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Contribution of the Vertebral Posterior Elements in Anterior–Posterior
DXA Spine Scans in Young Subjects

David C. Lee,1,2,3 Patricia P. Campbell,2 Vicente Gilsanz,1,2 and Tishya A. L. Wren1,2,3

ABSTRACT: Because DXA is a projection technique, anterior–posterior (AP) measurements of the spine
include the posterior elements and the vertebral body. This may be a disadvantage because the posterior
elements likely contribute little to vertebral fracture resistance. This study used QCT to quantify the impact
of the posterior elements in DXA AP spine measures. We examined 574 subjects (294 females and 280
males), age 6–25 yr, with DXA and QCT. QCT measures were calculated for the cancellous bone region and
for the vertebral body including and excluding the posterior elements. DXA data were analyzed for the entire
L3 vertebra and for a 10-mm slice corresponding to the QCT scan region. BMC and BMD were determined
and compared using Pearson’s correlation. The posterior elements accounted for 51.4 ± 4.2% of the total
BMC, with a significant difference between males (49.9 ± 4.0%) and females (52.8 ± 3.9%, p < 0.001). This
percentage increased with age in younger subjects of both sexes (p < 0.001) but was relatively consistent after
age 17 for males and 16 for females (p > 0.10). DXA areal BMD and QCT volumetric BMD correlated
strongly for the whole vertebra including the posterior elements (R = 0.83), with BMC measures showing a
stronger relationship (R = 0.93). Relationships were weaker when excluding the posterior elements. We
conclude that DXA BMC provides a measure of bone that is most consistent with QCT and that the
contribution of the posterior elements is consistent in young subjects after sexual maturity.
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INTRODUCTION

DXA IS THE MOST commonly used method of assessing
BMD in a clinical setting. Advantages of DXA in-

clude its low radiation, low cost, fast scan time, and preci-
sion.(1) However, because DXA is a projection technique,
its accuracy is limited by the inability to quantify bone
volume,(2) by inhomogeneity of the extraosseous tissues,
and by inclusion of the cortical-rich, non–weight-bearing
vertebral posterior elements in anterior–posterior (AP)
spine scans.(3,4) These factors may be especially confound-
ing in studies of growing children(5,6) and those undergoing
dynamic changes in bone size and morphology.(7,8)

In DXA, X-rays pass through the body, and a cumulative
attenuation is measured. Therefore, in the DXA bone re-
gion, the measured attenuation represents a combination
of all soft tissue and bone in the path of the beams. The
attenuation values are used to generate a 2D projection
image and to calculate areal BMD (aBMD, g/cm2). Com-
mercial DXA scanners also report the projected bone area
and BMC (g).

QCT is an established and accurate alternative densi-
tometry method. In contrast to DXA’s projection technique,
QCT data are reconstructed as 3D voxels represented by a

linear attenuation coefficient, which can be converted into
volumetric density. Furthermore, QCT images can be
separated into different types of tissue, such as lean and
adipose, as well as cortical and cancellous bone. Volu-
metric BMD (vBMD, mg/cm3) and BMC are convention-
ally measured in a cancellous region or the isolated verte-
bral body, because these are assumed to be the regions
most strongly related to compressive fractures.

DXA bone measures are only moderately correlated
with bone measures from QCT.(9,10) As a result, it is not
uncommon for a subject to have conflicting bone measures
or Z-scores from DXA and QCT.(9) Some disagreement
between DXA and QCT outcomes might be expected be-
cause AP DXA measures include the posterior elements,
whereas QCT measures generally exclude the posterior
elements. Other differences in technique and the regions
measured may also affect the accuracy and comparison of
DXA and QCT vertebral measures, such as the assumption
of a homogeneous extraosseous soft tissue region(11–13) in
DXA measures and variations in marrow fat composi-
tion(14–16) in both measures.

