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Abstract
The inference of regulatory interactions and quantitative models of gene regulation from

time-series transcriptomics data has been extensively studied and applied to a range of

problems in drug discovery, cancer research, and biotechnology. The application of existing

methods is commonly based on implicit assumptions on the biological processes under

study. First, the measurements of mRNA abundance obtained in transcriptomics experi-

ments are taken to be representative of protein concentrations. Second, the observed

changes in gene expression are assumed to be solely due to transcription factors and other

specific regulators, while changes in the activity of the gene expression machinery and

other global physiological effects are neglected. While convenient in practice, these as-

sumptions are often not valid and bias the reverse engineering process. Here we systemati-

cally investigate, using a combination of models and experiments, the importance of this

bias and possible corrections. We measure in real time and in vivo the activity of genes in-

volved in the FliA-FlgM module of the E. coli motility network. From these data, we estimate

protein concentrations and global physiological effects by means of kinetic models of gene

expression. Our results indicate that correcting for the bias of commonly-made assumptions

improves the quality of the models inferred from the data. Moreover, we show by simulation

that these improvements are expected to be even stronger for systems in which protein con-

centrations have longer half-lives and the activity of the gene expression machinery varies

more strongly across conditions than in the FliA-FlgM module. The approach proposed in

this study is broadly applicable when using time-series transcriptome data to learn about

the structure and dynamics of regulatory networks. In the case of the FliA-FlgM module, our

results demonstrate the importance of global physiological effects and the active regulation

of FliA and FlgM half-lives for the dynamics of FliA-dependent promoters.
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Author Summary

A wide variety of methods for the reverse engineering of regulatory networks and the iden-
tification of quantitative regulation functions are available. We investigate some common
assumptions that are made in the application of these methods to time-series transcrip-
tomics data, in the context of a central module in the motility network of E. coli. We show
that these assumptions, which hypothesize that mRNA concentrations are good proxies
for protein concentrations and that the gene expression machinery is equally active across
different physiological conditions, are often not valid and may lead to biased inference re-
sults. We also show how models of gene expression can be used in combination with suit-
able experimental controls to correct for this bias and improve the inference process. The
contribution of our work is thus not the addition of another method to the rich store of
available reverse engineering algorithms, but lies in the critical examination of the infor-
mation provided by the experimental data and new ways to exploit this information in the
algorithms. The proposed approach is relevant for a wide range of applications using time-
series transcriptomics data. For the motility system under study, it has underlined the im-
portance of global physiological effects, the active degradation of the transcription factor
FliA as well as the secretion of the anti-sigma factor FlgM for the network dynamics.

This is a PLOS Computational BiologyMethods paper.

Introduction
DNAmicroarrays, RNA sequencing, and other high-throughput technologies yield huge
amounts of data on the state of the transcriptional program in bacterial cells in different growth
conditions and genetic backgrounds, at different time-points in an experiment. The informa-
tion on the (relative) RNA abundances thus obtained, representative of the activity of the
genes, have fueled the development of methods for inferring regulatory interactions among
genes. In essence, these methods try to explain the observed variation in the activity of one
gene in terms of the variation in the activity of other genes. A large number of inference meth-
ods have been proposed in the literature and have been successful in a variety of applications,
although a number of difficult problems remain (see [1–7] for reviews).

A major problem with the use of transcriptome data for the inference of regulatory interac-
tions is that often the active regulator is not mRNA but protein. Although protein and mRNA
concentrations are moderately correlated at steady state [8, 9], this is generally not the case
when the two are considered dynamically over time. Due to the fact that proteins and mRNAs
have different half-lives, their concentrations evolve on different time-scales. For instance,
mRNA half-lives are typically on the order of a few minutes in bacteria [10], whereas most pro-
teins are quite stable [11, 12]. The effect of rapid responses in gene expression, within a single
generation, may thus give rise to proteins persisting over several generations, endowing the cell
with a memory of past events [9, 13]. As a consequence, inference of regulatory interactions
from time-series transcriptome data alone may potentially lead to spurious results. Although
quantitative proteomics techniques have much advanced recently [14, 15], it is not yet possible
to directly measure protein concentrations in vivo and in real time.

A second problem derives from the fact that the dynamics of gene expression are not only
controlled by transcription factors, small regulatory RNAs, and other specific regulators, but
also by global physiological effects influencing the rates of transcription and translation of all
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genes [16–19]. Large-scale differences in gene expression over time or across conditions may
therefore not just derive from transcriptional regulatory interactions, but also reflect global
changes in cellular physiology, notably the concentrations of (free) RNA polymerase and ribo-
some, gene copy number, and the size of amino acid and nucleotide pools. Ignoring such
changes in the activity of the gene expression machinery, for example in experiments with im-
portant variations of the growth rate, may lead to the inference of spurious regulatory interac-
tions [20, 21]. Unfortunately, concentrations of (active) RNA polymerase and ribosome, as
well as many other global physiological parameters, are difficult to quantify in a direct way.

These problems for reverse engineering come from two basic, usually implicit assumptions
on the biological processes under study: (i) mRNA abundance is a good proxy for protein con-
centrations and (ii) the gene expression machinery is equally active across different physiologi-
cal conditions. Although the fact that these assumptions are often not valid has been broadly
recognized, very little has been done to study the resulting bias in a systematic way. The aim of
this paper is to propose a combined experimental and computational approach to show how
these assumptions affect the inference of quantitative models of bacterial promoters from
time-series gene expression data and to propose theoretically sound and practically useful pro-
cedures to correct for this bias and improve the inference process.

We will notably focus on the case of gene expression measurements obtained by means of fluo-
rescent reporters [22]. These technologies, which have become widespread in recent years, allow
the activity of genes to be monitored in vivo and in real time [23, 24]. Exploiting these data makes
it possible to quantify the difference between mRNA and protein concentrations as well as global
physiological effects. In short, if the half-lives of the proteins are available, the models used for de-
riving the activities of genes from fluorescence data can be integrated to yield estimates of protein
concentrations [25]. The global physiological state of the cell can be estimated from the activity of
a constitutively expressed gene [17, 18], that is, a gene whose expression is not controlled by any
particular transcription factor, but only depends on the activity of the transcriptional and transla-
tional machinery [26]. To which extent does the integration of the above information into the in-
ference procedure improve the identification results, both structurally and quantitatively?

In order to answer this question, we applied our methodology to a central module in the regu-
latory network controlling the synthesis of flagella and the chemotaxis sensing system in Escheri-
chia coli [27–29]. This module comprises the FliA and FlgM transcription factors and their
targets. FliA or s28 is a sigma factor which directs RNA polymerase to operons coding for the fla-
gellar filament and the chemotaxis sensing system controlling the flagellar motor. The effect of
FliA is counteracted by the anti-sigma factor FlgM. As a typical example of a FliA-dependent
gene we study tar. This gene encodes the aspartate chemoreceptor protein Tar, which responds to
a decrease of the aspartate concentration in the medium. Tar stimulates the phosphorylation of
downstream response regulators binding the flagellar motor component [30, 31]. The FliA-FlgM
module forms a check-point in the temporally-organized expression cascade. It is particularly
well-suited as a gold standard for our purpose, since the interactions in this network have been
well-studied and protein stability has been found to play an important role in its functioning.

We experimentally excited the FliA-FlgM module in a variety of wild-type and mutant con-
ditions, in different growth media, and measured the transcriptional response of the genes.
These data were used to systematically test the information required for the reliable inference
of the regulatory interactions and quantitatively predictive models of gene regulation. In a first
step, we found that the use of fliA and flgM promoter activities, instead of their protein concen-
trations, did not allow the regulatory interactions to be recovered. Moreover, a quantitative
model identified from the data fails to account for the observed dynamics of the tar promoter
in most conditions considered here. The introduction, in a second step, of global regulatory ef-
fects, measured by means of a reporter gene driven by a constitutive promoter, results in the
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expected structure of regulatory interactions. The fit of the quantitative model to the data, how-
ever, is only marginally improved. We therefore estimated in a third step the concentrations of
FliA and FlgM from the observed promoter activities and physiologically plausible half-lives of
the proteins. The model quantitatively reproduces the observed activity of tar across the different
conditions much better and the estimated parameter values agree with the expected regulatory
role of FliA. Additional simulation studies, in which we systematically varied the half-lives of the
proteins and the importance of global physiological effects, show that these factors may be even
more important in other regulatory networks, notably when involving transcription factors with
half-lives longer than the (exceptionally short) half-lives of FliA and FlgM.

