

Received 6 March 2017 Accepted 22 March 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; 2-mercaptothiazolate; π - π stacking; hydrogen bonding; nickel(II) complex.

CCDC reference: 1539577

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis(1,10-phenanthroline- $\kappa^2 N, N'$)(1,3-thiazole-2-thiolato- $\kappa^2 S^2, N$)nickel(II) hexafluoridophosphate 1,4-dioxane sesquisolvate

Keisuke Kai, Tomohiko Hamaguchi* and Isao Ando

Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. *Correspondence e-mail: thama@fukuoka-u.ac.jp

The title salt, $[Ni(C_3H_2NS_2)(C_{12}H_8N_2)_2]PF_6\cdot 1.5C_4H_8O_2$, was the unexpected product on making an attempt to prepare an $[Ni(2\text{-mercaptothiazolate})-(1,10\text{-phenanthroline})]^+$ complex by reaction of $[NiCl_2(1,10\text{-phenanthroline})]$ with 2-mercaptothiazolate. In the resulting complex, the 2-mercaptothiazolate anion acts as a chelating ligand, which coordinates to the Ni^{II} ion with the thiazolyl N and thiolate S atoms. In the crystal, $\pi - \pi$ stacking interactions between the coordinating 1,10-phenanthroline molecules of adjacent complexes result in a zigzag chain running parallel to the *c* axis. Weak C-H···X (X = O, F) hydrogen-bonding interactions between the chains and 1,4-dioxane solvent molecules and PF₆⁻ counter-anions lead to the formation of sheets parallel to the *ac* plane.

1. Chemical context

2-Mercaptothiazolate (tzS) has three types of atoms available for coordination, namely the thiazolyl N, the thiazolyl S, and the thiolate S atom. Hence the tzS ligand is able to show different coordination modes. The anionic tzS ligand and its protonated neutral form are generally used as bridging ligands $[\mu_2$ -tzS- $\kappa(N,$ thiolate S)] or as monodentate ligands $[\kappa($ thiolate S)] (Raper *et al.*, 1989, 1990*a*) whereas transition metal complexes with tzS in a bidentate coordination mode are rare (Raper *et al.*, 1989), although a number of transition metal complexes with 2-mercaptobenzothiazolate as a bidentate ligand exist (Raper *et al.*, 1990*b*; Ballester *et al.*, 1994; Khan *et al.*, 2010).

In a project intended to prepare the square-planar $[Ni(tzS)(phen)]^+$ cation involving tzS as a bidentate ligand by reaction of $[NiCl_2(phen)]$ (phen is 1,10-phenanthroline) with 2-mercaptothiazolate, we obtained the unexpected title dioxane solvate compound $[Ni(tzS)(phen)_2](PF_6)\cdot 1.5(1,4\text{-dioxane})$ in which the tzS ligand acts after all as a bidentate ligand.

OPEN 3 ACCESS

Figure 1

The structures of the molecular entities in the title salt, shown with 50% probability displacement ellipsoids. [Symmetry code: (i) 1 - x, -y, 1 - z.]

2. Structural commentary

The title salt consists of a complex cation $[Ni(tzS)(phen)_2]^+$, one PF_6^- counter-anion, and 1.5 1,4-dioxane solvent mol-

research communications

N1-Ni1-S1

2.0780 (15) 2.0890 (15)

2.5871 (5)

67.71 (4)

Table 1Selected geome	tric parameters (Å, °).
Ni1-N1	2.0524 (16)	Ni1-N2
Ni1-N5	2.0668 (15)	Ni1-N3
Ni1-N4	2.0735 (15)	Ni1-S1

80.54 (6)

79.90 (6)

N5-Ni1-N4

N2-Ni1-N3

ecules of crystallization (one located about a centre of inversion), as shown in Fig. 1. The nickel(II) atom exhibits a considerably distorted octahedral N₅S coordination environment, which is constructed from one bidentate tzS and two bidentate phen ligands whereby the tzS ligand chelates to the Ni^{II} atom through the thiazolyl N and thiolate S atoms. Selected bond lengths and angles are gathered in Table 1. These values are very similar to that of related Ni complexes with bidentate 2-mercaptobenzothiazolate ligands (Raper *et al.*, 1990*b*; Ballester *et al.*, 1994; Khan *et al.*, 2010). The narrow bite angle involving the tzS ligand (Table 1) is due to formation of a four-membered chelate ring. The averaged Ni–N(phen) distances and bite angles are 2.08 Å and 80.2°, which are typical values for Ni–phen complexes (Bouzaid *et al.*, 2012).

3. Supramolecular features

In the crystal, $\pi - \pi$ stacking interactions between phen ligands of adjacent [Ni(tzS)(phen)₂]⁺ exist (Fig. 2). The interactions result in zigzag chains parallel to the *c* axis. The distances between the centroids of the rings are 3.8528 (11) for $Cg6\cdots Cg9^{ii}$ and $Cg9\cdots Cg6^{ii}$, and 3.6126 (10) Å for $Cg8\cdots Cg10^{iii}$ and $Cg10\cdots Cg8^{iii}$, respectively [Cg6, Cg9, Cg8, and Cg10 are the centroids of the N3/C14/C10–C13, C7–C10/ C14/C15, N5/C26/C22–C25 and C19–C22/C26/C27 rings, respectively; symmetry codes: (ii) 2 - x, 1 - y, 1 - z; (iii) 2 - x, 1 - y, -z]. Such chains in turn are linked by weak C–H···X