The effect of the vertebral posterior elements, as well as
aortic calcifications, can be eliminated using lateral DXA
scans. However, this method is less commonly used be-
cause lateral projections of the spine may include the ribs,
particularly in the upper vertebrae (T1–L2). In addition,
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lateral scans are still subject to DXA’s other shortcomings,
including traversing a larger amount of soft tissue in the
medial–lateral direction. It is not clear whether the ability
to avoid the posterior elements outweighs these limita-
tions; studies comparing the efficacy of lateral and AP
DXA have reported conflicting conclusions.(17–23) Cur-
rently, lateral DXA scans are used for monitoring patients
with vertebral deformities(24) and detecting abdominal
aortic calcifications(25) but not for clinical measurements of
BMD.

The goal of this study is to use QCT to quantify the
impact of the posterior elements in DXA AP spine scans.
The amount of bone in the vertebra with and without the
posterior elements will be evaluated with QCT, and the
effects of different analysis regions will be assessed. We
hypothesize that there will be good agreement between
QCT and DXA bone measures when the modalities mea-
sure the same bone region (including the posterior ele-
ments) and that greater disparities will arise when typical
QCT measures that exclude the posterior elements are
considered.

MATERIALS AND METHODS

Clinical study

DXA and QCT scans of the lumbar vertebrae were
performed in 574 subjects (294 females and 280 males), age
6–25 yr (mean, 15.5 ± 3.6 yr). All subjects were healthy, and
prospective participants were excluded if they had any re-
cent history of serious disorders or were taking medications
that could affect bone, muscle, or growth. The Institutional
Review Board for clinical investigations at Childrens Hos-
pital Los Angeles approved the protocols for this study,
and written informed consent was obtained from all par-
ents and/or participants (for minors, parents provided
consent and participants provided assent). The quantitative
CT protocol was designed to keep radiation exposure to a
level roughly equivalent to the exposure during a round-

trip airplane flight across North America,(26,27) making its
use in healthy subjects possible.

For each subject, the DXA and QCT scans were done on
the same day by a single radiology technologist. A DXA
AP scan was performed on a Hologic Delphi W DXA
scanner (Bedford, MA, USA) using the Fast Scan protocol
(Fig. 1, right), and a transverse 10-mm cross-section
through the midsection of L3 was obtained with QCT using
a General Electric LightSpeed QC/i scanner (Waukesha,
WI, USA) (Fig. 1, left). The specific techniques used have
been described previously.(28,29)

DXA analysis

The whole lumbar spine was scanned using four verte-
bral subregions (L1–L4). Two regions of interest (ROI)
were defined for L3 using the Hologic QDR Software
v11.2. The width of both ROIs was set at the default width
of 116 lines (or 105 mm). The first ROI included the entire
L3 vertebra. The second ROI adjusted the L3 subregion
height to 10 mm centered about the midsection of the
vertebra, which corresponds to the QCT slice (Fig. 1).
Positioning of the ROIs was performed manually by the
same technologist for all subjects. The Hologic software
calculates aBMD, BMC, and projected area for each ROI
(entire L3 and QCT region) according to standard DXA
calculations.

QCT analysis

QCT data from L3 were analyzed using custom soft-
ware developed in MATLAB 2006b (Mathworks, Natick,
MA, USA). An algorithm was designed to automatically
extract the vertebral shape and to separate the vertebral
body from the posterior elements. Reported measures
include vBMD and BMC of the cancellous bone region,
the vertebral body excluding the posterior elements,
and the vertebral body including the posterior elements
(Fig. 2).

The vertebra is first identified by thresholding the image
using the peak bone signal. Because there is high contrast

FIG. 1. Sample images from
the same subject with QCT
(left) and DXA (right). The
QCT scan location and thick-
ness (10 mm) is shown in a
shaded region on the L3 DXA
scan.

POSTERIOR ELEMENTS CONTRIBUTION IN DXA SPINE SCANS 1399



between bone and the surrounding soft tissue, contours of
the vertebra are easily extracted by edge detection. Efforts
were taken to extract only the regions included in the DXA
bone area, avoiding lateral aspects of the transverse pro-
cesses. Thus, DXA’s bone region was defined within two
anterior–posterior lines through the lateral edges of the
vertebral body, which are found by extending a tangent
from the anterior edge of the vertebral foramen to the lat-
eral edges of the vertebra. The same tangent line through
the foramen serves to separate the vertebral body from the
posterior elements, which include the spinous process, su-
perior/inferior articular processes, and pedicels (Fig. 2).

