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Abstract. Although multi‑organ dysfunction is associated 
with the survival rate following cardiac arrest (CA), the 
majority of studies to date have focused on hearts and brains, 
and few studies have considered renal failure. The objective 
of the present study, therefore, was to examine the effects of 
therapeutic hypothermia on the survival rate, pathophysiology 
and antioxidant enzymes in rat kidneys following asphyxial 
CA. Rats were sacrificed one day following CA. The survival 
rate, which was estimated using Kaplan‑Meier analysis, 
was 42.9% one day following CA. However, hypothermia, 
which was induced following CA, significantly increased 
the survival rate (71.4%). In normothermia rats with CA, the 
serum blood urea nitrogen level was significantly increased 
one day post‑CA. In addition, the serum creatinine level was 
significantly increased one day post‑CA. However, in CA rats 
exposed to hypothermia, the levels of urea nitrogen and creati‑

nine significantly decreased following CA. Histochemical 
staining revealed a significant temporal increase in renal 
injury after the normothermia group was subjected to CA. 
However, renal injury was significantly decreased in the 
hypothermia group. Immunohistochemical analysis of the 
kidney revealed a significant decrease in antioxidant enzymes 
(copper‑zinc superoxide dismutase, manganese superoxide 
dismutase, glutathione peroxidase and catalase) with time 
in the normothermia group. However, in the hypothermia 
group, these enzymes were significantly elevated following 
CA. Collectively, the results revealed that renal dysfunction 
following asphyxial CA was strongly associated with the early 
survival rate and therapeutic hypothermia reduced renal injury 
via effective antioxidant mechanisms.

Introduction

Cardiac arrest (CA), also known as cardiopulmonary arrest 
or circulatory arrest, involves a sudden cessation of normal 
blood circulation due to the failure of the heart to pump blood 
adequately  (1). CA induces whole‑body ischemia, which 
causes damage to multiple organs, including the brain, heart, 
kidneys and liver. The majority of research studies involving 
CA over the past half‑century have focused on improving the 
rate of successful return of spontaneous circulation (ROSC), 
with significant progress (2‑4). Although immediate resus‑
citation may improve ROSC, the survival rate with a poor 
prognosis is a concern (5‑7). Post‑cardiac arrest syndrome 
(PCAS) refers to the pathophysiological consequences of 
ROSC following successful cardiopulmonary resuscitation 
(CPR) following CA (8). PCAS is the main cause of decreased 
survival following ROSC (9). The early‑period PCAS survival 
rate in patients is only 30% (5). There is no doubt that the 
heart and brain are important organs in PCAS. Meanwhile, 
studies have rarely investigated renal failure following 
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CA (1,10,11). Transient impaired renal function is common 
in patients surviving CA (12). The incidence and impact of 
kidney dysfunction following CA are not well described (13). 
In addition, our previous study suggested that the low early 
survival rate following ROSC in experimental studies (14) 
may be strongly related to renal failure such as acute kidney 
injury. One of the most common causes of acute kidney injury 
is CA (15). Acute kidney injury is a common PCAS developing 
in ~30% of in‑hospital patients with CA (16).

Reactive oxygen species (ROS) are composed of a series 
of oxygen intermediates, including the free radical super‑
oxide anion (O2

•‑), the nonradical hydrogen peroxide (H2O2), 
the highly reactive hydroxyl free radical (OH•), peroxynitrite 
(ONOO‑) and singlet oxygen (1O2)  (17). ROS have been 
revealed to play an essential role in several experimental 
renal conditions, such as acute ischemic renal failure, renal 
graft rejection, acute glomerulonephritis and toxic renal 
diseases (18). There is significant evidence supporting the 
synthesis of ROS immediately following acute ischemic 
stroke (19) and acute myocardial infarction (20). ROS are 
known to be important in ischemic diseases, such as stroke and 
myocardial infarction. For example, Hackenhaar et al (21) 
reported that ROS are generated in the blood of patients with 
PCAS; however, studies have rarely investigated ROS forma‑
tion in the kidney following CA during the early post‑PCAS 
period (22,23).