Figure 2

The arrangement of the complex cations in the crystal structure, forming zigzag π - π stacked chains extending parallel to the *c* axis. Green dashed lines represent π - π stacking interactions, red spheres represent centroids of the phenyl/pyridyl rings. *Cg*6, *Cg*9, *Cg*8 and *Cg*10 are the centroids of the N3/C14/C10-13, C7-C10/C14/C15, N5/C26/C22-C25 and C19-C22/C26/C27 rings, respectively. [Symmetry codes: (ii) 2 - x, 1 - y, 1 - z; (iii) 2 - x, 1 - y, -z.]

research communications

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2 U1 01 ⁱ	0.05	2.42	2 220 (2)	160
С2-ні…01	0.95	2.42	5.550 (2)	100
$C3-H2 \cdot \cdot \cdot F6$	0.95	2.47	3.074 (2)	122
$C4-H3\cdots O2$	0.95	2.51	3.226 (2)	132
C5-H4···O1	0.95	2.63	3.269 (2)	125
$C12-H9\cdots F4^{ii}$	0.95	2.63	3.249 (3)	124
$C13-H10\cdots F6^{ii}$	0.95	2.56	3.412 (2)	150
$C24-H17\cdots F1^{iii}$	0.95	2.58	3.386 (3)	143
$C28-H20\cdots F3^{iii}$	0.99	2.50	3.336 (3)	142
$C30-H23\cdots F1^{iv}$	0.99	2.44	3.225 (3)	136

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x + 1, y - 1, z; (iv) x, y - 1, z.

(X = O, F) hydrogen-bonding interactions involving the PF₆⁻ counter-anion and 1,4-dioxane solvent molecules, which results in the formation of a sheet structure parallel to the *ac* plane (Fig. 3, Table 2).

4. Database survey

A search in the Cambridge Structural Database (Groom *et al.*, 2016) reveals four reports of Ni complexes with bidentate 2-mercaptobenzothiazolate ligands. One is a square-planar complex (Banerji *et al.*, 1982), the others being octahedral complexes. Two of them consist of two 2-mercaptobenzo-thiazole ligands and another bidentate ligand (Ballester *et al.*, 1994; Khan *et al.*, 2010) whereas the third is a tris-2-

Table 3 Experimental details	
Chemical formula	$[Ni(C_3H_2NS_2)(C_{12}H_8N_2)_2]PF_6$ -
М	812.42
Crystal system space group	Triclinic $P\overline{1}$
Temperature (K)	110
a h c (Å)	9 1800 (2) 12 1460 (2) 14 9005 (3)
$\alpha \beta \gamma (^{\circ})$	88 490 (2), 89 166 (2), 83 278 (2)
$V(A^3)$	1649 31 (6)
Z	2
Radiation type	Ξ Μο Κα
$\mu (\text{mm}^{-1})$	0.84
Crystal size (mm)	$0.27 \times 0.24 \times 0.16$
Data collection	
Diffractometer	Rigaku Saturn 724+ CCD area- detector diffractometer
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2015)
T_{\min}, T_{\max}	0.942, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	30580, 9593, 8109
R _{int}	0.037
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.728
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.094, 1.02
No. of reflections	9593
No. of parameters	460
H-atom treatment $\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	H-atom parameters constrained 1.07, -0.55

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku , 2001), CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXT2014 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), Mercury (Macrae et al., 2006), Yadokari-XG (Kabuto et al., 2009; Wakita, 2001), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

mercaptobenzothiazolate complex (Raper *et al.*, 1990*b*). In the case of a tzS-Ni complex, one μ_2 -tzS- $\kappa(N$, thiolate *S*)-Ni₂ complex is reported (Raper *et al.*, 1989).

5. Synthesis and crystallization

The title compound was synthesized using [NiCl₂(phen)], prepared by a literature protocol (Yakhvarov *et al.*, 2007). A mixture of 2-mercaptothiazole (8.07 × 10⁻⁴ mol) and one equivalent of Et₃N in methanol (10 ml) was added slowly to a solution of [NiCl₂(phen)] (8.07 × 10⁻⁴ mol) in methanol (20 ml). After stirring overnight, the colour of the solution turned from blue to brown–yellow. 10 equivalents of NH₄PF₆ were added to the solution, resulting in a pale-brown–yellow precipitate. The precipitate was filtered off and dried *in vacuo*. The crude product containing excess NH₄PF₆ was purified by recrystallization using 1,4-dioxane vapor diffusion into an acetonitrile solution of the crude product. The title complex was isolated as brown block-like crystals [yield 365 mg, 40.6% (based on Ni)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions and refined as riding, with phenyl C-H = 0.95 Å and methylene C-H = 0.99 Å, both with $U_{iso}(H) = 1.2U_{eq}(C)$.

References

- Ballester, L., Gutierrez, A., Perpinan, M. F., Rico, T., Gutierrez-Puebla, E. & &Monge, A. (1994). *Polyhedron*, **13**, 2271–2283.
- Banerji, S., Byrne, R. E. & Livingstone, S. E. (1982). *Transition Met. Chem.* 7, 5–10.
- Bouzaid, J., Schultz, M., Lao, Z., Bartley, J., Bostrom, T. & McMurtrie, J. (2012). Cryst. Growth Des. 12, 3906–3916.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.
- Khan, I. U., Şahin, O., Jillani, S. M. S., Sharif, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, m587–m588.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Molecular Structure Corporation & Rigaku (2001). *CrystalClear*. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Raper, E. S., Britton, A. M. & Clegg, W. (1989). *Inorg. Chim. Acta*, **166**, 171–172.
- Raper, E. S., Britton, A. M. & Clegg, W. (1990a). Acta Cryst. C46, 2344–2346.
- Raper, E. S., Britton, A. M. & Clegg, W. (1990b). J. Chem. Soc. Dalton Trans. pp. 3341–3345.
- Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wakita, K. (2001). Yadokari-XG. http://chem.s.kanazawa-u.ac. jp/ coord/index_e. html
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yakhvarov, D. G., Hey-Hawkins, E. M., Kagirov, R. M., Budnikova, Yu. H., Ganushevich, Yu. S. & Sinyashin, O. G. (2007). *Russ. Chem. Bull.* 56, 935–942.