The cross-sectional area (CSA) of each ROI was calcu-
lated by taking the integral of the region’s contour. vBMD
was determined by averaging the Hounsfield Units (HUs)
contained in the CSA and converting HUs to hydroxyap-
atite equivalent density using a mineral phantom simulta-
neously imaged with the subject. BMC was derived by
multiplying vBMD by the product of CSA and slice
thickness (10 mm). The contribution of the posterior ele-
ments to bone mass was calculated by dividing the poste-
rior element BMC by the total BMC (vertebral body plus
posterior elements).

Statistical analysis

Statistical analysis was performed using MATLAB
2006b (Mathworks). Pearson correlation coefficients were
calculated to determine the relationship between the DXA
and QCT measures, including both BMD and BMC, and

between posterior element contribution and age. For the
latter analysis, separate analyses were performed for ma-
ture and immature age groups. Because Tanner stage was
not recorded for all subjects, subjects were assumed to be
sexually mature at age 16 for females and age 17 for males.
The Student’s t-test was used to compare the posterior el-
ement contribution between females and males.

RESULTS

The posterior elements accounted for 51.4 ± 4.2%
(range, 38.8–65.0%) of the total bone content in the DXA
scan region. There was a significant difference between
males and females (males: 49.9 ± 4.0%, females: 52.8 ±
3.9%; p < 0.001). Additionally, the proportion of total
BMC from the posterior elements increased with age for
both younger males and females (p < 0.001) but did not
change after age 17 in males and age 16 in females (p > 0.1;
Fig. 3).

Conventional measures of DXA aBMD (entire L3) and
QCT vBMD (cancellous region) correlated only moder-
ately (R = 0.66; Fig. 4; Table 1). This trend was the same in
both males (R = 0.65) and females (R = 0.67). The corre-
lation improved for QCT vBMD of the vertebral body,
which includes the vertebral body’s cortical shell (R =
0.77). The correlation improved further (R = 0.83) for QCT
vBMD of the entire vertebra (including the posterior ele-
ments but not the transverse processes). Similar results
were observed when the DXA scan region was adjusted to

FIG. 2. Regions of interest
for the CT images. Left to
right: cancellous bone region;
isolated vertebral body; verte-
bral body including the poste-
rior elements.

FIG. 3. Posterior element contribution as a function of age.
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FIG. 4. Comparisons of DXA
and QCT measures.

TABLE 1. Correlations Between DXA/QCT BMD (Underlined) and BMC (Italicized)

Pearson’s R
correlation

DXA QCT

Total L3 10 mm Cancellous Vertebral body Total vertebra

Total (n = 574) DXA Total L3 0.94 0.79 0.87 0.93

10 mm 0.92 0.80 0.87 0.93

QCT Cancellous 0.66 0.68 0.94 0.86

Vertebral body 0.77 0.78 0.96 0.95

Total vertebra 0.83 0.84 0.82 0.91

Males (n = 280) DXA Total L3 0.93 0.81 0.89 0.94

10 mm 0.92 0.84 0.89 0.93

QCT Cancellous 0.65 0.71 0.94 0.89

Vertebral body 0.74 0.79 0.96 0.95

Total vertebra 0.80 0.86 0.86 0.93

Females (n = 294) DXA Total L3 0.95 0.77 0.87 0.93

10 mm 0.93 0.80 0.89 0.93

QCT Cancellous 0.67 0.66 0.91 0.83

Vertebral body 0.79 0.78 0.95 0.94

Total vertebra 0.85 0.85 0.79 0.90
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match the 10-mm QCT scan region, with comparable or
slightly higher correlation coefficients.

Higher correlation coefficients, but similar patterns, were
observed when comparing BMC between DXA and QCT
(Fig. 4). The correlation progressively increased as QCT
measures moved from the cancellous region (R = 0.79) to
the vertebral body (R = 0.87) to the entire vertebra (R =
0.93; Table 1). Correlations also increased or did not change
significantly when the 10-mm DXA region was used.