For this reason, it was hypothesized that ROS are impor‑
tant in kidney injury following CA and contribute to the 
low survival rate in the early stages of PCAS. To examine 
this hypothesis, asphyxial CA was induced in rats and the 
survival rate during the early stages of PCAS was observed. 
Additionally, immediate and delayed hypothermia were 
performed to increase the low survival rate associated with 
PCAS following ROSC. Furthermore, the renal dysfunction 
was analyzed histopathologically and the changes induced 
by ROS, such as copper‑zinc superoxide dismutase (SOD‑1), 
manganese superoxide dismutase (SOD‑2), catalase (CAT) 
and glutathione peroxidase (GPX) were assessed via immuno‑
histochemical analysis following ROSC.

Materials and methods

Experimental animals and groups. A total of 62  male 
Sprague‑Dawley (SD) rats (weight, 270‑300 g; age, 10 weeks) 
were obtained from the Experimental Animal Center of 
Jeonbuk National University (Iksan, Republic of Korea). 
They were housed at a temperature of 23±2˚C and humidity 
of 60±10% under a 12‑h light/dark cycle. They were supplied 
with free access to food and water. All experimental protocols 
were approved based on ethical procedures and scientific 
care by the Institutional Animal Care and Use Committee of 
Jeonbuk National University (approval no. JBNU 2020‑084).

Experimental animals were stratified in three categories 
[a sham operation group, CA under normothermia, and CA 
and hypothermia treatment (HT)] as follows: i) group I , a 
sham group (n=5) was maintained under normothermia condi‑
tions without CA; ii) group II, a normothermia group without 
hypothermia (33˚C) treatment following CA (n=17); and 
iii) group III (n=40), a group that underwent CA under normo‑
thermia and were treated with HT after CA for 2 h (n=17), 4 h 

(n=13) and 6 h (n=10) following ROSC, where all rats were 
reheated to normothermia.

CA induction and CPR. CA and CPR were performed as previ‑
ously described (24,25) with minor modifications (Fig. 1). 
Briefly, the rats were anesthetized with 2‑3% isoflurane and 
mechanically ventilated to maintain respiration using a rodent 
ventilator (Harvard Apparatus). To monitor peripheral oxygen 
saturation (SpO2), a pulse oximetry oxygen saturation probe 
(Nonin Medical, Inc.) was attached to the left foot. Body 
temperature was maintained at 37±0.5˚C during and following 
the CA surgery. To monitor electrocardiogram (ECG) changes, 
electrocardiographic probes (Cytiva) were placed on the limbs 
to provide three‑lead data, and which were monitored continu‑
ously. The left femoral artery and right femoral vein were 
separately cannulated to monitor the mean arterial pressure 
(MAP) (MLT 1050/D; ADInstruments, Ltd.) and intravenous 
injection.

Following a 5‑min stabilization period, vecuronium 
bromide (2  mg/kg; Gensia Sicor Pharmaceuticals, Inc.) 
was intravenously administered, anesthesia was stopped 
and mechanical ventilation was withdrawn. A MAP below 
25 mm‑Hg and subsequent pulseless electric activity were 
used to define CA (25,26). CA was confirmed at 3‑4 min 
following vecuronium bromide injection. At 5 min following 
CA, CPR was initiated by intravenously administering a 
bolus injection of epinephrine (0.005 mg/kg; Sigma‑Aldrich; 
Merck KGaA) and sodium bicarbonate (1  mEq/kg; 
Sigma‑Aldrich; Merck KGaA) followed by mechanical venti‑
lation with 100% oxygen and manual chest compressions at 
a rate of 300/min until MAP reached 60 mm‑Hg and elec‑
trocardiographic activity was observed. Once the animal 
was hemodynamically stable and spontaneously breathing 
(usually at 1 h following ROSC), the catheters were removed 
and the animal was extubated.

Temperature management among the groups. The body 
temperature of the normothermia group was maintained at 
37±0.5˚C during and following the CA surgery and maintained 
until the rats were sacrificed according to the time schedule. 
In the hypothermia group, CA was established at normal 
temperature; then, the body temperature was maintained with 
ice packs and fans at 33±0.5˚C immediately following CPR for 
2, 4 and 6 h, and they were rewarmed rapidly with the heating 
pad until the desired temperature (37±0.5˚C) was achieved. 
The rats were then returned to their cages until they were 
sacrificed one day following CPR/ROSC. The body tempera‑
ture was monitored using a rectal temperature sensor (27).