We conclude that for the reliable reconstruction of transcriptional regulatory networks in mi-
croorganisms it is important to monitor not only specific transcription factors, but also global ef-
fects imposed by the cellular physiology, and to take into account both short-term transcriptional
responses as well as their long-term effects on protein abundance. We have presented and vali-
dated a practical approach to integrate information on protein concentrations and global regula-
tory effects into the network identification process. Since the proposed strategy does not depend
on any specific network inference method, and can in principle be combined with data obtained
from experimental techniques other than fluorescent reporter genes, the approach is applicable
to a large variety of network inference problems in both prokaryotic and eukaryotic systems.

Results

Monitoring the transcriptional response of the FliA-FlgM module
The more than 60 genes responsible for motility in bacteria are structured in a transcriptional
hierarchy of three operon classes that has been mapped in detail for Escherichia coli and Salmo-
nella enterica [27–29, 32]. The single class 1 operon flhDC encodes the proteins FlhD and
FlhC, which form a heteromultimeric complex activating s70-dependent transcription of the
class 2 operons. The latter encode the proteins making up the flagellar motor structure as well
as a major regulator of the class 3 operons, the sigma factor FliA (s28). When bound to core
RNA polymerase, FliA directs the transcription of the class 3 operons [33] that code for the
proteins forming the filament structure of the flagellum and the chemotaxis sensing system.
The aspartate chemoreceptor Tar is an example of such a class 3 protein. The action of FliA is
counteracted by the anti-sigma factor FlgM, which binds to FliA and thus prevents its associa-
tion with RNA polymerase. FlgM is encoded by the gene flgM, which is transcribed from both
a class 2 promoter and a class 3 promoter. FlgM can be excreted from the cell through the cen-
ter of the basal-body structure (Fig. 1).

The transcriptional hierarchy underlies a temporally-arranged order of events during the as-
sembly of the flagella and the chemotactic sensing system [27–29, 32]. On the highest level of
the hierarchy, the transcription of the flagellar master regulator responds to a variety of signals
[34, 35]. For instance, the expression of the flhDC operon is repressed when the bacteria are
grown on minimal medium with glucose [36]. When glucose is depleted from the environment,
however, the signalling molecule cyclic AMP (cAMP) accumulates in the cell, inducing flhDC
transcription through the intermediary of the cAMP receptor protein Crp [37]. In the presence
of FlhDC, the class 2 operons, and thus the genes encoding the hook basal-body (HBB) struc-
ture as well as FliA and FlgM, are actively transcribed. FlgM sequesters FliA, and prevents it
from transcribing the class 3 operons [38]. When the HBB structures have been completed,
however, FlgM is secreted from the cell, releasing FliA and relieving the repression of the class
3 operons [38]. The FliA-FlgM interactions thus form a check-point in flagella formation, en-
suring that the filament proteins are produced only when the basal body and the hook, to
which the flagellar filaments are attached, are in place.

Inference of Quantitative Models of Bacterial Promoters
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In order to investigate the regulation of the genes involved in this check-point, we measured
the time-varying transcription of fliA, flgM, and tar (as an example of a class 3 gene) in E. coli.
This was accomplished by means of fluorescent reporter systems, consisting of transcriptional
fusions of a gfp reporter gene to the promoters of the target genes, carried on a low-copy plas-
mid. The strains transformed with the reporter plasmids were grown in 96-well microplates, fol-
lowing a previously-established protocol [17, 39, 40]. After an overnight preculture, the bacteria
were diluted into fresh medium in the microplate and the absorbance of the cultures and the
emitted fluorescence were monitored at 37°C in a thermostated microplate reader for 7 to 16 h,
until growth arrest occurred. These kinetic experiments were carried out in different growth
media (minimal M9 medium with glucose, rich LB medium) and in different genetic back-
grounds (wild-type and deletion mutants of the global transcription regulators RpoS, CsgD, and
CpxR) [40]. The timing and the strength of the induction of the hierarchy of motility genes var-
ies among conditions, leading to a different time-varying excitation of the FliA-FlgMmodule.

While fliA and tar have a single promoter, this is not the case for flgM, which is transcribed
from both a class 2 and a class 3 promoter, as discussed above. The fluorescence signal from
the class 2 promoter, however, was found to be almost indistinguishable from background lev-
els in all conditions (Text S7), consistent with the observation that most FlgM in the cell derives
from the FliA-dependent promoter [29, 41]. In the analysis that follows, we therefore neglected
flgM transcription from the class 2 promoter.

Figure 1. FliA-FlgMmodule. The regulatory circuit composed of the flagellar-specific transcription factor FliA, a sigma factor also known as σ28, and the
anti-sigma factor FlgM forms a check-point in the transcriptional hierarchy of the motility genes in E. coli. While fliA is transcribed from a single class 2
promoter (pfliA), flgM is transcribed from both a class 2 and a class 3 promoter (pflgA and pflgM, respectively). FliA binds to RNA polymerase core enzyme
and directs transcription from a total of five class 3 promoters [33], including ptar and pflgM. When bound to FlgM, FliA cannot activate transcription. When
the hook basal-body (HBB) structure is in place, however, FlgM is exported from the cell, thus releasing FliA from the inactive complex. FliA is subject to
proteolysis by Lon, but FlgM-binding protects FliA from degradation. The fliA promoter is auto-regulated by FliA and by a number of other regulators, most
importantly the motility master regulator FlhDC. The expression of FlhDC itself is under the control of a variety of regulatory factors, including RpoS, CpxR,
and CsgD. The activity of the genes in the figure is measured by fusion of their promoters to a gfp reporter gene on a low-copy plasmid. Genes are shown in
grey or green and their promoter regions in red. Regulatory interactions are represented by open arrows, association and dissociation of FliA and FlgM as
well as degradation and export by filled arrows. The figure does not explicitly show that fliA, flgM, and tar are included in larger transcriptional units, the
fliAZY, flgAMN, flgMN and tar-tap-cheRBYZ operons [33].

doi:10.1371/journal.pcbi.1004028.g001
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As illustrated in Fig. 2, and explained in more detail in theMethods and materials and
Text S3, the primary absorbance and fluorescence signals can be transformed into promoter ac-
tivities using kinetic models of gene expression. More precisely, the reporter gene data can be
used to deduce protein synthesis rates [23, 25]. Under certain conditions, the latter are propor-
tional to mRNA concentrations and promoter activities, and thus reflect the transcriptional
activity of the gene (Text S2). Following established terminology, we will refer to the measured
protein synthesis rates as promoter activities, or more generally, activities of genes.

In each of the experimental conditions, we have acquired 5 to 8 replicate measurements,
which makes it possible to estimate the uncertainty in the derived promoter activities. Fig. 3
shows the results for the five conditions considered here: (i) DrpoS strain grown in
M9 (DrpoS-M9), (ii) DcpxR strain grown in M9 (DcpxR-M9), (iii) DcsgD strain grown in
M9 (DcsgD-M9),(iv) DcsgD strain grown in LB (DcsgD-LB), and (v) wild-type strain grown in
LB (WT-LB). As expected [36], the fluorescence signals in the wild-type strain grown in mini-
mal M9 medium with glucose were mostly indistinguishable from the background fluorescence
and therefore this condition was not further considered. In one condition (WT-LB), the activi-
ties measured by means of reporter genes were validated using RT-qPCR (Text S6).

Figure 2. Primary data and promoter activities. A: Absorbance (•, black) and fluorescence (•, blue) data, corrected for background intensities, obtained
with the ΔcpxR strain transformed with the ptar-gfp reporter plasmid and grown in M9 with glucose. B: Activity of the tar promoter, computed from the primary
data as described in theMethods and materials and in Text S3. The solid black line corresponds to the mean of 6 replicate absorbance measurements and
the shaded blue region to the mean of the promoter activities� twice the standard error of the mean.

doi:10.1371/journal.pcbi.1004028.g002
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The measured promoter activities in Fig. 3 show some common features, such as a transient
activity peak of the genes during exponential growth, followed by stabilization at a low level
after growth arrest. The induction of the individual promoters has a distinct temporal order,
corresponding to the level of the promoters in the transcriptional hierarchy [39]: fliA, flgM, tar.
There are also clearly visible differences between the profiles across the conditions though. In
M9 medium with glucose the motility genes in the mutant strains are transcribed right from
the start, whereas in LB induction occurs only after a number of generations, consistent with
previous reports [27, 36]. Moreover, the strength of induction and the duration of the activity
peak varies from one condition to the other. For instance, the maximal activity of tar varies
10-fold between the WT-LB and DcsgD-LB conditions.