Acta Cryst. (2017). E73, 590-593 [https://doi.org/10.1107/S205698901700456X]

Crystal structure of bis(1,10-phenanthroline- $\kappa^2 N, N'$)(1,3-thiazole-2-thiolato- $\kappa^2 S^2, N$)nickel(II) hexafluoridophosphate 1,4-dioxane sesquisolvate

Keisuke Kai, Tomohiko Hamaguchi and Isao Ando

Computing details

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku , 2001); cell refinement: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); data reduction: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015*b*); molecular graphics: *Mercury* (Macrae *et al.*, 2006) and *Yadokari-XG* (Kabuto *et al.*, 2009; Wakita, 2001); software used to prepare material for publication: *Yadokari-XG* (Kabuto *et al.*, 2009; Wakita, 2001), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)(1,3-thiazole-2-thiolato- $\kappa^2 S^2, N$)nickel(II) hexafluoridophosphate 1,4-dioxane sesquisolvate

0 restraints

Crystal data	
$[Ni(C_3H_2NS_2)(C_{12}H_8N_2)_2]PF_6 \cdot 1.5C_4H_8O_2$	Z = 2
$M_r = 812.42$	F(000) = 832
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.636 {\rm Mg} {\rm m}^{-3}$
a = 9.1800 (2) Å	Mo Ka radiation, $\lambda = 0.71073$ Å
b = 12.1460 (2) Å	Cell parameters from 17089 reflections
c = 14.9005 (3) Å	$\theta = 2.7 - 31.3^{\circ}$
$\alpha = 88.490 \ (2)^{\circ}$	$\mu=0.84~\mathrm{mm^{-1}}$
$\beta = 89.166 \ (2)^{\circ}$	T = 110 K
$\gamma = 83.278 \ (2)^{\circ}$	Block, pale brown
V = 1649.31 (6) Å ³	$0.27 \times 0.24 \times 0.16 \text{ mm}$
Data collection	
Rigaku Saturn 724+ CCD area-detector	9593 independent reflections 8109 reflections with $L > 2\sigma(I)$
() scans	$R_{int} = 0.037$
Absorption correction: multi-scan	$\theta_{\text{max}} = 31.1^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
(CrvsAlis PRO: Rigaku Oxford Diffraction.	$h = -13 \rightarrow 12$
2015)	$k = -17 \rightarrow 17$
$T_{\min} = 0.942, T_{\max} = 1.000$	$l = -21 \rightarrow 21$
30580 measured reflections	
Refinement	
Refinement on F^2	S = 1.02
Least-squares matrix: full	9593 reflections
$R[F^2 > 2\sigma(F^2)] = 0.041$	460 parameters

 $wR(F^2) = 0.094$

Primary atom site location: structure-invariant	H-atom parameters constrained
direct methods	$w = 1/[\sigma^2(F_o^2) + (0.0353P)^2 + 1.5145P]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{max} = 0.001$
Hydrogen site location: inferred from	$\Delta\rho_{max} = 1.07 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.73044 (2)	0.61812 (2)	0.24062 (2)	0.01241 (6)	
S1	0.53398 (5)	0.58427 (4)	0.12496 (3)	0.02027 (10)	
S2	0.27542 (5)	0.74630 (4)	0.20072 (3)	0.02077 (10)	
N1	0.53418 (17)	0.71330 (13)	0.26332 (10)	0.0156 (3)	
N2	0.67416 (17)	0.49693 (12)	0.33146 (10)	0.0149 (3)	
N3	0.83585 (16)	0.66322 (12)	0.35503 (10)	0.0141 (3)	
N4	0.80703 (16)	0.73517 (12)	0.15381 (10)	0.0135 (3)	
N5	0.91276 (17)	0.52383 (12)	0.18870 (10)	0.0145 (3)	
C1	0.4540 (2)	0.68055 (15)	0.19814 (12)	0.0168 (3)	
C2	0.4575 (2)	0.79119 (15)	0.31651 (12)	0.0163 (3)	
H1	0.500491	0.823032	0.365735	0.020*	
C3	0.3158 (2)	0.81894 (16)	0.29321 (13)	0.0200 (4)	
H2	0.248221	0.870981	0.323482	0.024*	
C4	0.5919 (2)	0.41613 (15)	0.31850 (13)	0.0193 (4)	
H3	0.556632	0.407017	0.259865	0.023*	
C5	0.5550 (2)	0.34380 (16)	0.38736 (14)	0.0233 (4)	
H4	0.496199	0.286649	0.375371	0.028*	
C6	0.6045 (2)	0.35620 (16)	0.47238 (14)	0.0235 (4)	
H5	0.579898	0.307848	0.519931	0.028*	
C7	0.6921 (2)	0.44098 (16)	0.48883 (12)	0.0191 (4)	
C8	0.7474 (2)	0.46125 (17)	0.57547 (13)	0.0249 (4)	
H6	0.726221	0.415078	0.625286	0.030*	
C9	0.8292 (2)	0.54520 (18)	0.58738 (13)	0.0254 (4)	
H7	0.864927	0.556815	0.645483	0.030*	
C10	0.8632 (2)	0.61703 (16)	0.51402 (12)	0.0191 (4)	
C11	0.9467 (2)	0.70618 (17)	0.52245 (14)	0.0239 (4)	
H8	0.984806	0.721607	0.579105	0.029*	
C12	0.9726 (2)	0.77056 (16)	0.44835 (14)	0.0222 (4)	
H9	1.029589	0.830557	0.453062	0.027*	
C13	0.9142 (2)	0.74704 (15)	0.36545 (13)	0.0178 (4)	
H10	0.931415	0.792980	0.314734	0.021*	
C14	0.8106 (2)	0.59880 (15)	0.42826 (12)	0.0151 (3)	
C15	0.7239 (2)	0.50946 (15)	0.41569 (12)	0.0156 (3)	