Serum biochemical analysis. An intraperitoneal injection of 
30 mg/kg pentobarbital sodium (JW Pharm Co., Ltd.) was 
used to anesthetize all animals. Blood was collected from the 
abdominal veins of each animal in each group. Serum was 
collected by blood centrifugation (2,774 x g, 15 min, 4˚C) 
and was preserved at ‑80˚C until analysis. The levels of blood 
urea nitrogen (BUN) and creatinine in the serum were deter‑
mined according to methods outlined by the International 
Federation of Clinical Chemistry (28) using an automated 
chemical analyzer Hitachi 2070 (Hitachi, Ltd.). All assays 
were conducted in triplicate using fresh serum.
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Tissue processing. The rats were deeply anesthetized by an 
intraperitoneal injection of 200 mg/kg pentobarbital sodium 
(JW Pharm Co., Ltd.), and they were perfused transcardi‑
ally with 0.1 M of phosphate‑buffered saline (PBS; pH 7.4), 
followed by 4% paraformaldehyde in 0.1 M of phosphate 
buffer (PB; pH 7.4). Kidneys were isolated from each animal 
and fixed with 4% paraformaldehyde in 0.1 M PB (pH 7.4) at 
room temperature during the 1 week, then sliced sagittally, 
embedded in paraffin and sectioned (6 µm).

Hematoxylin and eosin (H&E), Periodic Acid‑Schiff (PAS) and 
Masson's trichrome staining. H&E staining was performed 
to examine pathological changes in the kidneys according 
to a previously described procedure (29). PAS staining was 
performed to examine changes in glomeruli according to 
previously described procedures (30‑32). Masson's trichrome 
staining method was used for defining tubular injury, 
considering tubular dilatation, tubular atrophy, tubular cast 
formation, vacuolization, degeneration, interstitial fibrosis 
and sloughing of tubular epithelial cells, or thickening of the 
tubular basement membrane according to previously described 
procedures (33,34).

A total of 2 experienced pathologists evaluated histo‑
pathological changes in a double‑blinded manner. Images of 
10 stained sections/rat were captured at x400 magnifications 
using a Leica DM 2500 light microscope (Leica Microsystems 
GmbH). A total of 10 fields were analyzed in each section. 
Histopathological analysis of renal lesions was performed 
according to previously described procedures (35,36). Briefly, 
lesions were categorized as no significant microscopic lesions 
(NSML), minimal, mild, moderate, or marked lesions, respec‑
tively, graded using the following scale with the blind test: 
normal, 0 points; <25% damage, 1 point; 26‑50% damage, 
2 points; 51‑75% damage, 3 points; and 76‑100% damage, 
4  points. Glomerular lesions were defined by loss of 

cellular elements, collapse of capillary lumen, amorphous 
hyaline material with or without adhesions to the Bowman's 
capsule (30‑32) and scored by the following numeric scales: 
no damage, 0  points; very mild, 1 point; mild, 2  points; 
moderate, 3 points; and severe, 4 points. Tubular injury was 
scored by the following scoring system: no tubular injury, 
0 points; 1‑9% of tubules injured, 1 point; 10‑25% of tubules 
injured, 2 points; 26‑50% of tubules injured, 3 points; 51‑75% 
of tubules injured, 4  points; and at least 76% of tubules 
injured, 5 points (33,34).

Malondialdehyde (MDA). MDA concentration in the renal 
cortex was evaluated according to a previously described 
protocol (23,37,38). In short, the homogenization and centrifu‑
gation of the renal tissues were performed at 8,832 x g for 
10 min at 4˚C, and the supernatant was collected and stored 
at ‑80˚C for MDA analysis. MDA content was determined 
according to the instructions of TBARS assay kit (cat. 
no. 10009055; Cayman Chemical Company).

