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Abstract

In a recent positron emission tomography (PET) study, we demonstrated the ability to measure amphetamine-
induced dopamine (DA) release in the human cortex with the relatively high affinity dopamine D2/3 radioligand
[11C]FLB 457. Herein we report on reproducibility and reliability of [11C]FLB 457 binding potential relative to non-
displaceable uptake (BPND) following an acute amphetamine challenge. Ten healthy human subjects were studied
twice with [11C]FLB 457 following an acute amphetamine (oral, 0.5 mg kg-1 dose) challenge on two-separate days
approximately one week apart. D2/3 receptor binding parameters were estimated using a two-tissue compartment
kinetic analysis in the cortical regions of interest and cerebellum (reference region). The test-retest variability and
intraclass correlation coefficient were assessed for distribution volume (VT), binding potential relative to plasma
concentration (BPP), and BPND of [11C]FLB 457. The test-retest variability of [11C]FLB 457 VT, BPP and BPND were ≤
17%, 22% and 11% respectively. These results, which are consistent with the published test-retest variability for this
ligand measured under baseline conditions demonstrate that the post-amphetamine [11C]FLB 457 BPND is
reproducible. These data further support the use [11C]FLB 457 and amphetamine to characterize cortical dopamine
transmission in neuropsychiatric disorders.
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Introduction

The competition between dopamine (DA) and D2/3 radiotracer
binding (such as [11C]raclopride and [123I]IBZM) following an
amphetamine challenge is a noninvasive measure of the
change in extracellular DA induced by the challenge [1-7] and
is thought to provide information as to the status of DA
transmission in the brain. Previous investigations have used
this technique to report abnormal DA release in the striatum in
patients with schizophrenia [4,8], alcoholism [9] and drug
abuse [10-12]. A limitation of these previous studies is that the
relatively low binding potential for [11C]raclopride and [123I]IBZM
in the extrastriatal regions precluded the investigation of DA in
the cortical regions that have been implicated in these
disorders. Thus, it is of interest to develop an imaging
paradigm to measure cortical DA in schizophrenia and
addiction. In a recent PET study, we demonstrated the ability to
detect amphetamine-induced DA release in the human cortex
with the dopamine D2/3 radioligand [11C]FLB 457 [13]. The
results of this study, which showed a significant reduction in the
in vivo binding of [11C]FLB 457 following oral amphetamine (0.5

mg kg-1) led to further characterization of this imaging paradigm
as a tool to measure cortical DA release. In a series of
validation studies following this report we have shown: good
reproducibility for [11C]FLB 457 BPND under baseline conditions
[14]; no carryover mass induced decrease in BPND [14]; a
relatively small fraction of D2/3 receptor specific binding for
[11C]FLB 457 in the cerebellar reference region [15]; and a
linear relationship between the amphetamine-induced
decrease in [11C]FLB 457 BPND and increase in extracellular DA
using combined PET and microdialysis [16]. In addition, we
have replicated our initial report of amphetamine-induced
displacement of [11C]FLB 457 BPND in an independent cohort of
subjects [17]. In a previous study, we demonstrated that the
test-retest variability for [11C]FLB 457 BPND measured under
control conditions (i.e., at baseline) is an acceptable ≤ 15% in
the cortical regions of interest -- a result which is also
consistent with other published [11C]FLB 457 reproducibility
studies [14,18,19]. Here, we were interested in evaluating the
test-retest variability of the post-amphetamine [11C]FLB 457
BPND to ensure that it is reproducible. To evaluate this issue we
conducted test and retest amphetamine studies to measure the
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reproducibility of the post-amphetamine VT (regional distribution
volume), BPP and BPND in ten healthy human subjects.

Materials and Methods

Ethics statement
The Institutional Review Board and Radioactive Drug

Research Committee of the University of Pittsburgh approved
the study. All subjects provided written informed consent.

Study design
A total of 20 PET scans were acquired for this study in ten

healthy control (4 females/6 males; 2 Asian/8 Caucasian; age
23 ± 4, weight 70 ± 12 kg) subjects. Each subject was scanned
with [11C]FLB 457 following amphetamine (oral, 0.5 mg kg-1) in
a test and retest condition separated by one week.