C16	0.7508 (2)	0.83886 (15)	0.13609 (12)	0.0169 (3)
H11	0.667891	0.869149	0.169923	0.020*
C17	0.8085 (2)	0.90583 (15)	0.06957 (13)	0.0194 (4)
H12	0.764610	0.979628	0.058505	0.023*
C18	0.9287 (2)	0.86359 (15)	0.02080 (12)	0.0179 (4)
H13	0.968495	0.907501	-0.024998	0.021*
C19	0.9929 (2)	0.75454 (15)	0.03913 (12)	0.0152 (3)
C20	1.1203 (2)	0.70379 (16)	-0.00691(12)	0.0190 (4)
H14	1.163820	0.744055	-0.053612	0.023*
C21	1.1801 (2)	0.59931 (16)	0.01492(12)	0.0193 (4)
H15	1 266761	0.568516	-0.015128	0.023*
C22	1.1142 (2)	0.53469 (15)	0.08271(12)	0.0161(3)
C23	1 1700(2)	0.42569 (16)	0 10745 (13)	0.0202(4)
H16	1 258641	0.392175	0.081252	0.0202 (1)
C24	1 0956 (2)	0.36811(16)	0 16959 (13)	0.0210(4)
H17	1.131644	0.294102	0.186555	0.025*
C25	0.9656 (2)	0.41942(15)	0 20793 (12)	0.023
H18	0.913046	0.377820	0 249434	0.021*
C26	0.98624 (19)	0.58098(14)	0.12670 (11)	0.021 0.0140(3)
C27	0.92727(19)	0.69317(14)	0.10620 (11)	0.0134(3)
027 P1	-0.06216(5)	1 07671 (4)	0.10020(11) 0.28379(3)	0.0131(3) 0.01764(10)
F1	0.08571(15)	1.13260 (13)	0.20517(10)	0.0407 (4)
F2	-0.07497(16)	1.13266 (13)	0.18336 (8)	0.0367(3)
F3	-0.20929(14)	1.12100(12) 1.02145(11)	0.10330(0) 0.27239(9)	0.0330(3)
F4	-0.04921(18)	1.02175(11) 1.02975(13)	0.27255(9) 0.38455(9)	0.0350(3) 0.0462(4)
F5	-0.15412(16)	1.02975(13) 1.18707(11)	0.30499(0)	0.0402(4) 0.0372(3)
F6	0.02958 (15)	0.96652 (11)	0.24816 (11)	0.0372(3) 0.0407(4)
01	0.46687 (16)	0.11530(11)	0.21010(11) 0.48337(10)	0.0107(1) 0.0246(3)
C28	0.6101 (2)	0.05903 (18)	0.46710 (15)	0.0275(4)
H19	0.684348	0.110335	0.476684	0.033*
H20	0.618213	0.035696	0 403887	0.033*
C29	0.3598(2)	0.032090 0.04078(17)	0.47172(15)	0.025
H21	0.361853	0.017159	0.408583	0.032*
H22	0.260907	0.079038	0.484938	0.032*
02	0.43879 (16)	0.25330(12)	0.19127 (10)	0.032 0.0258(3)
C30	0.4199(2)	0.14818(19)	0.23091(14)	0.0279(5)
H23	0.345190	0.157520	0.279569	0.0279 (3)
H24	0.513406	0.114588	0.257485	0.034*
C31	0.3720 (3)	0.07302(19)	0.16157 (16)	0.0343(5)
H25	0.358712	0.000165	0.189903	0.0313(3)
H26	0.276598	0.105373	0.136657	0.041*
03	0.270338 0.4778(2)	0.103373 0.05827(13)	0.09123(12)	0.041 0.0406 (4)
C32	0.4778(2) 0.5003(3)	0.05027(19) 0.16329(19)	0.05165(12)	0.0400(4)
С <i>32</i> Н27	0.3003 (3)	0.10329 (19)	0.023020	0.0298 (9)
H28	0.577340	0.152711	0.0023020	0.036*
C33	0.577540 0.5455 (2)	0.132711	0.12063 (15)	0.030 0.0275(4)
н29 Н29	0.641530	0.200207	0.125600	0.0273 (4)
H30	0.556615	0.207207	0.140090	0.033
1150	0.550015	0.512711	0.072020	0.035