Immunohistochemistry (IHC) for antioxidant enzymes. IHC 
was performed with SOD‑1, SOD‑2, CAT and GPX to study 
changes in antioxidant immunoreactivities in the kidney. 
IHC was carried out according to our previously described 
method  (22). In brief, the sections (6 µm) were incubated 
with primary goat anti‑SOD1 (1:500; cat. no. SAB2500976; 
Sigma‑Aldrich; Merck KGaA), goat anti‑SOD2 (1:1,000; 
cat. no. SAB2501676; Sigma‑Aldrich; Merck KGaA), rabbit 
anti‑CAT (1:1,000; cat. no.  ab16731; Abcam) and rabbit 
anti‑GPX (1:1,000; cat. no. ab22604; Abcam) overnight at 4˚C, 
followed by the biotinylated‑conjugated anti‑rabbit (1:250; cat. 
no. BA‑1000‑1.5; Vector Laboratories, Inc.) and the biotinyl‑
ated‑conjugated anti‑goat (1:250; cat. no. BA‑5000‑1.5; Vector 
Laboratories, Inc.) secondary antibodies for 2 h at 24˚C and 
developed using Vectastain ABC (Vector Laboratories, Inc.). 

Figure 1. Experimental procedure showing animal stabilization, induction of ACA, CPR and ROSC, HT, blood sampling and sacrifice. HT, hypothermia 
treatment; ACA, asphyxial cardiac arrest; CPR, cardiopulmonary resuscitation; ROSC, return of spontaneous circulation.
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Then, they were visualized with 3,3'‑diaminobenzidine solu‑
tion (in 0.1 M Tris‑HCl buffer).

Leica DM 2500 microscope was used to image the sections 
at a magnification of x400. A total of 10 sections/rat were 
selected and 10 areas were captured. ImageJ threshold analysis 
software version 1.52a (National Institutes of Health) was used 
to measure the percent (%) of relative optical density (ROD).

Statistical analysis. All experiments were repeated in tripli‑
cate. Graph Pad Prism version 5.0 (GraphPad Software, Inc.) 
was used to analyze the data, which were expressed as the 
means ± standard error of the mean (SEM) values. Survival 
was analyzed using Kaplan‑Meier statistics and the log‑rank 
test. MAP and peripheral oxygen were compared using 
one‑ and two‑way repeated‑measures of analysis of variance 
to assess the effect of time. To determine the significance of 
differences, post hoc analyses were conducted using Tukey's 

test for all pairwise multiple comparisons. P<0.05 was consid‑
ered to indicate a statistically significant difference.

Results

Physiological changes, the survival rate and serum biochem‑
ical variables. There was no statistically significant difference 
among the groups regarding baseline characteristics, including 
body weight, MAP and SpO2 (Table I and Fig. 2). The induction 
of CA occurred 3‑4 min following the intravenous injection 
of vecuronium bromide (2 mg/kg). CA was confirmed with 
an isoelectric ECG, SpO2 and MAP, and these changed as 
expected according to the experimental protocol (Fig. 2A‑C). 
As revealed in Fig. 2D, the body temperature was different 
among all groups following ROSC.

As revealed in Fig. 3, the survival rate of each group was 
evaluated at one day post‑CA. The rate of Group II was 42.9%. 

Table I. Physiological condition, asphyxia time and CPR time in Groups I, II and III before CA.

	 Group III
	 --------------------------------------------------------------------------------------------------------------------
Parameters	 Group I	 Group II	 2 h‑HT	 4 h‑HT	 6 h‑HT

Body weight, g	   355.44±17.33	   354.13±17.04	 284.14±9.89	   278.14±19.41	   283.71±12.08
Heart rate, beats/min	 335.14±8.51	 336.34±6.51	   339.78±16.13	 333.50±9.65	 338.67±9.55
Room temperature, ˚C	   36.60±0.53	   23.90±0.87	  25.07±0.53	   25.06±0.68	   24.83±0.72
Asphyxia time to CA, sec	 ‑	   162.12±16.36	  145.44±28.79	   148.89±19.65	   150.56±24.55
CPR time, sec	 ‑	     71.12±12.49	  72.03±7.97	     69.78±10.57	   73.89±9.93

CPR, cardiopulmonary resuscitation; CA, cardiac arrest, HT, hypothermia treatment.