DISCUSSION

We found that the posterior elements contributed ap-

proximately one half of the total bone content in the ver-

tebra. Others have found similar results in vitro using ash

weight analysis.(30) Nottestad et al.(30) found that approxi-

mately one half of the mineral of L3 is in the vertebral body

(43% for females and 51% for males) and that of the bone

within the L3 vertebral body, trabecular bone accounts for

less than one half (39% for females, 27% for males). The

results in this report corroborate those previous studies in

adult cadavers and extend their conclusions to children.

Although females had a slightly higher proportion of bone

mass in the posterior elements than males, the variability of

the posterior element contribution was small in both sexes

(SD ; 4%). In addition, the influence of the posterior el-

ements stabilizes after puberty (Fig. 3). Therefore, adjust-

ments to remove or avoid the posterior elements, such as

with lateral DXA, may not be necessary for DXA bone

measures in young, healthy subjects after puberty.
In contrast, caution should be exercised when inter-

preting DXA aBMD values in growing children because

growth of the vertebrae is disproportional. Before age 16

for males and age 17 for females, the proportion of bone

mass in the posterior elements seems to increase with age.

This may contribute to increasing DXA aBMD values even

though cancellous density in the vertebral body remains

relatively constant in prepubertal children.(29)

Our results comparing DXA and QCT are consistent

with other studies that found a moderate correlation be-

tween DXA aBMD and QCT vBMD.(9,10) Previous reports

comparing DXA and QCT have acknowledged mis-

matched bone regions and other sources of error(9,10,28,31)

as contributors to discrepancies between DXA and QCT

measures but have not focused on the impact of the pos-

terior elements in DXA measures. We found that much of

the discrepancy between the two modalities is caused by

the exclusion of the posterior elements in QCT analyses of

the vertebra. When the posterior elements were included,

we observed a stronger relationship between DXA and

QCT measurements (vertebral body only: R = 0.77; ver-

tebral body with posterior elements: R = 0.83).
Agreement between DXA and QCT bone measures was

further improved by using the same unit of measure. Lack

of the dimension along the path of the beam in DXA scans

can cause size bias, an effect that reports different areal

densities in bones of different sizes despite having the same

volumetric density.(32) This error can be prominent in gen-

der studies, because males tend to have larger vertebrae

than females,(33,34) and in pediatric studies, because bone
grows nonuniformly. Whereas it is possible to convert areal
density to volumetric density through geometric or an-
thropometric scaling,(32) this may also introduce another
source of error, particularly in children, whose bones grow
disproportionately.

Instead, we converted both DXA aBMD and QCT
vBMD to the same quantity, BMC (g), eliminating the
confounding effect of comparing areal density with volu-
metric density and allowing for a clear understanding of the
impact of the posterior elements. The correlation between
DXA BMC and QCT BMC increased when the posterior
elements were included (R = 0.87 to R = 0.93). This affirms
the analysis based on density, which also showed a large
increase in correlation with the inclusion of the posterior
elements. The higher correlation between DXA and QCT
using BMC corroborates other studies(10,35) that have
suggested DXA BMC as a more reliable measure than
DXA aBMD. We agree that BMC normalized for stature
or body mass may be more informative than aBMD in
evaluating skeletal status. Whole body BMC may also
prove useful because it measures a much larger region.
Ultimately, a comparison of bone measures in a prospec-
tive study of fracture risk is needed to identify the most
clinically useful measures.

A limitation of this study is that the QCT measurement
covered only a 10-mm section through the middle of L3.
The vertebral posterior elements are highly irregular
structures, and the morphology may be different in other
vertebrae.(36) The impact of the posterior elements ob-
served in the 10-mm midsection of L3 studied may not
apply to the ends of L3 or to other posterior elements along
the spine. Whereas it is possible to evaluate entire verte-
brae with multislice QCT scans, the additional radiation
exposure is not recommended.

In summary, the contribution of the posterior elements
increases with age through the end of puberty but is rela-
tively consistent in older adolescents and young adults.
Therefore, the posterior elements have a negligible effect
on DXA measures in these older subjects, but further study
is needed to show the extent of their contribution in
growing populations. Adding the vertebral posterior ele-
ments to QCT measures of the vertebral body resulted in a
stronger relationship with DXA measures, especially for
BMC. This supports DXA as a good measure of total bone
in older adolescents and young adults.
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