Identification of gene regulation functions from promoter activities
The circuit in Fig. 1 has been well-studied over several decades and its regulatory structure is
well-known [27–29, 32, 33]. This makes it an excellent test case for investigating which

Figure 3. Promoter activities of genes in the FliA-FlgMmodule. The promoter activities of fliA (green), flgM (red), and tar (blue) measured by means of
fluorescent reporter genes in the following experimental conditions: ΔrpoS strain grown in M9 (ΔrpoS-M9), ΔcpxR strain grown in M9 (ΔcpxR-M9), ΔcsgD
strain grown in M9 (ΔcsgD-M9), ΔcsgD strain grown in LB (ΔcsgD-LB), and wild-type strain grown in LB (WT-LB). Grey lines report mean absorbance
measurements in the various conditions. The promoter activities and absorbance profiles have been derived from the primary data as illustrated in Fig. 2.

doi:10.1371/journal.pcbi.1004028.g003
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information is required for the reliable inference of regulatory interactions and quantitative
regulation models from time-series expression data. In a first step, we tested if we could ac-
count for measured time-varying promoter activities while ignoring the distinction between
mRNA and protein concentrations as well as the activity of the gene expression machinery and
other global physiological effects. This corresponds to the usual assumptions made in the anal-
ysis of transcriptome data.

We expect FliA to be an activator and FlgM an inhibitor of target genes like tar and other
class 3 genes (Fig. 4A). In order to check if this regulatory pattern is consistent with the report-
er gene data, we used minimal sign pattern analysis [42]. This approach exploits time-series
data to invalidate patterns of regulatory interactions, based on the assumption that the activity
of a gene is a monotonic function of its regulators. For the patterns that remain after the invali-
dation step, so-called minimal sign patterns are computed, equivalent to the regulatory struc-
tures in Fig. 4. These patterns are minimal in the sense that removing any of the regulators
results in an inconsistency with the data, while adding other regulators preserves consistency
(seeMethods and materials and Text S5 for details on the method).

We applied minimal sign pattern analysis to the reporter gene data in Fig. 3. In particular,
we tested if the expected regulatory pattern in Fig. 4A is conserved when replacing the concen-
trations of FliA and FlgM by the measured promoter activities. We found that the activator
role of FliA and the inhibitor role of FlgM are not consistent with the data. This is due to the
fact that, over some interval of time in the condition DrpoS, a decrease of the promoter activity
of fliA and an increase of the promoter activity of flgM coincide with an increase of the activity
of tar. As a consequence, the sign pattern corresponding to the expected structure in Fig. 4A is
rejected in the analysis.

Despite this structural problem, we also tested to which extent it is possible to quantitatively
predict the activity of tar from the activities of their regulators. To this end, we developed a
mechanistic model of the regulation of this promoter by FliA and FlgM. The model takes into
account the titration of FliA by FlgM and the activation of transcription by (free) FliA. We
made a quasi-equilibrium assumption for FliA-FlgM association and dissociation, justified by
the fast time-scale on which these reactions occur in comparison with transcription and trans-
lation processes [43, 44]. Moreover, we chose a Hill function to describe promoter activation
and included a basal synthesis rate. The resulting model is:

f ðtÞ ¼ k0 þ k1
pA;freeðtÞn

yn þ pA; f reeðtÞn
; ð1Þ

pA; f reeðtÞ ¼
1

2
�ðK þ pMðtÞ � pAðtÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ pMðtÞ � pAðtÞÞ2 þ 4KpAðtÞ

q� �
; ð2Þ

Figure 4. Pattern of regulatory interactions for tar and other class 3 genes. A: FliA activates and FlgM
inhibits tar. B: Idem, but with global physiological effects, measured by the activity of the pRM promoter.

doi:10.1371/journal.pcbi.1004028.g004
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where f(t) is the time-varying promoter activity, pA,free(t) is the concentration of free FliA, y is a
threshold constant for promoter activation, k0 and k0 + k1 are the basal and maximal synthesis
rates, respectively, and n is a Hill constant. The concentration of free FliA is computed from
the concentrations pA(t) and pM(t) of total FliA and FlgM, respectively, and the FliA-FlgM dis-
sociation constant K. All variables and parameters are non-negative and n� 1. The concentra-
tion variables, as well as y and K, have (arbitrary) units RFU, while the promoter activity and
the rate constants have units RFU min−1. The derivation of the model is described in detail in
Text S4. Notice that the model is in agreement with the expected pattern of regulatory interac-
tions (Fig. 4A).

How well does this model fit the data when the total concentrations of FliA and FlgM in
Eq. 2, pA and pM, are replaced by the measured activities of fliA and flgM, respectively? We esti-
mated the values of the kinetic parameters c = (k0,k1,n,y,K) in the regulation model from the
data obtained in all five conditions, using a multistart global optimization algorithm [45] to
minimize the fitting error Q(c) (Methods and materials). The algorithm minimizes the mean-
square error between the observed promoter activities and the predictions of the model of
Eqs. 1–2, while taking into account differences in absolute promoter activity across conditions
as well as the time-varying size of confidence intervals (Methods and materials). The parame-
ters are chosen within physiologically plausible intervals. We notably require that the threshold
y lies within the range of observed FliA concentrations, which corresponds to making the as-
sumption that within the conditions considered here, tar varies between its minimal and maxi-
mal activity. This is consistent with the observation that motility is low during exponential
growth in LB medium [27, 36] and high in a DcsgD strain [40].

The predictions of the identified regulation function for tar as well as the estimated parame-
ter values are shown in Fig. 5. We computed confidence intervals for the parameter estimates
by means of a bootstrap-like procedure resampling the measured promoter activities at each
time-point from an experimentally-determined distribution (see Text S10 for details). In this
case, and for all parameter values reported in later figures, the confidence intervals are small
(< 2-fold). This indicates that there are no identifiability issues, that is, the parameter values
can be unambiguously inferred from the data [2, 7, 46].

When analyzing the estimated parameter values, we observe that the cooperativity parame-
ter n equals 1 and that the equilibrium constant K has a value such that the regulator is fully ac-
tive over the duration of the experiment (Text S9). As a consequence, the regulation function
of the tar promoter is essentially a linear transformation of fliA activity. While the fit with the
experimental data is quite good for the DcsgD-LB and WT-LB conditions, the model is not able
to account for the peak in tar activity in the M9 conditions. The model either predicts no peak
or a peak occurring more than an hour before it is observed. In conclusion, replacing protein
concentrations by promoter activities in the FliA-FlgM module is inappropriate for obtaining
reliable models of the promoter activities, both structurally and quantitatively.

Identification of gene regulation functions from promoter activities
including global physiological effects
A possible explanation for the difficulty to identify quantitative regulation functions from in-
formation on promoter activities alone may be that, in addition to transcription regulators and
other specific regulators, the activity of the transcriptional and translational machinery also af-
fects gene expression [16, 47–49]. Contrary to FliA and FlgM, which affect specific genes, all
motility genes are affected by the activity of the gene expression machinery and other global
physiological effects. Fig. 6 shows the network structure of the FliA-FlgM module when such
global physiological effects are taken into account.

Inference of Quantitative Models of Bacterial Promoters
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The activity of the gene expression machinery includes the abundance and activity of RNA
polymerase and ribosome, as well as pools of metabolic precursors, and is therefore difficult to
quantify in a direct way. This has motivated the use of the growth rate or the activity of constitu-
tive genes, whose expression is in principle not controlled by any specific regulators, as an indi-
rect read-out of the global physiological state of the cell [16–17, 50]. In this study, following [17],
we used the activity of the pRM promoter of phage l, which is constitutive in non-infected
E. coli cells, as a quantitative measure of the activity of the gene expression machinery and the
global physiological state more generally. In Fig. 7 the time-varying activity of the constitutively-
expressed reporter gene is shown, together with the activity of tar. Similar to the latter, in almost
all conditions, the activity of the constitutive promoter shows a peak, though occurring some-
what later (in WT-LB, the detection of a peak is obscured by the analysis of fluorescence data
that were extremely close to background, as witnessed by larger confidence bands).

