, the goal of proposing this approach is efficiently
discovering the differentiable connections from both functional
and structural perspectives.

It is worth noting many studies have pointed out that brain
networks have been developed at the preterm stage. And it is
a particularly important finding, which supports our studies to
investigate the relationship between identified connections and
brain networks. Kashou et al. (2016) claimed that hallmark or
generational structures of the human connectome are present
before term birth and subject to early development. To evaluate
this finding, we also adopted the online dictionary learning
and sparse coding algorithm (Mairal et al., 2009; Lv et al.,
2015b) to discover the brain networks from each preterm/term
infant brain images. After we checked the brain components
obtained from the ODL algorithm, the results substantiated the
hypothesis. Typical functional brain networks include typical
resting state networks that can be observed both in the preterm
and term infants (Please refer to Supplementary Material section
“Online Dictionary Learning and Sparse Coding Algorithm” and
“Functional Networks Obtained From ODL Method”).

Our findings reveal that identified differentiable functional
connections are always short path connections; however,
identified differentiable structural connections are always long
path connections. To our best knowledge, it is the first time
this phenomenon was discovered. In previous studies, it is well
known that there is a structural–functional coupling theory (van
den Heuvel et al., 2015; Wang et al., 2015). van den Heuvel
et al. (2015) proposed that a positive SC-FC coupling was found
to be present in all neonates, which suggests that higher levels
of structural connectivity are associated with higher levels of
functional coupling. In this work, we agree that function and
structure are supporting each other. This phenomenon can also
be seen from the identified differentiable areas in Figure 1 from
both the functional perspective and the structural perspective,
they are quite similar (the overlap rate is about 30%). However,
when we work on the connection level, clearly differences are still
observed between function and structure (only one connection
is both selected from functional and structural profiles), so we
believe that even though we always claim that function and
structure are supporting each other, they are two modalities
fundamentally and they play special roles for the working
mechanism of the brain. In addition, we assume that in the
stage of preterm brain development, the way of functional
and structural connectome changes may be different, structural
connectome changes maybe more related with long distance
connections, and functional connectome changes possibly focus
more on local connections, this will be further confirmed in
the longitudinal studies in our future work. Anyway, we argue
that multi-modality is necessary for better understanding how
the brain works.

Many studies have devoted much effort to explore the
differences of development between preterm and term brains
(Villringer and Chance, 1997; Niedermeyer and Lopes da Silva,
2005; Berrington de González et al., 2009; Sharoh et al.,
2019). In conclusion, for the preterm infants, the risk of
cerebral palsy, visual impairment, and learning abilities are
increased. They may lead to health issues and cognitive function
problems. For the motor performance, the motor impairment
might be associated with cerebral hypoxia during the transition
immediately to birth in preterm infants (Berman et al., 2005;
Bassi et al., 2011; Hasegawa et al., 2011; Thompson et al.,
2011). For the speech perception, language disorder is a major
concern, because preterm infants were exposed to auditory
stimuli in the form of utterances and preterm infants follow
different development traces due to differences in intrauterine
and extrauterine development (Boardman et al., 2006, 2010).
Similarly, for the facial recognition, injury of right temporal lobe,
prefrontal lobe and fusiform gyrus may lead to the impairment
of facial recognition function by the extrauterine environment
(Kapellou et al., 2006; van Kooij et al., 2012; van den Heuvel
et al., 2015). In general, we can see that extrauterine to the
environment, transition birth, and exposure to the stimulus are
the main reasons for causing the preterm/term differences.

For the future work, first, we plan to detect the differentiable
connections through longitudinal studies. Longitudinal studies
can assist us to describe the change of our brain via the timelines.
It will be much easier for us to identify the vital changes and
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observe their tiny changes; second, we would like to introduce
multi-modality CCA analysis, which means we want to introduce
more modalities into our model. Besides function connectome
and structure connectome, there are other brain modalities, such
as thickness, cortical folding patterns, as well as other anatomical
information. We believe that more modalities can bring more
complementary information for better investigation results. In
this way, brain changes can be revealed and elaborated through
brain connectome, and further analysis can provide instructions
for clinical diagnosis and therapy.
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