Figure 2. Physiological variables in Groups I, II and III. (A) Electrocardiogram from a representative animal at BL, AI, CA and ROSC. Pulseless electrical 
activity is shown during CA, although it is often visible during CA. (B) SpO2 levels were revealed during CA, CPR and ROSC. (C) Mean arterial pressure is 
shown during CA, CPR and ROSC. (D) Temperature management following ROSC. Data are expressed as the means ± SEM. HT, hypothermia treatment; CA, 
cardiac arrest; ROSC, return of spontaneous circulation; CPR, cardiopulmonary resuscitation; BL, baseline; AI, asphyxia induction.
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In group III, the rate following 2 h‑HT was 42.9%, the rate 
following 4 h‑HT was 57.1% and the rate following 6 h‑HT was 
71.4%. In this experiment, there was no difference between the 
rats in Group II and the rats with 2 h‑HT in Group III.

As demonstrated in Fig.  4B, the serum BUN level in 
Group I was 13.8 mg/dl one day post‑CA. In group II, the 
BUN level was significantly increased to 35.3  mg/dl. In 
Group III, the BUN level was 30.7 mg/dl following 2 h‑HT, 
25.0 mg/dl following 4 h‑HT and 22.7 mg/dl following 6 h‑HT. 
In addition, as revealed in Fig. 4C, the serum creatinine level 
in Group I was 0.23 mg/dl. In group II, the creatinine level 
was significantly increased to 0.43 mg/dl. In group III, the 
creatinine levels were lower than that observed in Group II as 
follows: 0.39 mg/dl following 2 h‑HT, 0.37 mg/dl following 
4 h‑HT and 0.36 mg/dl following 6 h‑HT.

Histopathological findings. In Group I (sham), intact histo‑
logical structures were revealed by H&E, PAS and Masson's 
trichrome staining (Fig. 5A). The interstitial fibrosis was not 
detected in all groups, meanwhile in Group II, CA‑induced 
renal histopathology was examined at one day following 
ROSC using H&E, PAS and Masson's trichrome staining. 
Severe CA‑induced kidney injury was significantly increased 

in the proximal tubules and glomeruli; particularly, the brush 
borders of the renal tubular epithelial cells were seriously 
eroded (Fig. 5A and B). In addition, in this group, glomerular 
capillaries were dilated with inflammatory cells, and intersti‑
tial edema and acute renal tubular necrosis were serious as 
compared with those observed in Group I (Fig. 5A).

In Group III , kidney injury was attenuated at one day 
following ROSC (Fig. 5A and B). In particular, CA‑induced 
injury in the proximal tubules was significantly decreased 
following 6 h‑HT as compared with that observed in Group II. 
In addition, local expansion of the proximal tubules was 
decreased as compared with that revealed in Group II  
(Fig. 5A). For the glomeruli, 6 h‑HT significantly attenuated 
glomerular injury as compared with that revealed in Group II 
(Fig. 5A and B).

MDA level. As revealed in Fig.  4A, the level of MDA in 
the renal cortex was significantly increased at one day 
following CA in Group II compared with Group I. However, 
in Group III, the level of MDA was significantly decreased 
following 4 h‑ and 6 h‑HT. It was also decreased in the 2 h‑HT, 
but there was no statistically significant difference compared 
with Group II.

Figure 3. Cumulative survival rate using Kaplan‑Meier analysis in Groups I, II and III by time point after ROSC. Group III had different survival rates from 
those revealed in Group II (log‑rank test, P<0.05). ROSC, return of spontaneous circulation; HT, hypothermia treatment.