Does the inclusion of global physiological effects enable the identification of quantitatively
predictive gene regulation functions? In order to answer this question, we again applied

Figure 5. Regulation function of tar fitted to reporter gene data when replacing protein concentrations by promoter activities. The regulation
function of Eqs. 1–2 was fitted using the promoter activities for tar, fliA, and flgM shown in Fig. 3, where the latter two replace the concentrations of FliA and
FlgM, respectively. Model predictions are in dark blue (thick solid line), tar reporter data are in light blue (thin solid line and shaded area). The parameters
were estimated using a multistart global optimization algorithm (seeMethods and materials for details). The best fit returns the valueQ = 33.4 for the
objective function, for the parameter vector (k0,k1,n,θ,K) = (7.6,853,1,663,14615). Confidence intervals for the parameter values are reported in Text S10.

doi:10.1371/journal.pcbi.1004028.g005
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minimal sign pattern analysis to the reporter gene data, this time including the activity of the
constitutive phage promoter as a proxy for the activity of the gene expression machinery. Like
in the previous section, the FliA and FlgM concentrations were replaced by the activities of
their genes. The expected pattern of regulatory interactions (activation of the promoter by the
gene expression machinery and FliA, inhibition by FlgM) was indeed found to be consistent
with the data for tar (Fig. 4B).

We also checked if the proposed extension improves the capability of the model to quantita-
tively account for the time-varying activity of a FliA-controlled promoter. To this end, we mul-
tiplied Eq. 1 with fconst(t), the measured activity of a constitutive promoter:

f ðtÞ ¼ fconstðtÞ k0 þ k1
pA;freeðtÞn

yn þ pA;freeðtÞn
" #

: ð3Þ

The fits shown in Fig. 8, obtained with the parameter estimation approach outlined in the pre-
vious section, are somewhat better than those obtained with a model accounting for the effects
of FliA and FlgM only, especially for the DrpoS-M9 and DcpxR-M9 conditions. The better fit is
also reflected in a lower value of the fitting error (Q = 30.9 vs Q = 33.4). Notice that the extend-
ed model has the same number of parameters as the model without global physiological effects
in Eqs. 1–2, so that the improvement is not simply due to an increase in the degree of freedom
of the model. The parameter estimates are quite similar to those of the previous model.

Although taking into account the activity of the gene expression machinery improves the
results, the quantitative predictions of FliA-dependent regulation functions are still unsatisfac-
tory for some conditions, notably DrpoS-M9 andWT-LB. As explained in the Introduction,
this may be due to the use of promoter activities as proxies for protein concentrations.

Figure 6. FliA-FlgMmodule extended with activity of the gene expressionmachinery. The network is the same as in Fig. 1, but the regulation of the
motility genes by global physiological effects, in particular the activity of the gene expression machinery, has been included. These regulatory interactions are
shown by bold, dashed lines.

doi:10.1371/journal.pcbi.1004028.g006
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We therefore investigated how information on protein concentrations can be integrated into
the inference process and if this improves the identification results.

Identification of gene regulation functions from estimates of protein
concentrations
It is straightforward to provide an estimate of the GFP concentration, by dividing the fluores-
cence intensity by the absorbance (Methods and materials). The results are shown in Fig. 9. As
can be seen, the transcriptional pulse in exponential phase (Fig. 3), leading to a transient accu-
mulation of mRNA, is seen to be followed by the prolonged presence of stable protein, indicating
the temporal decorrelation of the promoter activity and the protein concentration. Unfortunate-
ly, reporter concentrations are not always representative of the concentrations of proteins of
interest, that is, proteins naturally expressed from a promoter. Post-transcriptional regulation
and coding bias may cause divergent synthesis rates. The main bias, however, comes from the
fact that the two proteins may have different half-lives and thus different degradation rates [25].

Available data in the literature indicate that the half-lives of FliA and FlgM are much shorter
than the 19 h of the GFP reporter. The measured half-lives of FliA and FlgM in Salmonella

Figure 7. Activities of constitutive phage promoter. Activity of the phage λ promoter pRM (grey) and activity of tar (blue) measured in all experimental
conditions considered in this study. The tar promoter activities (and the mean absorbance profiles) are the same as shown in Fig. 3.

doi:10.1371/journal.pcbi.1004028.g007
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enterica wild-type strains growing in LB were found to be 30 min and 18 min, respectively [51].
These half-lives are much shorter than those commonly found in E. coli. This can be explained
by the fact that, in addition to being physically degraded, FlgM is secreted from the cell (Fig. 1).
Moreover, FliA is subject to active degradation by Lon [52].

How can we exploit this information to reconstruct the protein concentration from the
promoter activity? As shown in [25] and theMethods and materials section, if the half-live of
the protein of interest is known, then an estimate of its concentration can be reconstructed
from the observed promoter activity using a simple kinetic model integrating the effects of pro-
tein synthesis and degradation as well as growth dilution of the protein. Fig. 9 shows the result
that is obtained for the FliA concentration, using the above-mentioned half-life. Although the
difference with the promoter activities is less striking than for the GFP concentrations, the
computation of the concentration via integration of the corresponding activity smoothens out
the rapid variations of the activities and changes the time-varying profile of the regulators.

Figure 8. Regulation function of tar fitted to reporter gene data when replacing protein concentrations by promoter activities and including global
physiological effects. The regulation function of Eqs. 2-3 was fitted using the promoter activities for tar, fliA, and flgM shown in Fig. 3, where the latter two
replace the concentrations of FliA and FlgM, respectively. Moreover, global physiological effects are quantified by the activity of the constitutively expressed
pRM promoter (Fig. 7). Model predictions are in dark blue (thick solid line), tar reporter data are in light blue (thin blue line and shaded area). The parameters
were estimated using a multistart global optimization algorithm (seeMethods and materials for details). The best fit returns the valueQ = 30.9 for the
objective function, for the parameter vector (k0,k1,n,θ,K) = (0.24,13.9,1.2,353,14615). Confidence intervals for the parameter values are reported in Text S10.

doi:10.1371/journal.pcbi.1004028.g008
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A tacit assumption in the computation of protein concentrations from promoter activities is
that the half-lives of the proteins are constant over the duration of the experiment. This may
not be true in the system considered here, since the apparent half-lives of FliA and FlgM are
regulated. In particular, the secretion rate of FlgM varies with the synthesis of HBB structures.
Data from the literature indicate that the first FlgM molecules appear in the extracellular medi-
um shortly after the induction of fliA [52, 53]. Once the cell population stops growing, the rate
of assembling new flagella and thus the secretion of FlgM come to a halt as well. This increases
the apparent half-lives of FliA and FlgM to 2 h and 3 h, respectively [52, 53]. Since our kinetic
experiments focused on the exponential growth phase, and the analysis is limited to the time
frame in which fliA and flgM are expressed, it is justified here to assume that the half-lives of
FliA and FlgM are constant.

Figure 9. Estimates of FliA concentrations from reporter gene data. Concentrations of FliA computed from fliA promoter activity (thick, black solid line)
in all experimental conditions considered in this study. The fliA activities are the same as shown in Fig. 3. The dashed, dark green line represents the
concentration of the reporter protein, while the dashed, light green line represents the reconstructed FliA concentration for the measured half-live of 30
min. In each condition, promoter activity has been normalized with respect to its maximum value. The protein concentrations have been normalized with
respect to the maximum of the upper limit of the confidence interval of the reporter concentration. The shaded regions correspond to the mean of the
protein concentrations � twice the standard error of the mean. For clarity, the confidence intervals of the promoter activities have been omitted.

doi:10.1371/journal.pcbi.1004028.g009
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Does the estimation of time-varying protein concentrations from promoter activities, by
means of a kinetic model and physiologically realistic half-lives, improve the inference of regu-
latory interactions and gene regulation functions?