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Ni1	0.01357 (11)	0.01267 (11)	0.01108 (11)	-0.00176 (8)	-0.00075 (8)	-0.00039 (8)
S 1	0.0239 (2)	0.0193 (2)	0.0174 (2)	-0.00050 (18)	-0.00023 (18)	-0.00451 (17)
S2	0.0155 (2)	0.0246 (2)	0.0219 (2)	-0.00020 (18)	-0.00392 (17)	-0.00288 (18)
N1	0.0160 (7)	0.0166 (7)	0.0140 (7)	-0.0014 (6)	-0.0003 (6)	0.0004 (6)
N2	0.0158 (7)	0.0137 (7)	0.0152 (7)	-0.0014 (6)	0.0007 (6)	-0.0004 (5)
N3	0.0132 (7)	0.0137 (7)	0.0153 (7)	-0.0006(5)	-0.0018 (5)	-0.0015 (5)
N4	0.0142 (7)	0.0141 (7)	0.0124 (7)	-0.0018 (5)	-0.0019 (5)	-0.0006 (5)
N5	0.0165 (7)	0.0136 (7)	0.0133 (7)	-0.0016 (6)	-0.0016 (6)	-0.0008 (5)
C1	0.0178 (9)	0.0165 (8)	0.0159 (8)	-0.0009 (7)	-0.0001 (7)	-0.0001 (7)
C2	0.0208 (9)	0.0152 (8)	0.0134 (8)	-0.0041 (7)	0.0001 (7)	0.0006 (6)
C3	0.0205 (9)	0.0201 (9)	0.0189 (9)	0.0001 (7)	0.0019 (7)	-0.0026 (7)
C4	0.0216 (9)	0.0160 (9)	0.0209 (9)	-0.0044 (7)	-0.0007 (7)	-0.0009(7)
C5	0.0263 (10)	0.0153 (9)	0.0288 (10)	-0.0055 (8)	0.0045 (8)	0.0001 (7)
C6	0.0289 (11)	0.0147 (9)	0.0257 (10)	-0.0004 (8)	0.0080 (8)	0.0060 (7)
C7	0.0217 (9)	0.0177 (9)	0.0163 (8)	0.0039 (7)	0.0030 (7)	0.0028 (7)
C8	0.0312 (11)	0.0260 (10)	0.0155 (9)	0.0032 (8)	0.0018 (8)	0.0054 (7)
C9	0.0310 (11)	0.0309 (11)	0.0126 (8)	0.0042 (9)	-0.0036 (8)	-0.0005 (8)
C10	0.0192 (9)	0.0211 (9)	0.0155 (8)	0.0050 (7)	-0.0034 (7)	-0.0032 (7)
C11	0.0233 (10)	0.0272 (10)	0.0206 (9)	0.0021 (8)	-0.0081 (8)	-0.0086 (8)
C12	0.0196 (9)	0.0196 (9)	0.0278 (10)	-0.0021 (7)	-0.0057 (8)	-0.0074 (8)
C13	0.0174 (9)	0.0151 (8)	0.0209 (9)	-0.0014 (7)	-0.0016 (7)	-0.0021 (7)
C14	0.0158 (8)	0.0149 (8)	0.0136 (8)	0.0032 (6)	-0.0009 (6)	-0.0022 (6)
C15	0.0171 (9)	0.0137 (8)	0.0153 (8)	0.0005 (7)	0.0008 (7)	-0.0003 (6)
C16	0.0172 (9)	0.0146 (8)	0.0184 (8)	0.0005 (7)	-0.0003 (7)	-0.0016 (7)
C17	0.0234 (10)	0.0142 (8)	0.0203 (9)	-0.0009 (7)	-0.0023 (7)	0.0020 (7)
C18	0.0219 (9)	0.0174 (9)	0.0151 (8)	-0.0052 (7)	-0.0009 (7)	0.0022 (7)
C19	0.0161 (8)	0.0177 (8)	0.0125 (8)	-0.0039 (7)	-0.0023 (6)	-0.0008 (6)
C20	0.0180 (9)	0.0244 (9)	0.0152 (8)	-0.0046 (7)	0.0023 (7)	-0.0005 (7)
C21	0.0164 (9)	0.0240 (9)	0.0173 (9)	-0.0013 (7)	0.0023 (7)	-0.0043 (7)
C22	0.0162 (8)	0.0175 (8)	0.0148 (8)	-0.0011 (7)	-0.0020 (7)	-0.0031 (6)
C23	0.0173 (9)	0.0194 (9)	0.0229 (9)	0.0036 (7)	-0.0021 (7)	-0.0061 (7)
C24	0.0235 (10)	0.0151 (8)	0.0233 (9)	0.0030 (7)	-0.0049 (8)	-0.0014 (7)
C25	0.0213 (9)	0.0154 (8)	0.0168 (8)	-0.0019 (7)	-0.0039 (7)	-0.0005 (7)
C26	0.0138 (8)	0.0142 (8)	0.0138 (8)	-0.0005 (6)	-0.0032 (6)	-0.0017 (6)
C27	0.0143 (8)	0.0142 (8)	0.0119 (7)	-0.0019 (6)	-0.0032 (6)	-0.0010 (6)
P1	0.0179 (2)	0.0176 (2)	0.0175 (2)	-0.00266 (18)	-0.00070 (18)	0.00178 (17)
F1	0.0282 (7)	0.0550 (9)	0.0433 (8)	-0.0218 (7)	0.0021 (6)	-0.0075 (7)
F2	0.0479 (9)	0.0412 (8)	0.0197 (6)	-0.0024 (7)	-0.0003 (6)	0.0089 (6)
F3	0.0254 (7)	0.0397 (8)	0.0370 (7)	-0.0140 (6)	0.0059 (5)	-0.0143 (6)
F4	0.0601 (10)	0.0546 (10)	0.0254 (7)	-0.0157 (8)	-0.0099 (7)	0.0166 (7)
F5	0.0406 (8)	0.0258 (7)	0.0450 (8)	-0.0014 (6)	0.0112 (6)	-0.0130 (6)
F6	0.0302 (7)	0.0273 (7)	0.0615 (10)	0.0095 (6)	0.0039 (7)	-0.0039 (7)
O1	0.0298 (8)	0.0153 (7)	0.0285 (8)	-0.0022 (6)	0.0013 (6)	-0.0007 (6)
C28	0.0279 (11)	0.0232 (10)	0.0314 (11)	-0.0048 (8)	0.0076 (9)	0.0008 (8)
C29	0.0253 (11)	0.0221 (10)	0.0325 (11)	-0.0013 (8)	-0.0005 (9)	-0.0006 (8)