PET Protocol
Radiolabeling of [11C]FLB 457 was performed as outlined in

previously published procedures [20]. Imaging experiments
with amphetamine were conducted on the Siemens ECAT
EXACT HR+ scanner consistent with previously described
image acquisition protocols [13]. [11C]FLB 457 was
administered as a bolus intravenous injection three-hours
following the administration of 0.5 mg kg-1 of d-amphetamine
(Dexedrine, oral formulation) and emission data were collected
for 90 minutes. An oral amphetamine dose of 0.5 mg kg-1 is
consistent with what has been used in previous PET
investigations to measured dopamine release in the striatal and
extra striatal regions [21-25]. Previous microdialysis studies in
primates have shown that 0.5 mg kg-1 of amphetamine
increases extracellular dopamine concentrations by 1320 ±
432% [16].

Table 1. Reproducibility of [11C]FLB 457 and amphetamine
in plasma.

Parameter Mean BSSD
BSSD
CV WSSD

WSSD
CV VAR + SD ICC

[11C]FLB 457 fp (%) 0.38 0.05 0.14 0.06 0.15
23.0% ±
18.6%

-0.05

[11C]FLB 457
Clearance (L/h)

69.72 14.33 0.21 8.85 0.13
23.7% ±
15.3%

0.45

Amphetamine level
0 min (ng/mL)

87.34 11.83 0.14 4.11 0.05
8.1% ±
7.2%

0.78

Amphetamine level
45 min (ng/mL)

76.60 11.22 0.15 3.45 0.05
7.1% ±
6.6%

0.83

Amphetamine level
90 min (ng/mL)

73.82 11.08 0.15 4.16 0.06
9.8% ±
8.8%

0.75

Values are the mean of 10 subjects with each value measured twice. BSSD CV =
between subject standard deviation coefficient of variation, WSSD CV = within
subject standard deviation coefficient of variation, VAR = test/retest variability, ICC
= intraclass correlation coefficient.
doi: 10.1371/journal.pone.0076905.t001

Following radiotracer injection, arterial samples were
collected manually approximately every 6 seconds for the first
2 minutes and thereafter at longer intervals. A total of 35
samples were obtained per scan. Following centrifugation,
plasma was collected in 200 µL aliquots and activities were
counted in a gamma well counter. To determine the plasma
activity representing unmetabolized [11C]FLB 457 parent
compound, six samples (collected at 4, 10, 20, 40, 60 and 80
min) were further processed using high-performance liquid
chromatography methods [26] and fitted using a Hill model
[27,28]. The input function was then calculated as the product
of total counts and interpolated parent fraction at each time
point. The measured input function values were fitted to a sum
of three exponentials from the time of peak plasma activity and
the fitted values were used as the input to the kinetic analysis.
The clearance of the parent compound (CL, L/h) was calculated
as the ratio of the injected dose to the area under the curve of
the input function [29]. In addition, measurement of plasma free
fraction (fP) for [11C]FLB 457 was performed [30]. Amphetamine
plasma levels were measured in three arterial samples
obtained at time 0 min, 45 min and 90 relative to the PET scan
as previously described [31]. These data ensured that
differences in plasma amphetamine concentration did not bias
the test and retest comparison.

Table 2. Reproducibility of post-amphetamine [11C]FLB 457
total distribution volume (VT, mL cm-3).