We first verified that a model using the reconstructed FliA and FlgM concentrations as
regulators of tar, in addition to the activity of the gene expression machinery, is structurally
compatible with the data. Minimal sign pattern analysis accepted the expected pattern of regu-
latory interactions. Second, we identified the gene regulation model of Eqs. 2–3 from the data,
with the estimated FliA and FlgM concentrations for pA and pM, respectively. As shown in
Fig. 10, the model better captures the quantitative trend in the data, including in WT-LB,
where the improvement was moderate though, and the resulting fit still improvable (Q = 25.5).

Figure 10. Regulation function of tar fitted to reporter gene data when reconstructing protein concentrations from the reporter gene data and
including global physiological effects. The regulation function of Eqs. 2-3 was fit to the data using the promoter activity for tar (Fig. 3), concentrations of
FliA and FlgM reconstructed from the activities of their promoters for physiologically realistic half-lives (Fig. 9 and Text S7), and the activity of the
constitutively expressed pRM promoter quantifying global physiological effects (Fig. 7). Model predictions are in thick black and blue lines, tar reporter data
are in light blue (thin line and shaded area). Three fits are shown: the best fit for measured half-lives of FliA and FlgM of 30 min and 18 min, respectively
(thick, blue solid line,Q = 25.5, (k0, k1, n, θ, K) = (0.26, 5.0, 1.99, 3542, 447499)) and two other fits for comparable half-lives (blue and black dashed lines).
Parameter values were estimated using a multistart global optimization algorithm (seeMethods and materials for details). Their confidence intervals are
reported in Text S10.

doi:10.1371/journal.pcbi.1004028.g010
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Since the half-lives were taken to be those measured for a different species in growth conditions
that are similar but not identical to ours, and measurement errors were not reported, we slight-
ly relaxed the reported values. This did not much change the quality of the fit (Fig. 10). We
conclude that even approximately correct half-live values may allow the results of the inference
process to be improved.

The above analysis ignores a particularity of the FliA-FlgM module, namely that although
the half-lives are constant in the time-window of the experiment, they may be different across
growth conditions. Generally speaking, in environmental conditions favoring a larger number
of flagella, and thus completed HBB structures, the secretion rate of FlgM is higher and there-
fore the apparent half-life shorter. For example, during growth of a wild-type strain in LB
medium, the apparent half-live of FlgM is 18 min [51], but in conditions of strong induction of
the flagellar hierarchy half-lives up to 7 min were measured [54]. The half-life of FliA, the fla-
gellar sigma factor, is also variable. FliA is subject to active degradation by the Lon protease,
but stabilized when bound to FlgM (Fig. 1). This makes its apparent half-life dependent on the
concentration of its anti-sigma factor [52].

The observation that the half-lives of FliA and FlgM are not identical across all growth con-
ditions considered suggests a final extension of the analysis to improve the inference results.
We allowed the FliA and FlgM half-lives to vary between physiologically possible bounds in
each of the conditions and estimated not only the parameters of the regulation functions, but
also the half-lives. In order to reduce the computational complexity of this procedure, we dis-
cretized the possible half-live values for FliA and FlgM (27 values, between 7 min and 4 h), and
we precomputed the protein concentration profiles for each half-life in each of the experimen-
tal conditions. The resulting time-course patterns were used for the same analyses as above.

Fig. 11 shows the results for the structural inference of tar regulators. As can be seen, almost
all combinations of half-lives are compatible with activation of tar by FliA and the gene expres-
sion machinery as well as with inhibition by FlgM. This means that the returned structure of
interactions is robust over the range of half-lives, a desirable property for network inference.
Fig. 12 illustrates that the obtained quantitative regulation function of tar activity fits the data
better than in all other previously considered situations (Q = 21.0), while the parameter values
are similar to those obtained in the previous sections. Although we substantially relaxed the
possible half-live values of FliA and FlgM, it is remarkable that the optimal values are close to
the reported values for LB medium (Fig. 12). This emphasizes the importance of active degra-
dation of FliA and secretion of FlgM for the dynamics of the motility network. Moreover, while
the proportion of FliA released by FlgM varies across conditions, most FliA is predicted to be
free over the duration of the experiment (Text S9). This is also intuitively expected, as FlgM is
actively exported in the exponential growth phase considered.

We conclude that the reconstruction of protein concentrations from reporter gene data re-
sults in much better inference results for the FliA-FlgM module, for physiologically plausible
values. The computation of the protein concentrations requires a simple kinetic model,
accounting for protein synthesis and degradation, as well as estimates of the protein half-lives.
While this increases the complexity of the data analysis procedures, it reflects the actual dy-
namics of gene expression and is thus critical for exploiting time-series measurements. More-
over, the availability of information on protein half-lives may not be constraining in practice,
since even rough half-live estimates from the literature were seen to preserve the expected in-
teraction pattern and provide a significant improvement of the ability of the models to quanti-
tatively describe the time-varying promoter activity. It is important to remark, however, that
adding information on protein half-lives is not enough. When repeating the identification pro-
cess with the measured half-lives, but ignoring global physiological effects, the results are far
worse (Q = 36.3, Text S7).
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Determination of conditions in which protein half-lives and global
physiological effects are important
The importance of accounting for global physiological effects and protein half-lives was dem-
onstrated above for the regulation of the expression of tar. The same analysis was repeated for
the regulation of the flgM promoter. Results are reported in Text S7. We found that, for this
promoter, the improvement in the fit to the experimental data obtained by including global
physiological effects and protein kinetics isnot as pronounced as for tar. One possible explana-
tion is that the flgM activity profile happens to be already well explained using the promoter ac-
tivities of fliA and flgM as proxies for the corresponding protein concentrations (Text S7), thus
leaving little space for improvement. In addition, from a mathematical viewpoint, we notice

Figure 11. Minimal patterns of regulatory interactions for tar over a range of physiologically realistic half-lives. The minimal regulatory patterns for
the gene tar in the motility network of Fig. 6 as a function of the half-lives of FliA and FlgM. The plots correspond to the five experimental conditions
considered (ΔrpoS-M9, ΔcpxR-M9, ΔcsgD-M9, ΔcsgD-LB, andWT-LB) as well as the pooling of the data sets from all five conditions. The dot in the center of
each region in the plots corresponds to a tested combination of half-lives of FliA and FlgM, and thus to specific protein concentration profiles computed from
the kinetic model of gene expression (Methods and materials). The minimal regulatory patterns were obtained by applying the minimal sign pattern algorithm
[42]. The color codes represent the different categories of minimal signal patterns inferred. A region is colored green if the expected regulatory pattern is
among the minimal sign patterns returned by the algorithm, and yellow if it is compatible with the returned sign patterns. A region is colored red if none of the
returned sign patterns is consistent with the data only. Two examples of inconsistent sign patterns are shown. Note that, for every combination of half-lives,
the analysis of the pooled data (results reported as “Intersection”) is generally more constraining than the pooling of the results from individual analyses: The
expected pattern may be consistent (yellow) with all individual datasets but not minimal (green) for any of them, and turn out to be consistent and minimal
(green) when all datasets are analyzed at once (see also Text S5).

doi:10.1371/journal.pcbi.1004028.g011
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that using the promoter activity of flgM for the fitting of the same quantity may render the re-
gression problem degenerate. Still, these results raise a more general question: When is it im-
portant to take into account protein half-lives and global physiological effects?

To answer this question we performed an in-silico analysis where the regulation model of
Eqs. 2–3 is simulated for different protein half-lives and varying strength of the global physio-
logical contribution, using the pfliA, pflgM, and pRM activity profiles reported in Figs. 3 and 7.
Identification is then attempted from the simulated data with models ignoring protein half-
lives and global physiology. This enables us to quantify the relevance of the analysis in the pre-
vious sections for a variety of realistic scenarios, starting from experimentally measured activi-
ties of bacterial promoters.