02	0.0222 (7)	0.0290 (9)	0.0265 (7)	0.0026(6)	0.0015(6)	0.0042(6)
02	0.0232(7)	0.0280 (8)	0.0265 (7)	-0.0036 (6)	0.0015 (6)	-0.0043 (6)
C30	0.0207 (10)	0.0383 (12)	0.0241 (10)	-0.0018 (9)	-0.0007 (8)	0.0059 (9)
C31	0.0444 (14)	0.0247 (11)	0.0345 (12)	-0.0083 (10)	0.0017 (10)	0.0040 (9)
O3	0.0588 (12)	0.0220 (8)	0.0392 (10)	0.0015 (8)	0.0122 (8)	-0.0051 (7)
C32	0.0342 (12)	0.0316 (12)	0.0231 (10)	-0.0022 (9)	0.0043 (9)	-0.0001 (9)
C33	0.0198 (10)	0.0352 (12)	0.0279 (11)	-0.0059 (9)	0.0011 (8)	0.0020 (9)

Geometric parameters (Å, °)

Ni1—N1	2.0524 (16)	C17—H12	0.9500
Ni1—N5	2.0668 (15)	C18—C19	1.407 (3)
Ni1—N4	2.0735 (15)	C18—H13	0.9500
Ni1—N2	2.0780 (15)	C19—C27	1.402 (2)
Ni1—N3	2.0890 (15)	C19—C20	1.432 (3)
Ni1—S1	2.5871 (5)	C20—C21	1.355 (3)
S1—C1	1.7143 (19)	C20—H14	0.9500
S2—C3	1.724 (2)	C21—C22	1.433 (3)
S2—C1	1.7377 (19)	C21—H15	0.9500
N1—C1	1.324 (2)	C22—C26	1.403 (2)
N1—C2	1.373 (2)	C22—C23	1.404 (3)
N2C4	1.326 (2)	C23—C24	1.368 (3)
N2—C15	1.360 (2)	C23—H16	0.9500
N3—C13	1.327 (2)	C24—C25	1.401 (3)
N3—C14	1.359 (2)	C24—H17	0.9500
N4—C16	1.325 (2)	С25—Н18	0.9500
N4—C27	1.359 (2)	C26—C27	1.433 (2)
N5—C25	1.329 (2)	P1—F3	1.5901 (13)
N5C26	1.359 (2)	P1—F2	1.5925 (13)
C2—C3	1.353 (3)	P1—F4	1.5929 (14)
C2—H1	0.9500	P1—F5	1.5944 (14)
С3—Н2	0.9500	P1—F6	1.5946 (14)
C4—C5	1.397 (3)	P1—F1	1.6002 (14)
С4—Н3	0.9500	O1—C29	1.427 (2)
C5—C6	1.370 (3)	O1—C28	1.430 (3)
С5—Н4	0.9500	C28—C29 ⁱ	1.499 (3)
C6—C7	1.407 (3)	C28—H19	0.9900
С6—Н5	0.9500	C28—H20	0.9900
C7—C15	1.402 (2)	C29—H21	0.9900
C7—C8	1.431 (3)	С29—Н22	0.9900
C8—C9	1.352 (3)	O2—C30	1.421 (3)
С8—Н6	0.9500	O2—C33	1.427 (3)
C9—C10	1.434 (3)	C30—C31	1.500 (3)
С9—Н7	0.9500	С30—Н23	0.9900
C10—C14	1.405 (2)	C30—H24	0.9900
C10-C11	1.407 (3)	C31—O3	1.419 (3)
C11—C12	1.370 (3)	С31—Н25	0.9900
С11—Н8	0.9500	С31—Н26	0.9900
C12—C13	1.403 (3)	O3—C32	1.427 (3)

С12—Н9	0.9500	C32—C33	1.498 (3)
C13—H10	0.9500	С32—Н27	0.9900
C14—C15	1.436 (2)	С32—Н28	0.9900
C16—C17	1.403 (3)	С33—Н29	0.9900
C16—H11	0.9500	С33—Н30	0.9900
C17—C18	1.369 (3)		
N1—Ni1—N5	167.32 (6)	C17—C18—H13	120.3
N1—Ni1—N4	93.43 (6)	C19—C18—H13	120.3
N5—Ni1—N4	80.54 (6)	C27—C19—C18	117.60 (17)
N1—Ni1—N2	91.11 (6)	C27—C19—C20	118.87 (17)
N5—Ni1—N2	95.58 (6)	C18—C19—C20	123.53 (17)
N4—Ni1—N2	174.56 (6)	C21—C20—C19	121.19 (17)
N1—Ni1—N3	96.71 (6)	C21—C20—H14	119.4
N5—Ni1—N3	95.07 (6)	C19—C20—H14	119.4
N4—Ni1—N3	96.57 (6)	C20—C21—C22	120.89 (17)
N2—Ni1—N3	79.90 (6)	C20—C21—H15	119.6
N1—Ni1—S1	67.71 (4)	C22—C21—H15	119.6
N5—Ni1—S1	100.94 (4)	C26—C22—C23	117.41 (17)
N4—Ni1—S1	89.91 (4)	C26—C22—C21	119.09 (17)
N2—Ni1—S1	94.59 (4)	C23—C22—C21	123.49 (17)
N3—Ni1—S1	163.53 (4)	C24—C23—C22	119.49 (18)
C1—S1—Ni1	72.66 (6)	C24—C23—H16	120.3
C3—S2—C1	90.25 (9)	С22—С23—Н16	120.3
C1—N1—C2	112.89 (16)	C23—C24—C25	119.32 (18)
C1—N1—Ni1	100.84 (12)	C23—C24—H17	120.3
C2—N1—Ni1	146.25 (13)	C25—C24—H17	120.3
C4—N2—C15	118.14 (16)	N5—C25—C24	122.78 (18)
C4—N2—Ni1	128.68 (13)	N5—C25—H18	118.6
C15—N2—Ni1	113.07 (12)	C24—C25—H18	118.6
C13—N3—C14	118.13 (16)	N5—C26—C22	122.98 (16)
C13—N3—Ni1	129.09 (13)	N5—C26—C27	117.26 (16)
C14—N3—Ni1	112.67 (11)	C22—C26—C27	119.76 (16)
C16—N4—C27	118.16 (15)	N4—C27—C19	122.76 (16)
C16—N4—Ni1	129.33 (13)	N4—C27—C26	117.15 (15)
C27—N4—Ni1	112.38 (11)	C19—C27—C26	120.09 (16)
C25—N5—C26	117.93 (16)	F3—P1—F2	90.17 (8)
C25—N5—Ni1	129.51 (13)	F3—P1—F4	90.13 (8)
C26—N5—Ni1	112.56 (11)	F2—P1—F4	179.51 (9)
N1—C1—S1	118.78 (14)	F3—P1—F5	90.39 (8)
N1—C1—S2	111.99 (14)	F2—P1—F5	90.13 (8)
S1—C1—S2	129.24 (11)	F4—P1—F5	89.48 (9)
C3—C2—N1	114.64 (17)	F3—P1—F6	89.55 (8)
C3—C2—H1	122.7	F2—P1—F6	89.58 (8)
N1—C2—H1	122.7	F4—P1—F6	90.81 (9)
C2—C3—S2	110.23 (14)	F5—P1—F6	179.70 (9)
С2—С3—Н2	124.9	F3—P1—F1	179.86 (10)
S2—C3—H2	124.9	F2—P1—F1	89.74 (8)