Region Mean BSSD
BSSD
CV WSSD

WSSD
CV VAR + SD ICC

Cerebellum 3.90 0.51 0.13 0.37 0.09
14.7% ±
11.1%

0.32

Medial Temporal
Lobe

8.45 1.55 0.18 0.79 0.09
14.9% ±
11.1%

0.59

Anterior
Cingulate Cortex

6.97 1.15 0.16 0.68 0.10
14.7% ±
13.0%

0.48

Dorsolateral
prefrontal Cortex

5.96 1.32 0.22 0.54 0.09
14.4% ±
10.7%

0.72

Orbital Frontal
Cortex

7.09 1.49 0.21 0.72 0.10
16.8% ±
11.7%

0.62

Medial Prefrontal
Cortex

6.36 1.06 0.17 0.54 0.09
13.5% ±
11.1%

0.59

Temporal Cortex 9.64 2.30 0.24 0.90 0.09
14.8% ±
11.3%

0.73

Parietal Cortex 6.13 1.61 0.26 0.54 0.09
14.0% ±
10.8%

0.80

Occipital Cortex 5.81 1.59 0.27 0.53 0.09
14.7% ±
10.7%

0.80

Values are the mean of 10 subjects with each value measured twice. BSSD CV =
between subject standard deviation coefficient of variation, WSSD CV = within
subject standard deviation coefficient of variation, VAR = test/retest variability, ICC
= intraclass correlation coefficient.
doi: 10.1371/journal.pone.0076905.t002

Test-Retest of Post-Amphetamine [11C]FLB 457 BPND
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MRI Protocol
Prior to PET imaging, a magnetization prepared rapid

gradient echo structural MRI scan was obtained using a
Siemens 3 Tesla Trio scanner for determination of regions of
interest. MRI segmentation was performed using the
automated segmentation tool [32] implemented in the FMRIB
Software Library v4.0 [33].

Analysis of PET data
PET data were reconstructed and processed with the image

analysis software MEDx (Sensor Systems, Inc., Sterling,
Virginia) and SPM2 (www.fil.ion.ucl.ac.uk/spm) as described in
[13]. Frame-to-frame motion correction for head movement and
MR-PET image alignment were performed using a mutual
information algorithm implemented in SPM2. Time activity
curves were generated for the eight cortical regions of interest
and cerebellum (reference region) using the criteria and
methods outlined in [13,14]. Sampled cortical regions (n = 8)
included the medial temporal lobe (MTL), anterior cingulate
cortex (ACC), dorsolateral prefrontal cortex (DLPFC), orbital
frontal cortex (OFC, defined using criteria outlined in Lacerda
2003), medial prefrontal cortex (MPFC), temporal cortex (TC),
parietal cortex (PC), and occipital cortex (OC). The three
outcome measures provided are regional tissue distribution
volume (VT, mL cm-3), binding potential relative to plasma
concentration (BPP, mL cm-3) and binding potential relative to
non-displaceable uptake (BPND, unitless) [34]. Derivation of

Table 3. Reproducibility of post-amphetamine [11C]FLB 457
binding potential relative to plasma concentrations (BPP, mL
cm-3).

Region Mean BSSD
BSSD
CV WSSD

WSSD
CV VAR + SD ICC

Medial Temporal
Lobe

4.55 1.20 0.26 0.45 0.10
16.1% ±
11.1%

0.75

Anterior Cingulate
Cortex

3.07 0.74 0.24 0.32 0.11
16.9% ±
14.5%

0.68

Dorsolateral
prefrontal Cortex

2.06 0.91 0.44 0.19 0.09
14.8% ±
9.3%

0.92

Orbital Frontal
Cortex

3.19 1.08 0.34 0.38 0.12
21.7% ±
13.4%

0.78

Medial Prefrontal
Cortex

2.46 0.69 0.28 0.18 0.08
12.4% ±
11.1%

0.87

Temporal Cortex 5.74 1.90 0.33 0.56 0.10
15.3% ±
11.3%

0.84

Parietal Cortex 2.23 1.21 0.54 0.18 0.08
13.9% ±
9.8%

0.96

Occipital Cortex 1.91 1.17 0.61 0.19 0.10
17.2% ±
9.8%

0.95

Values are the mean of 10 subjects with each value measured twice. BSSD CV =
between subject standard deviation coefficient of variation, WSSD CV = within
subject standard deviation coefficient of variation, VAR = test/retest variability, ICC
= intraclass correlation coefficient.
doi: 10.1371/journal.pone.0076905.t003

[11C]FLB 457 VT in the regions of interest and cerebellum
were performed using a two-tissue compartment kinetic
analysis using the arterial input function as described in [13].