To evaluate the importance of protein half-lives, we simulated FliA and FlgM concentration
profiles for half-lives ranging between 7 minutes and 16 hours. The other relevant parameters

Figure 12. Regulation function of tar fitted to reporter gene data when reconstructing protein concentrations from the reporter gene data for
physiologically realistic half-lives and including global physiological effects. As in Fig. 10, but the half-lives have now also been estimated from the
data, within a physiologically plausible range. Model predictions are in thick solid and dashed blue lines, tar reporter data are in light blue (thin line and
shaded area). Two example fits are shown, namely the best fit for estimated half-lives of FliA and FlgM (solid line,Q = 21.0, (k0,k1,n,θ,K) =
(0.22,6.6,1.38,6252,47467)) and another example of a high-ranking fit (dashed line). In the case of the best fit, the half-lives of FliA are equal to
(60,30,24,30,60) min in the (ΔrpoS, ΔcpxR, ΔcsgD-M9, ΔcsgD-LB, WT-LB) conditions, respectively, while the half-lives of FlgM are equal to (45,7,24,11,9)
min. Confidence intervals for the parameter values are reported in Text S10.

doi:10.1371/journal.pcbi.1004028.g012
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in the model (k0, k1, n, y, K) were fixed in agreement with the best fit obtained for the reference
half-lives of 30 min for FliA and 18 min for FlgM, shown in Fig. 10. More precisely, the relative
position of the parameter values within the interval of physiologically plausible values, which
may depend on the FliA and FlgM concentrations, as explained in theMethods and materials,
was conserved across conditions. Activity profiles of tar were then generated in accordance
with Eqs. 2–3 based on the experimentally measured pRM activities. We then attempted to
identify from these simulated data a gene regulation model accounting for the global physio-
logical effects, but using promoter activities in place of FliA and FlgM concentrations. The re-
sults are reported in Fig. 13.

As can be seen, the quality of the fit decreases with longer half-lives of FliA, but is rather
insensitive to the half-life of FlgM. The strong dependency on the half-life of FliA shows that,
in general, accounting for slow protein kinetics is important, but that promoter activities can
be safely used in place of protein concentrations for very fast-degrading proteins. This is intui-
tively explained by the fact that fast-degrading protein concentration profiles reproduce pro-
moter activity profiles quite closely, while this is not true in case of slow degradation (Fig. 9).
The relative insensitivity to FlgM half-lives can be explained by the fact that, in the time win-
dow considered in our experimental set-up, a good fit requires most FliA to be free (Text S9).
Longer half-lives, and therefore higher concentrations of FlgM, favor lower free FliA concen-
trations, but this tendency is compensated in the parameter optimization process by higher val-
ues for the equilibrium constant K. The actually measured reference half-lives of 18 min for
FlgM and 30 min for FliA are located in the upper left corner of Fig. 13A, where fitting residu-
als are comparably small. Therefore, for networks involving regulators with longer half-lives
than the exceptionally short half-lives observed for FliA and FlgM, it will be even more critical
to account for protein kinetics than for the genes considered here.

To evaluate the importance of global physiological effects, starting from the experimentally
measured pRM activity profiles, we simulated global physiological effects of different strength.
In particular, we rescaled the variations of fconst(t) around its temporal mean across all condi-

tions, �f const , by a factor a ranging from 0 (no variability, no regulatory effect) to 1 (measured
variability, moderate regulatory effect) and 1.25 (increased variability, strong regulatory effect).
That is, synthetic activity profiles of FliA-dependent promoters were generated in accordance
with the model

f ðtÞ ¼ a � f constðtÞ � �f const
� �þ �f const

� � � k0 þ k1
pA;freeðtÞn

yn þ pA;freeðtÞn
" #

; ð4Þ

with pA,free(t) computed from the FliA and FlgM concentration profiles according to Eq. 2. The
upper bound of 1.25 for a was chosen so as to avoid negative values of the promoter activity f(t).

Identification results using FliA and FlgM concentrations computed for the reference half-
lives of 30 min and 18 min, respectively, but ignoring global physiological effects are reported
in Fig. 13B. It is clear that the misfit of the tar promoter activity data increases with the strength
of the ignored physiological effects. In particular, with the experimentally observed pRM activi-
ty (a = 1), the discrepancy between the data and the best model fit is quite significant. This is in
agreement with the results of previous sections and especially Text S7, where it is shown that
ignoring global physiological effects, even when computing protein concentrations from pro-
moter activities, leads to poor model fits. While neglecting small variations of global physiolog-
ical state (a� 1) may be safe, ignoring highly varying global physiological effects (a> 1) may
have even more severe repercussions on the inference results than those observed here.

In summary, the simulation study shows that, as expected, the importance of accounting
for protein kinetics and global physiological effects depends on the strength of these effects,

Inference of Quantitative Models of Bacterial Promoters

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004028 January 15, 2015 19 / 30



although the structure of the system itself may also play a role, as illustrated by the differences
in the dependency of the fit quality on FliA and FlgM concentrations (Fig. 13A). As a general
rule, ignoring significant fluctuations of the global physiology or large differences between
mRNA and protein half-lives is very likely to result in modelling bias and hence poor inference
results. Interestingly, in the previous sections a substantial improvement of the fit of a quantita-
tive regulation function to tar activity was already obtained when taking into account concen-
trations of short-lived proteins and moderately-variable global physiological effects. In the light
of the analysis of this section, the contribution of our approach becomes even more fundamen-
tal in other systems, bearing in mind that the vast majority of bacterial proteins are much more
stable than FliA and FlgM, which are actively degraded and exported from the cell (Fig. 1).

Discussion
Experimental techniques developed over the past two decades have made it possible to monitor
gene expression with high precision and temporal resolution. The interpretation of these data
requires reliable mathematical and computational tools for the inference of regulatory

Figure 13. Heatmap of the fitting residuals for simulated data generated for different protein half-lives and for different strengths of global
physiological effects. A: For all different combinations of 33 half-lives of FlgM (horizontal axis) and FliA (vertical axis), the residual of the fit for a model
ignoring protein kinetics is represented by the color code reported in the right bar. For clarity of presentation, the residual valuesQ have been normalized with
respect to the maximum value ofQ over all half-life combinations. The combination corresponding to the measured half-lives in LB medium is marked with a
light blue square (18 min for FlgM, 30 min for FliA). B: For 26 different values of the strength parameter α, defined in Eq. 4, the residual of the fit by a model
ignoring global physiological effects is represented by the color code. The residual valuesQ have been normalized with respect to the maximum value ofQ
over the different strengths of physiological effects. The value corresponding to the real data is marked with a light blue rectangle (α = 1).

doi:10.1371/journal.pcbi.1004028.g013
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interactions as well as the identification of quantitative gene regulation functions. While enor-
mous progress has been made on such inference methods, many problems remain. We believe
that the solution of these problems should not only be sought in technical improvements of the
algorithms themselves, but should also come from a better understanding of the precise infor-
mation on gene expression provided by the experimental data. The relation between the prima-
ry data and physiological quantities like the cellular concentrations of mRNA and protein is
usually indirect and obscured by simplifications and assumptions that do not generalize be-
yond the specific situations for which they were designed.

In this paper we have made explicit the relation between experimental data and physiologi-
cal quantities by means of mathematical models of gene expression, calling into question two
basic assumptions that are commonly made in the inference of regulatory interactions and
quantitative gene regulation functions from time-series data.

The first assumption is that transcriptome data alone are sufficient to capture the time-
varying state of gene expression. Often, the regulators of gene expression are proteins and,
whereas mRNA and protein concentrations are correlated at steady state, this is generally not
the case when the two are considered dynamically over time. As a consequence, neglecting the
distinction between mRNA and protein may hamper the full and correct exploitation of the in-
formation contained in time-series transcriptome data. This might explain why the comprehen-
sive evaluation of network inference methods carried out in the DREAM initiative concluded
that steady-state transcriptome data comparing wild-type and mutant strains are usually more
informative for network inference than time-series data [55]. The temporal decorrelation of the
mRNA and protein concentrations makes the former generally an unreliable proxy of the latter.

A second implicit assumption in the analysis of transcriptome data is that gene regulation
can be reduced to the action of transcription factors and other specific regulators. This ignores
the fact that the activity of the transcriptional and translational machinery, as well as other
global physiological effects such as gene copy number and DNA supercoiling, may drastically
change over the course of an experiment, a fact that has been well-documented for microor-
ganisms [56–58]. As Lovén et al. demonstrate, a global increase or decrease of transcriptional
activity across conditions may lead to erroneous interpretations and the inference of spurious
regulatory interactions [21].