N2—C4—C5	122.83 (18)	F4—P1—F1	89.96 (8)
N2—C4—H3	118.6	F5—P1—F1	89.50 (8)
С5—С4—Н3	118.6	F6—P1—F1	90.56 (8)
C6—C5—C4	119.28 (18)	C29—O1—C28	109.56 (15)
С6—С5—Н4	120.4	O1—C28—C29 ⁱ	111.04 (17)
C4—C5—H4	120.4	O1—C28—H19	109.4
C5—C6—C7	119.59 (18)	C29 ⁱ —C28—H19	109.4
С5—С6—Н5	120.2	O1—C28—H20	109.4
С7—С6—Н5	120.2	C29 ⁱ —C28—H20	109.4
C15—C7—C6	117.20 (18)	H19—C28—H20	108.0
C15—C7—C8	119.17 (18)	O1-C29-C28 ⁱ	110.46 (18)
C6—C7—C8	123.63 (18)	O1—C29—H21	109.6
C9—C8—C7	120.92 (18)	$C_{28^{i}}$ C C C C C C C C C C C C C C C C C C	109.6
C9—C8—H6	119.5	01-C29-H22	109.6
C7—C8—H6	119.5	$C_{28^{i}}$ C_{29} H_{22}	109.6
C8-C9-C10	121.29 (18)	H21—C29—H22	108.1
C8—C9—H7	119.4	$C_{30} - C_{2} - C_{33}$	109.66 (16)
C10-C9-H7	119.4	$02 - C_{30} - C_{31}$	109.00(10) 110.18(17)
C14 - C10 - C11	117.21 (18)	$02 - C_{30} - H_{23}$	109.6
C_{14} C_{10} C_{9}	118 94 (18)	C_{31} C_{30} H_{23}	109.6
$C_{11} - C_{10} - C_{9}$	123 85 (18)	02-C30-H24	109.6
C_{12} C_{11} C_{10} C_{10}	119 52 (18)	$C_{2} = C_{30} = H_{24}$	109.6
C12 - C11 - H8	120.2	H_{23} G_{30} H_{24}	109.0
C10-C11-H8	120.2	03-031-030	1105.1
C_{11} C_{12} C_{13}	110 36 (18)	$O_3 = C_{31} = C_{30}$	100.5
С11—С12—С13	120.3	C_{30} C_{31} H_{25}	109.5
$C_{12} = C_{12} = H_0$	120.3	O_{3}^{3} C_{31}^{31} H26	109.5
$N_{13} = C_{12} = H_{13}$	120.5	C_{30} C_{31} H_{26}	109.5
N3 C13 H10	118 7	$H_{25} = C_{31} = H_{26}$	109.5
$C_{12} C_{13} H_{10}$	118.7	$C_{31} = C_{31} = C_{32}$	100.1 100.84(17)
$N_{2} = C_{13} = M_{0}$	123 10 (17)	$C_{31} = 0_{3} = 0_{32}$	109.04(17)
$N_{3} = C_{14} = C_{10}$	123.10(17) 117.20(15)	03 - 032 - 032	100 4
13 - 14 - 15	117.20(13) 110.70(17)	$C_{32} = C_{32} = H_{27}$	109.4
$N_{2} = C_{15} = C_{7}$	119.70(17) 122.07(17)	$C_{33} - C_{32} - H_{28}$	109.4
$N_2 = C_{15} = C_7$	122.97(17) 117.04(16)	C_{32} C_{32} C_{32} C_{32} C_{33}	109.4
12 - 15 - 14	117.04(10) 110.00(17)	127 - 128	109.4
N4 C16 C17	119.99(17) 122.88(17)	1127 - C32 - 1128	100.0 110.56(17)
N4 - C16 + H11	122.00 (17)	02 - C33 - C32	100.5
10-11	110.0	02 - 035 - 1129	109.5
C17 - C10 - H11	110.0	$C_{32} = C_{33} = H_{29}$	109.5
$C_{18} = C_{17} = C_{10}$	119.20 (17)	02 - 035 - 030	109.5
C16 - C17 - H12	120.4	Ц20 С22 Ц20	109.3
C10 - C17 - H12	120.4	П29—С33—П30	108.1
C1/C18C19	119.37 (17)		
C2—N1—C1—S1	179.41 (13)	N3—C14—C15—C7	-179.09 (16)
Nil—N1—C1—S1	-1.39 (16)	C10-C14-C15-C7	0.0 (3)
C2—N1—C1—S2	-0.3 (2)	C27—N4—C16—C17	1.2 (3)
Ni1—N1—C1—S2	178.89 (9)	Ni1—N4—C16—C17	-174.37 (14)