Statistical analysis
The reproducibility of the plasma (fp, CL and amphetamine

levels) and brain (VT, BPP and BPND) outcome measures were
evaluated for their variability and reliability.

The test-retest variability (VAR) was calculated as the
absolute value of the difference between the test and retest,
divided by the mean of the test and retest values.

To evaluate the within-subject variability relative to the
between-subject variability, both within-subject standard
deviation (WSSD) and between-subject standard deviation
(BSSD) were calculated and expressed as fraction of mean
value (WS CV and BS CV). The reliability of the measurements
was assessed by the intraclass correlation coefficient (ICC)
calculated as [35]:

BSMSS –WSMSS
BSMSS+ n–1 WSMSS
where BSMSS is the mean sum of square between subjects,

WSMSS is the mean sum of square within subjects and n is the
number of repeated observations (n = 2 in this study). This
statistic estimates the relative contributions of between and
within subject variability and assumes values from -1 (i.e.
BSMSS = 0) to 1 (identity between test and retest, i.e. WSMSS
= 0).

Results

Baseline scan parameters
The mean injected dose for [11C]FLB 457 in the test and

retest conditions were 8.4 ± 0.3 mCi and 7.5 ± 1.4 mCi. The
mean injected specific activity in the test and retest conditions
were 10186 ± 3638 Ci/mmol and 7805 ± 3762 Ci/mmol. The
mean injected mass for [11C]FLB 457 in the test and retest
conditions were 0.3 ± 0.1 µg and 0.4 ± 0.1 µg. There were no
significant differences in injected dose or mass between the
test and the retest conditions (paired t test, p > 0.05).

Plasma analysis
The mean [11C]FLB 457 fp, CL, and amphetamine plasma

levels (measured at 0, 45 and 90 min following the [11C]FLB
457 injection) and their corresponding VAR and ICC are
provided in Table 1.

Brain analysis
The mean VT, BPP, BPND and their corresponding VAR and

ICC for the regions of interest are provided in Tables 2, 3 and
4.

Discussion

The results of this study show that the post-amphetamine
[11C]FLB 457 BPND is reproducible. The test-retest variability of
≤ 15% for [11C]FLB 457 BPND in the cortical regions of interest
measured in the post-amphetamine condition is comparable to

Test-Retest of Post-Amphetamine [11C]FLB 457 BPND
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that reported in the baseline condition in our previous report
[14]. It was necessary to evaluate the test-retest variability for
the post-amphetamine PET measurements because [11C]FLB
457 BPND is lower following amphetamine compared to
baseline [13]. The good reproducibility of [11C]FLB 457 BPND in
the baseline and post-amphetamine conditions suggest that the
relatively low cortical binding potential in itself does not pose a
problem to the use of this tool to measure cortical DA release.
This point is further illustrated in Table 5 which shows an effect
size (d) of 0.5 to 2.2 to measure amphetamine-induced change
(Δ) of [11C]FLB 457 BPND in the cortical regions. These d values
are comparable to that observed with [11C]raclopride to detect
of an effect for amphetamine in the striatal subdivisions (d=0.8
to 1.9, derived as ΔBPND/test-retest variability using data in
[36,37]). This suggests that the [11C]FLB 457 BPND measured
under baseline and post-amphetamine conditions will be
distinguishable.

Table 4. Reproducibility of post-amphetamine [11C]FLB 457
binding potential relative to non specific uptake (BPND,
unitless).