The main contribution of this paper is an integrated experimental and computational ap-
proach for addressing the above two problems, in the context of time-series measurements of
gene expression by means of fluorescent reporter genes. We propose new controls for tran-
scriptome experiments, in particular the use of constitutively-expressed genes, as well as math-
ematical models and computational procedures for reconstructing protein concentrations and
for integrating global physiological effects into the network inference process. The reconstruc-
tion of protein concentrations from real-time promoter activities by means of kinetic models
as well as the quantification of global physiological effects by means of reporter genes have
been proposed before [17–18, 25, 59]. For instance, Gerosa et al. have developed quantitative
models to dissect global and specific regulation of E. coli genes involved in arginine biosynthe-
sis [18]. To our knowledge, however, the work presented here is the first systematic study of
how the integration of information on both global physiological effects and protein concentra-
tions can improve the inference of regulatory interactions and the identification of regulation
functions from time-series gene expression data.

It is important to emphasize that the proposed approach is orthogonal to existing inference
methods and that the models and analysis procedures proposed in this study can be directly
combined with many of the methods described in the literature [1, 3–7]. The models and
analysis procedures we have used are explicitly detailed and can be easily integrated into avail-
able methods, as illustrated for the MATLAB implementation of the minimal sign pattern
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algorithm [42]. While reporter gene data were used in this study, other experimental tech-
niques may also yield time-series transcriptome data suitable for our purpose. The main
requirement is that an estimate of the expression of a constitutive gene can be obtained and
sampling times are sufficiently dense and precise to allow time-varying mRNA concentrations
to be reliably measured.

We have validated our approach by means of a central module of the motility network in
E. coli. The FliA-FlgM module has been very well-studied and has characteristics that make it
atypical but particularly suitable for our purpose. FlgM is secreted from the cell and FliA is a
target for proteolysis, which causes these regulators to have apparent half-lives that are quite
short in comparison with typical E. coli proteins. Moreover, the secretion and degradation
rates may change across conditions, depending on the strength of induction of the flagella syn-
thesis network. This yields a rich and challenging data set for testing how accounting for the
distinction between cellular responses on the level of mRNA and protein influences the results
of the inference process.

We investigated the capability to infer from reporter gene data both the regulatory structure
and the quantitative regulation function of a FliA-dependent motility gene, not known to be
regulated by any other transcription factors. When progressively solving the problems men-
tioned above, by integrating information on the activity of the gene expression machinery and
computing estimates of protein concentrations from promoter activities, both the structure
and the dynamics of the regulation of the tar promoter could be identified successfully.
We emphasize that, when using available measurements of FliA and FlgM half-lives, this was
achieved without increasing the number of parameters in the models and is therefore not sim-
ply a consequence of increasing the degrees of freedom. Moreover, a-posteriori analysis of the
confidence intervals of the parameter estimates (Text S10) confirmed that there are no iden-
tifiability issues, that is, the models are fully determined by the available data.

The results underline the important roles played by global physiological effects and the active
regulation of FliA and FlgM half-lives in shaping the dynamics of FliA-dependent promoters.
When global physiological effects were ignored, or the FliA and FlgM half-lives were set to typi-
cal values of E. coli proteins, a sharp drop in the quantitative predictivity of the gene regulation
models was observed (Text S7). In other words, both the inclusion of global physiological effects
and realistic half-lives were necessary to improve the inference results in our example network.

More generally, under which conditions does the inclusion of the above factors lead to bet-
ter results and when can they be ignored? We performed a simulation study in which we sys-
tematically varied the relative contribution of global physiological effects to cross-condition
variations in the expression of a target gene and the half-lives of the regulators. These results
showed that longer half-lives of the activating transcription factor and stronger variations of
global physiological effects make it more difficult to obtain good fits when using promoter
activities and data on specific regulators only, respectively. While these conclusions are not sur-
prising, it is important to emphasize that in the system studied here, where FliA and FlgM have
half-lives that are exceptionally short for bacterial proteins, a considerable improvement of the
fit could be obtained. For regulatory proteins with more typical half-lives, the gain may there-
fore be even more important than observed here.

The proposed approach to better exploit the information contained in time-series data of
the trancriptional response of bacterial cells depends on kinetic models of gene expression, re-
lating the primary fluorescence and absorbance data to promoter activities and protein concen-
trations. The models used in this study could be further refined, by taking into account delays
that are due to the maturation of GFP and the time for rounds of transcription and translation
to complete [25, 60–62]. These refinements were neglected here, since the GFP reporter used
in this study is fast-folding and the transcription and translation delays are short on the
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time-scale of the experiments. The computation of protein concentrations by means of these
measurement models depends on the availability of approximate values of the protein half-
lives. While genome-wide studies of the stability of individual proteins exist, e.g., for yeast [63],
quantitative information on the stability of individual proteins in microorganisms is seldom
available. Still, it is known that most proteins in E. coli are stable, with half-lives>10 h. In most
experimental scenarios in the laboratory, bacterial growth occurs at a much higher pace, i.e.,
m� gp, which is sufficient to ensure correct applicability of our measurement models regard-
less of the specific (poorly known) value of gp. Turned another way, to apply our measurement
models in cases of poorly known half-lives of stable proteins, it suffices to perform experiments
with cell doubling times well below 10 h.

In conclusion, the applicability of our principled approach to account for protein degradation
and global effects in network reconstruction from reporter gene data goes well beyond the simple
and well-understood biological system on which it was illustrated and the specific network analy-
sis and identification methods utilized. In fact, the use of the proposed approach becomes even
more important in problems involving networks that are less known and/or of greater complexi-
ty, in that the identification problem becomes intrinsically more difficult, and therefore the biases
introduced by common though weakly justified hypotheses or approximations become even
more difficult to discern. Due to the generality of both the problem and the proposed solutions,
we believe that the methodology presented in this paper has broad practical applicability for ana-
lyzing time-series transcriptome data and improving network inference in a variety of organisms.

Methods andmaterials

Strains and growth conditions
The E. coli strains used for this study are the wild-type strain BW25113 and isogenic deletion
mutants DrpoS, DcsgD and DcpxR. The strains were taken from the Keio collection [64] and
the kanamycin resistance cassette was removed [40]. The wild-type and mutant strains were
transformed with low-copy plasmids bearing a fusion of a gfpmut2 reporter gene with the pro-
moter regions of the genes tar, fliA, and flgM. These plasmids were selected from the plasmid li-
brary constructed at the Weizmann Institute [65]. A reporter for the pRM promoter of phage l
was constructed in the same plasmid vector to provide information on the physiological state
of the bacteria, following the approach in [17]. The pRM promoter fused with the gfp reporter
gene was also inserted into the chromosome of the BW25113 wild-type strain as reference for
the qRT-PCR assays. All plasmids carry the kanamycin resistance gene. All the strains and
plasmids were verified by PCR. More details on the strains and plasmids used in this study can
be found in Text S1.

The strains were recovered from glycerol stock and grown overnight (16 h) at 37°C in LB
rich medium andM9 minimal medium [66] supplemented with 0.3% glucose and mineral trace
elements. For the preculture of strains containing plasmids, kanamycin (50 mg/ml) was added.
The overnight cultures were diluted (10- to 100-fold) into a 96-well microplate, so as to obtain
an adjusted initial OD600 of 0.2. The wells of the microplate contain 150 ml of the above medium,
to which was added 1.2% of the buffering agent HEPES (4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid) for maintaining a constant external pH. The wells were covered with 60 ml of
mineral oil to avoid evaporation. The microplate cultures were then grown for about 16 h at
37°C, with agitation at regular intervals, in a microplate reader (Fusion Alpha, Perkin-Elmer).

Experimental monitoring of gene expression in real time
The expression of the fluorescent reporter genes in different genetic backgrounds and different
growth media was monitored in vivo and in real time. About 150 readings each of absorbance
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(600 nm) and fluorescence (485/520 nm) were obtained during a typical experiment using the
Perkin-Elmer microplate reader. In order to compute promoter activities and protein concen-
trations from these data, data analysis procedures were designed and implemented in MATLAB,
completing earlier work [17, 25]. These data procedures account for the specific half-life of the
fluorescent reporter protein and take special care in the subtraction of the autofluorescence
background (see Text S3 for details on the data analysis procedures).