Ni1—S1—C1—N1	1.14 (13)	N4-C16-C17-C18	-0.5 (3)
Ni1—S1—C1—S2	-179.20 (15)	C16—C17—C18—C19	-0.8 (3)
C3—S2—C1—N1	0.03 (15)	C17—C18—C19—C27	1.3 (3)
C3—S2—C1—S1	-179.65 (14)	C17—C18—C19—C20	-178.73 (18)
C1—N1—C2—C3	0.5 (2)	C27—C19—C20—C21	-1.8 (3)
Ni1—N1—C2—C3	-178.06 (17)	C18—C19—C20—C21	178.29 (18)
N1—C2—C3—S2	-0.5 (2)	C19—C20—C21—C22	2.3 (3)
C1—S2—C3—C2	0.25 (15)	C20—C21—C22—C26	0.0 (3)
C15—N2—C4—C5	-0.1 (3)	C20—C21—C22—C23	179.21 (18)
Ni1—N2—C4—C5	-175.92 (14)	C26—C22—C23—C24	2.7 (3)
N2-C4-C5-C6	0.3 (3)	C21—C22—C23—C24	-176.58 (18)
C4—C5—C6—C7	-0.3 (3)	C22—C23—C24—C25	-0.5 (3)
C5—C6—C7—C15	0.2 (3)	C26—N5—C25—C24	2.4 (3)
C5—C6—C7—C8	179.18 (19)	Ni1—N5—C25—C24	-176.95 (13)
C15—C7—C8—C9	0.0 (3)	C23—C24—C25—N5	-2.2 (3)
C6—C7—C8—C9	-179.0 (2)	C25—N5—C26—C22	0.0 (3)
C7—C8—C9—C10	0.2 (3)	Ni1—N5—C26—C22	179.44 (13)
C8—C9—C10—C14	-0.4 (3)	C25—N5—C26—C27	179.54 (15)
C8—C9—C10—C11	179.5 (2)	Ni1—N5—C26—C27	-1.01 (19)
C14—C10—C11—C12	0.2 (3)	C23—C22—C26—N5	-2.5 (3)
C9—C10—C11—C12	-179.65 (19)	C21—C22—C26—N5	176.79 (16)
C10-C11-C12-C13	0.6 (3)	C23—C22—C26—C27	177.96 (16)
C14—N3—C13—C12	0.7 (3)	C21—C22—C26—C27	-2.8 (3)
Ni1—N3—C13—C12	176.59 (14)	C16—N4—C27—C19	-0.5 (2)
C11—C12—C13—N3	-1.1 (3)	Ni1—N4—C27—C19	175.75 (13)
C13—N3—C14—C10	0.1 (3)	C16—N4—C27—C26	179.86 (15)
Ni1—N3—C14—C10	-176.42 (14)	Ni1—N4—C27—C26	-3.88 (19)
C13—N3—C14—C15	179.19 (16)	C18—C19—C27—N4	-0.7 (3)
Ni1—N3—C14—C15	2.7 (2)	C20—C19—C27—N4	179.34 (16)
C11—C10—C14—N3	-0.5 (3)	C18—C19—C27—C26	178.90 (16)
C9—C10—C14—N3	179.28 (17)	C20—C19—C27—C26	-1.0 (2)
C11—C10—C14—C15	-179.60 (17)	N5-C26-C27-N4	3.4 (2)
C9—C10—C14—C15	0.2 (3)	C22—C26—C27—N4	-177.08 (15)
C4—N2—C15—C7	0.0 (3)	N5—C26—C27—C19	-176.28 (15)
Ni1—N2—C15—C7	176.42 (14)	C22—C26—C27—C19	3.3 (2)
C4—N2—C15—C14	-178.94 (16)	C29—O1—C28—C29 ⁱ	-57.7 (2)
Ni1—N2—C15—C14	-2.5 (2)	C28—O1—C29—C28 ⁱ	57.4 (2)
C6—C7—C15—N2	0.0 (3)	C33—O2—C30—C31	-58.8 (2)
C8—C7—C15—N2	-179.08 (17)	O2—C30—C31—O3	59.4 (2)
C6—C7—C15—C14	178.90 (17)	C30—C31—O3—C32	-57.7 (3)
C8—C7—C15—C14	-0.2 (3)	C31—O3—C32—C33	56.7 (3)
N3—C14—C15—N2	-0.1 (2)	C30—O2—C33—C32	57.7 (2)
C10—C14—C15—N2	179.01 (16)	O3—C32—C33—O2	-57.0 (2)

Symmetry code: (i) -x+1, -y, -z+1.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C2—H1…O1 ⁱⁱ	0.95	2.42	3.330 (2)	160
C3—H2…F6	0.95	2.47	3.074 (2)	122
С4—Н3…О2	0.95	2.51	3.226 (2)	132
С5—Н4…О1	0.95	2.63	3.269 (2)	125
C12—H9…F4 ⁱⁱⁱ	0.95	2.63	3.249 (3)	124
C13—H10…F6 ⁱⁱⁱ	0.95	2.56	3.412 (2)	150
C24—H17…F1 ^{iv}	0.95	2.58	3.386 (3)	143
C28—H20…F3 ^{iv}	0.99	2.50	3.336 (3)	142
C30—H23…F1 ^v	0.99	2.44	3.225 (3)	136

Hydrogen-bond geometry (Å, °)

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) *x*+1, *y*-1, *z*; (v) *x*, *y*-1, *z*.