Figure 4. MDA, serum BUN and creatinine levels of the renal cortex tissue. (A) MDA levels. The levels were significantly increased in Group II 1 day following 
cardiac arrest; however, the levels in Group III were significantly decreased following 4 h‑ and 6 h‑HT when compared with Group II. Serum (B) BUN and 
(C) creatinine levels. The levels were significantly increased in Group II; however, the levels in Group III were decreased following 6 h‑HT when compared 
with Group II. *P<0.05 vs. Group I; #P<0.05 vs. Group II. MDA, malondialdehyde; HT, hypothermia treatment; BUN, blood urea nitrogen.
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Findings of antioxidant enzyme immunoreactivities. In 
Group I, normal SOD‑1, SOD‑2, GPX and CAT immunore‑
activities were evaluated, revealing that they were principally 
located in the tubules (Fig. 6A). In Group II, SOD‑1, SOD‑2, 
GPX and CAT immunoreactivities were significantly reduced 
at one day following ROSC as compared with those revealed 
in Group I (Fig. 6A and B).

In Group III, SOD‑1, SOD‑2, GPX and CAT immunoreac‑
tivities following 2 h‑HT were not significantly different from 
those observed in Group II (Fig. 6A and B). In the case of 
4 h‑HT, the four immunoreactivities were significantly higher 
than those revealed in Group II (Fig. 6A and B), demonstrating 
that, in particular, GPX immunoreactivity was significantly 
higher compared with the other immunoreactivities. In the 
case of 6 h‑HT, all immunoreactivities were higher than those 
identified in the rats which received 4 h‑HT, revealing that the 
ROD of each SOD‑1, SOD‑2, GPX and CAT immunoreactivity 
was 78.4, 67.4, 86.5 and 79.5%, respectively, as compared with 
Group I (Fig. 6A and B).

Discussion

In animal studies, the heart and brain are the most affected 
organs following ischemia/reperfusion (I/R) injury after 
CA  (39,40). Nevertheless, certain studies have reported 
that acute kidney injury has an impact on neurological 

recovery (41,42). Therefore, it is important to investigate acute 
kidney injury following CA and CPR. In the present study, 
adult male SD rats were used for asphyxial CA by injecting 
vecuronium bromide. CA was confirmed 3‑4 min following 
induction of asphyxia and CPR was performed 5 min after 
CA. MAP, ECG and SpO2 were altered as expected during CA 
and following ROSC. In our present study, the survival rate in 
Group III was 42.9% one day following ROSC in rats exposed 
to 2 h‑HT, 57.1% in rats treated with 4 h‑HT, and 71.4% in rats 
subjected to 6 h‑HT. Che et al (26) reported that the survival 
rate was 40% two days following ROSC in a rat model of 
asphyxial CA. In addition, Wang et al (43) reported that in rats, 
the combination of hypothermia and levosimendan (a calcium 
sensitizer and potassium‑channel opener) following ROSC 
significantly increased survival. Based on these findings, HT 
in rats with CA may increase the survival rate a few days 
following ROSC. However, in humans, HT after CA hardly 
increased the survival rate following ROSC (44).

Renal dysfunction was reported in 12‑28% of patients with 
CA following successful resuscitation (13). In addition, acute 
kidney injury developed in 43% of patients resuscitated after 
CA, and more than 75% of these episodes occurred within three 
days following CA (45). In animal models, acute kidney injury 
induced by I/R (i.e., ROSC following CA) was significantly 
attenuated by HT (43,46,47). For example, Tissier et al (47) 
reported significant attenuation of kidney lesions by HT in 

Figure 5. Histology of renal tissues in each group. (A) Histopathological findings of the kidneys of Groups I, II and III with 2 h‑, 4 h‑ and 6 h‑HT following 
CA. CA‑induced renal injury was attenuated in Group III with 6 h‑HT. Original magnification, x400. Scale bar, 50 µm. (B) Histograms of tubular injury score 
and glomerular lesion score. The scores in Group III with 6 h‑HT were significantly decreased when compared with Group II. *P<0.05 vs. Group I; #P<0.05 
vs. Group II. HT, hypothermia treatment; CA, cardiac arrest; H&E, hematoxylin and eosin; PAS, periodic acid‑Schiff.
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a rabbit model of CA, based on histopathology and electron 
microscopy, compared with the control group. In our present 
study, the histopathological glomerular and tubular lesion 
scores of kidneys in Group II  were apparently enhanced 
one day following ROSC. In this group, serum BUN and 
creatinine levels were significantly increased following ROSC 
when compared with the sham group (Group I). These results 
were similar to those of previous studies involving canine, 
rabbit and piglet CA models  (47‑49). Thus, kidney injury 
was severely increased in the early phase following CA in 
experimental animals. In our present study, renal glomerular 
and tubular lesions and histopathological scores in Group III 
were significantly reduced following 4 h‑ and 6 h‑HT one day 
following ROSC compared with Group II. Ribeiro et al (46) 
and Souza et al (50) reported that HT was effective in animal 
models of renal I/R injury. Islam et al (23) and Jawad et al (22) 
determined that HT reduced the severity of renal injury and 
increased the survival rate in an asphyxial CA model. The 
findings suggested that HT has a significant renal‑protective 
effect, which was associated with an increased survival rate.