Denoting by A(t) and I(t) the (background-corrected) time-varying absorbance and fluores-
cence signals, we computed the reporter concentration r(t) and the promoter activity f(t) by
means of the following formulas:

rðtÞ ¼ IðtÞ
AðtÞ ; ð5Þ

f ðtÞ ¼ d
dt

rðtÞ þ ðgr þ mðtÞÞrðtÞ ¼
d
dt
IðtÞ
AðtÞ þ gr

IðtÞ
AðtÞ ; ð6Þ

where gr [min−1] is the degradation constant of the reporter and m(t) [min−1] the growth rate
of the bacteria. The half-life of the protein is defined as t1/2 = ln2/gr. The reporter concentration
is expressed in units RFU and the promoter activity in units RFU min−1, as is usual for this
kind of measurements (see [17] and Text S3). The growth rate is easily estimated from the
time-varying absorbance, using the standard relation m(t) = d lnA(t)/dt. The above equations
rely on the use of a kinetic model of the expression of the reporter gene, as explained in
Text S2. We used cubic smoothing splines (csaps function in MATLAB) to fit the fluorescence
and absorbance data and obtain estimates of A(t), I(t), dA(t)/dt, and dI(t)/dt. The half-life of
the GFPmut2 reporter is 19 h (gr = 0.0006�0.0001)). The maturation time of GFPmut2 is so
short (4 min, [65]) that it can be safely ignored.

A similar measurement model was used for the expression of the actual gene of interest, en-
coding a protein with concentration p(t) [RFU min−1]:

d
dt
pðtÞ ¼ f ðtÞ � ðgp þ mðtÞÞ pðtÞ; pð0Þ ¼ p0; ð7Þ

where gp [min−1] is the degradation constant of the protein. Notice that in the case of FlgM, pro-
tein degradation includes both physical degradation of the protein and secretion through the cell
membrane. When the degradation constant is known, we can compute the protein concentration
by numerical integration, starting from the initial concentration p0. This initial concentration is
obtained from the reporter gene data, by realizing that the bacterial cells at the beginning of the
experiment are rediluted cells from a preculture grown in the same medium. In particular, as-
suming that gene expression in the preculture is at steady-state, it follows from Eq. 7 that

pð0Þ ¼ pðTÞ ¼ mðTÞ þ gr
mðTÞ þ gp

rðTÞ; ð8Þ

where m(T) is the growth rate at the end of the preculture (at time T), p(T) and r(T) are the corre-
sponding concentrations of the protein of interest and reporter protein, respectively. Usually, the
bacteria in the preculture are in stationary phase, so m(T) = 0. Eq. 8 was solved by numerical inte-
gration using the quad function in MATLAB.

In the case of the motility network there are two complications that slightly modify this
general scheme. First, the half-lives of FliA and FlgM are variable over the time-course of the
experiment. During exponential growth, when the motility genes are expressed, FliA and FlgM
have short half-lives, due to proteolysis and secretion, respectively. During stationary phase, at
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the end of the preculture, this is no longer the case and FliA and FlgM have longer half-lives
(2 h for FliA and 3 h for FlgM [52, 53]). As a consequence, when computing the initial protein
concentrations from the reporter concentrations at time T, we need to take protein degradation
constants g0p corresponding to these longer half-lives. Second, in some experimental condi-

tions, notably in rich medium like LB, the activity of the fliA, flgM, and tar promoters is negligi-
ble in the first few hours of the experiment [27]. As a consequence, the fluorescence intensity
in the corresponding reporter strains is indistinguishable from the background fluorescence.
We assume the promoter activity of the genes to be 0 in this case and back-extrapolate the ob-
served promoter activities at earlier times towards 0. In Text S8 we illustrate the effects of vari-
able half-lives and extrapolation of promoter activities on the computation of FliA and FlgM
concentrations in a WT strain grown in LB.

For each of the derived quantities r(t), f(t), and p(t), confidence intervals (defined as�2
standard errors of the mean) were computed from 6–7 experimental replicates.

Relative quantification of gene expression using real-time qRT-PCR
We verified the reporter gene measurements by means of qRT-PCR in the WT-LB condition,
following a previously validated protocol [67]. Details of the experimental procedure can be
found in Text S6.

Inference of minimal patterns of regulatory interactions
We use the method introduced in [42] to infer minimal pattern of regulatory interactions from
time-series reporter gene data. The assumption of the method is that a regulator (e.g., a tran-
scription factor, but also the gene expression machinery) cannot operate both as a repressor
and as an activator of a target gene, while it is allowed to operate as a repressor for one gene
and as an activator for another gene. This corresponds to assuming that the activity of a gene is
a monotone nondecreasing function of activators and a monotone nonincreasing function of
repressors. Any such regulatory pattern can be encoded in terms of a sign pattern, i.e., a vector
containing one entry per regulator, taking value +1 for activators, −1 for repressors, and 0 for
factors that do not affect the expression of the gene under consideration.

For every target gene, the method scans the measured promoter activities and concentra-
tions of putative regulators. A sign pattern, i.e. a hypothesis on the regulatory structure, is re-
jected if it is found to be inconsistent with the data, i.e., if measurements violate the
monotonicity properties corresponding to that sign pattern. For instance, in the network mod-
ule considered in this paper, the assumption that both FlgM and FliA activate tar can be re-
jected if any two measurement times are found such that, for higher concentrations of FlgM
and FliA, the promoter activity of tar is lower. The algorithm makes the above verifications in a
computationally efficient way and returns, for every target gene, a set of minimal sign patterns.
The minimal sign patterns are regulatory patterns consistent with the data, having the proper-
ties that removal of any interaction results in an inconsistent pattern, whereas addition of a reg-
ulator (activator or repressor) preserves the consistency. In order to check the robustness of the
minimal patterns thus obtained, we verified that no sign patterns were dismissed because of a
single pair of measurements in the time-series. Mathematical details on the minimal sign pat-
tern method can be found in Text S5 and [42].

Parameter estimation
The promoter activity models we considered in the main text have the form f ðtÞ ¼ f xðtÞ; cð Þ,
where c is a vector of unknown parameters and x is a vector of regressors. The specific form of
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f xðtÞ; cð Þ is given in Eq. 1 and 3. The regressors take different forms in consecutive sections
of this paper, consisting either of the activities fA and fM of the fliA and flgM promoters
(x = (fA,fM)) or the reconstructed concentrations pA and pM of FliA and FlgM (x = (pA,pM)).
In all sections, c = (k0,k1,n,y,K), as defined in the section Identification of gene regulation
functions from promoter activities. The superscript symbol s indicates the experimental condi-
tion, where s 2 S ¼ fDrpoS�M9;DcpxR�M9;DcsgD�M9;DcsgD�LB;WT� LBg. Given
measurements �xsðtÞ; �f sðtÞ� �

of xðtÞ; f ðtÞð Þ (averages of 6–7 experimental replicates) at times

t 2 T s along with confidence intervals (�f sðtÞ � esðtÞ) (computed from the same experimental

replicates with es equal to twice the standard error of the mean �f s), we estimate c by solving the
optimization problem

ĉ ¼ min
c2C

QðcÞ; QðcÞ ¼
X
s2S

X
t2T s

1

22sðtÞj
�f sðtÞ � f ð�xsðtÞ; cÞj:

The solution is found in MATLAB using the multistart global search function gs with stan-
dard settings (interior-point method, fmincon for local minimizations). We tried several
other global optimization function available in the MATLAB global search toolbox, but the gs
function was found to perform best. The parameter search space C is given by the constraints

0 � k0 � maxf�f sðtÞ : t 2 T s; s 2 S g;

0 � k1 � 10 �maxf�f sðtÞ : t 2 T s; s 2 S g;

1 � n � 4;

0 � y � maxf�xs
1ðtÞ : t 2 T s; s 2 S g;

0 � K � 20 �maxf�xs
2ðtÞ : t 2 T s; s 2 S g:

The above procedure applies to the estimation of the regulation function of both tar and
flgM. However, for the estimation of the regulation function of flgM, the condition WT-LB is
not available and hence excluded from the computation of Q(c). Moreover, in the latter case,
K is fixed for biological consistency to the value inferred from the fitting of tar promoter activi-
ty. For all parameter fits shown in the main text, we performed a-posteriori identifiability analy-
sis to ensure that no structural or practical identifiability issue affects our results (Text S10).
Overfitting issues were also excluded based on the results of this analysis and visual inspection
of the fits.
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