Region Mean BSSD
BSSD
CV WSSD

WSSD
CV VAR + SD ICC

Medial Temporal
Lobe

1.16 0.26 0.22 0.06 0.05 6.8% ± 5.8% 0.91

Anterior Cingulate
Cortex

0.78 0.15 0.19 0.03 0.04 6.9% ± 5.2% 0.91

Dorsolateral
prefrontal Cortex

0.52 0.19 0.37 0.02 0.03 5.4% ± 4.9% 0.98

Orbital Frontal
Cortex

0.81 0.21 0.27 0.05 0.06
11.1% ±
7.9%

0.90

Medial Prefrontal
Cortex

0.63 0.15 0.24 0.02 0.03 4.3% ± 4.3% 0.97

Temporal Cortex 1.45 0.36 0.25 0.05 0.03 3.9% ± 3.9% 0.97

Parietal Cortex 0.55 0.26 0.47 0.01 0.03 4.2% ± 2.8% 0.99

Occipital Cortex 0.47 0.26 0.56 0.02 0.05 6.7% ± 4.9% 0.99

Values are the mean of 10 subjects with each value measured twice. BSSD CV =
between subject standard deviation coefficient of variation, WSSD CV = within
subject standard deviation coefficient of variation, VAR = test/retest variability, ICC
= intraclass correlation coefficient.
doi: 10.1371/journal.pone.0076905.t004

The measured test-retest variability for VT (14-17%) and BPP

(12-22%) was higher than BPND (4-11%) in the post-
amphetamine condition. This is consistent with what has been
reported for [11C]FLB 457 in the baseline condition, and other
DA D2/3 PET radioligands such as [11C]raclopride and [11C]NPA
[38-40]. BPND as opposed to BPP and VT is associated with
lower test-retest variability because it is less vulnerable to the
experimental errors associated with the measurement of the
plasma input function. Therefore, it is the preferred outcome
measure in amphetamine challenge studies that measure a
relatively small decrease in radiotracer binding (~10-15%) [41].
An important assumption in the use of ΔBPND to quantify
dopamine release is that amphetamine does not affect the non-
specific binding in the brain (VND). This assumption is tested in
amphetamine-PET studies by documenting VND in the baseline
and post-amphetamine condition. The use of ΔBPP and ΔVT to
quantify dopamine release is necessary when this assumption
fails because these outcome measures are somewhat less
influenced by amphetamine-induced changes in VND [42]. Thus,
it was necessary to document the test-retest variability for all
outcome measures -- BPND, BPP and VT in the post-
amphetamine condition. These results suggest that the use of
ΔBPP and ΔVT to quantify dopamine release in amphetamine
challenge studies might be limited by its relatively higher test-
retest variability.

Table 5. Effect size to measure amphetamine-induced
displacement of [11C]FLB 457 BPND.

Region Δ BPND (%) BASE T-RT (%)
Post-AMPH T-RT
(%)

Effect
size (d)

Medial Temporal
Lobe

-7 ± 6 11 ± 5 7 ± 6 0.76

Anterior Cingulate
Cortex

-8 ± 8 15 ± 8 7 ± 5 0.68

Dorsolateral
prefrontal Cortex

-13 ± 15 8 ± 6 5 ± 5 1.95

Orbital Frontal
Cortex

-8 ± 15 7 ± 6 11 ± 8 0.87

Medial Prefrontal
Cortex

-11 ± 14 6 ± 4 4 ± 4 2.16

Temporal Cortex -4 ± 9 10 ± 6 4 ± 4 0.53

Parietal Cortex -12 ± 13 8 ± 4 4 ± 3 1.90

Occipital Cortex -5 ± 20 10 ± 4 7 ± 5 0.58

% values shown are mean ± standard deviation (SD); Δ BPND is amphetamine-
induced displacement of [11C]FLB 457 BPND [13,15];
BASE T-RT is test-retest variability [11C]FLB 457 BPND under baseline conditions
[14];
Post-AMPH T-RT is test-retest variability of [11C]FLB 457 BPND under post-
amphetamine conditions (this study, Table 4);
Effect size (d) is computed as mean Δ BP ND/ mean pooled variability; Pooled
variability was calculated as the square root of (BASE T-RT2 + POST-AMPH T-
RT2)/2 to incorporate both the baseline and post-amphetamine test-retest data.
doi: 10.1371/journal.pone.0076905.t005
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In summary, we evaluated the reproducibility of the post-
amphetamine [11C]FLB 457 BPND, and found it to be consistent
with that measured under baseline conditions. The results of
this reproducibility study support the use of [11C]FLB 457 to
measure cortical dopamine release despite its relatively low
binding potential (BPND).
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