Endogenous antioxidant enzymes mainly include SODs, 
CAT and GPX. These enzymes provide a first line of defense 

against O2
•‑ and OH•. SOD‑1 and SOD‑2 provide a defense 

against oxidative stress by catalyzing the dismutation of O2
•‑ 

into O2 and H2O2 (51). Oxidative stress is a crucial factor in 
organ injury and hemodynamic dysfunction during PCAS and 
the generation of ROS during I/R injury. The activity of anti‑
oxidant enzymes is altered by I/R injury following CA (21). 
Our study revealed that SOD‑1, SOD‑2, GPX and CAT levels 
were decreased following ROSC in Group II compared with 
Group I. The levels of these antioxidant enzymes are reduced 
following I/R, which causes cell damage and death due to the 
consumption of endogenous antioxidants as a result of ROS 
release (52).

Xia et al (53) reported increased antioxidant activity in 
kidney tissues of mice exposed to HT in renal I/R injury. 
Hackenhaar et al (21) observed a significant increase in the 
activity of SOD‑1, SOD‑2, GPX and CAT after 6, 12, 36 and 
72‑h HT in humans following ROSC. In previous studies 
using a rat model of asphyxial CA, Islam et al (23) reported 
that HT following CA reduced oxidative stress in the kidney 
and Jawad et al (22) reported that HT following CA protected 
the kidney against injury induced by CA, demonstrating that 
Nrf2/HO‑1 was increased in the kidney. In our present study, 

Figure 6. Immunohistochemistry analysis of antioxidant enzyme expression in renal cortex tissue. (A) Immunoreactivities of antioxidant enzymes (SOD‑1, 
SOD‑2, GPX and CAT) in the kidneys of Groups I, II and III were altered. All immunoreactivities in Group III with 6 h‑HT were markedly increased when 
compared with Group II. Original magnification, x400. Scale bar, 50 µm. (B) ROD of SOD‑1, SOD‑2, GPX and CAT immunoreactivities. The ROD in 
Group III with 6 h‑HT was significantly increased when compared with Group II. *P<0.05 vs. Group I; #P<0.05 vs. Group II. SOD, superoxide dismutase; GPX, 
glutathione peroxidase; CAT, catalase; ROD, relative optical density; HT, hypothermia treatment.
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the immunoreactivities of SOD‑1, SOD‑2, GPX and CAT 
were significantly increased following 4 h‑HT and 6 h‑HT 
in Group III when compared with Group II, suggesting that 
HT activated antioxidant enzymes and reduced the oxidative 
stress.

Based on the survival, histopathology, biochemical 
and immunohistochemical results of this study, it was 
determined that renal dysfunction is common and associ‑
ated with mortality in the early stages of PCAS following 
ROSC, in our rat model of asphyxial CA. However, 4 h‑ or 
6 h‑HT following ROSC significantly reduced renal injury, 
suggesting that HT induces activation of antioxidant 
enzymes, such as SOD‑1, SOD‑2, GPX and CAT, resulting 
in reduced oxidative stress in the kidneys. As a result, it was 
hypothesized that HT reduces renal injury by an antioxidant 
mechanism and increases the early survival rate. However, 
western blot analysis is required to elucidate the mechanism 
of renal injury and HT in CA following ROSC. This is a 
potential limitation of the present study and underscores the 
need for further studies.
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