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Targeting proteins’ enzymatic functions with small molecule inhibitors, as well as functions
of receptor proteins with small-molecule agonists and antagonists, were themajor forms of
small-molecule drug development. These small-molecule modulators are based on a
conventional occupancy-driven pharmacological approach. For proteome space
traditionally considered undruggable by small-molecule modulators, such as enzymes
with scaffolding functions, transcription factors, and proteins that lack well-defined binding
pockets for small molecules, targeted protein degraders offer the opportunity to drug the
proteome with an event-driven pharmacological approach. A degrader molecule, either
PROTAC or molecular glue, brings the protein of interest (POI) and E3 ubiquitin ligase in
close proximity and engages the ubiquitin-proteasome system (UPS), the cellular waste
disposal system for the degradation of the POI. For the development of targeted protein
degraders to meet therapeutic needs, several aspects will be considered, namely, the
selective degradation of disease-causing proteins, the oral bioavailability of degraders
beyond Lipinski’s rule of five (bRo5) scope, demands of new E3 ubiquitin ligases and
molecular glue degraders, and drug resistance of the new drug modality. This review will
illustrate several under-discussed key considerations in targeted protein degradation drug
discovery and development: 1) the contributing factors for the selectivity of PROTAC
molecules and the design of PROTACs to selectively degrade synergistic pathological
proteins; 2) assay development in combination with a multi-omics approach for the
identification of new E3 ligases and their corresponding ligands, as well as molecular
glue degraders; 3) a molecular design to improve the oral bioavailability of bRo5 PROTACs,
and 4) drug resistance of degraders.

Keywords: targeted protein degradation, PROTAC, molecular glue, chemically induced proximity, drug discovery
and development

INTRODUCTION

PROTAC (proteolysis-targeting chimera) (Sakamoto et al., 2001) is a type of small molecule capable
of the engaging ubiquitin-proteasome system, the cellular waste disposal system (Salami and Crews
2017), to degrade disease-causing proteins, by recruiting E3 ubiquitin ligase and labeling the target
protein with polyubiquitin for proteasomal recognition. Classical PROTAC molecules are
heterobifunctional small molecules consisting of two ligands connected with a flexible or rigid
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linker, with one ligand binding to POI, and the other binding to
E3 ubiquitin ligase (Paiva and Crews 2019). The most prevalent
E3 ligases used in pharmaceutical drug development are VHL (Von
Hippel-Lindau) and CRBN (Cereblon) E3 ligases (Ishida and Ciulli
2021).Molecular glue degraders represented by immunomodulatory
imide drugs (IMiDs) function similarly to PROTACs by engaging
PPI (protein-protein interaction) between POI and E3 ligase, and
directing the target protein for proteasomal degradation. Molecular
glue (Schreiber 2021) degraders lack the typical linker seen in the
PROTAC molecule. They are lower in molecular weight, and the
binding affinity to each individual partner is lower or undetectable,

as shown in the case of sulfonamide with DCAF15 and RBM39 (Du
et al., 2019). In some cases, a degrader molecule could harness
features of both PROTAC and molecular glue to degrade multiple
targets (I-208, Figure 1B). In this review, both PROTAC and
molecular glue approaches will be treated as small molecule
targeted protein degraders.

Targeted protein degraders have the potential to target
conventionally undruggable proteome (Samarasinghe and
Crews 2021; Schneider and Chris, 2021), either as chemical
biology research tools (Burslem and Crews 2020) or as new
therapeutic modalities (Cromm and Crews 2017; Lai and

FIGURE 1 | Factors influence the selectivity of degraders. (A) PROTAC with different linker attachment point to the VHL ligand selectively degrade p38α and p38β.
(B) Structure of IRAK/Ikaros/Aiolos multi-targets degrader I-208 and WDR5/Ikaros/Aiolos multi-targets degrader MS40. (C) Bcl-2/Bcl-xL dual degradation by 753bR
achievedwith different linker attachment points to warhead; and crystal structure of Navitoclax with BCL-2 (Souers et al., 2013) with four pockets indicated with an arrow.
The crystal structure was processed with PyMOL. (D) Trivalent PROTAC with multi-protein or multi-domain binding warheads. MZ1 with a preference for
BRD4 degradation, SIM1 with a preference for BRD2 degradation.
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Crews 2017; Nalawansha and Crews 2020), rapidly applied to
cancer therapy (Dale et al., 2021), further applications include
neurodegenerative disorders (Tomoshige and Ishikawa 2021).

Pioneered by the AR (Androgen receptor) degrader ARV-110
(NCT03888612) and ER (Estrogen receptor) degrader ARV-471
(NCT04072952), developed by Arvinas Inc. for the treatment of

FIGURE 1 | Continued.
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TABLE 1 | Protein degraders approaching clinical trial (https://clinicaltrials.gov/) with structures disclosed.

aChemical structure of KT-474 was speculated from reported patent (Mainolfi et al., 2020).
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prostate cancer and breast cancer, respectively, the field has seen
at least 15 degraders in a clinical trial (Table 1) (Mullard 2021).

Two aspects are key to fostering the development of targeted
protein degraders in drug discovery and development, one is
structure-guided design (Leissing, Luh, and Cromm 2020) of the
heterobifunctional molecules, and the other is assay development
driven by synthetic biology in combination with a multi-omics
approach (Scholes et al., 2021) to systematically identify new
E3 ubiquitin ligases and their corresponding ligands and
molecular glue degraders. The design of selective PROTACs
will be exemplified in the following context by the impact of
linkerology on selective protein degradation, and the design of
PROTACs to degrade multiple disease-causing proteins
simultaneously. The impact of linkerology is also reflected in
the physicochemical properties and oral bioavailability of
PROTACs. Molecular design to improve oral bioavailability is
important for bRo5 PROTAC drug development. The correlation
of physicochemical features of PROTAC molecules with in vivo
pharmacokinetics profile will be discussed. There are more than
600 E3 ubiquitin ligases encoded by the human genome, but only
2% of them have been applied in proximity-induced protein
degradation. E3 ligases beyond VHL and CRBN for targeted
protein degradation, for example, tissue-specific or disease-
specific E3 ligases would considerably expand the application
of targeted protein degradation for therapeutic purposes (Kannt
and Đikić 2021; Guenette et al., 2022). Systematic searching for
E3 ubiquitin ligases and their ligands is achieved using
chemoproteomics methods applying cysteine reactive covalent
small molecules to map the E3 ligase proteome. Assay
development combined with multi-omics approaches is
discussed. These benefit the targeted protein degradation field
by providing the tools to systematically identify molecular glue
degraders instead of being discovered by serendipity. At the end
of the review, potential drug resistance mechanisms arising from
targeted protein degradation will be briefly discussed. The design
of degraders for therapeutic application discussed throughout the
context reflects joint efforts from the chemistry and biology fronts
to understand the molecular basis of disease pathways, the
structure of productive ternary complex formation, as well as
medicinal chemistry effort for the design of bioavailable
molecules.

SELECTIVITY OF PROTEIN DEGRADERS
BY DESIGN
Selective Degradation of Target Protein
With Promiscuous Warhead
Turning a promiscuous small molecule inhibitor into a PROTAC,
the selectivity could be rewired in the degradable proteome. A
multi-kinase degrader generated by conjugating a highly
promiscuous kinase inhibitor with CRBN-binding ligand was
discovered to degrade a small set of kinases and CDK family
proteins, using chemoproteomics method. In this study, Huang
and coworkers demonstrated that target engagement is not
sufficient for successful degradation (Huang et al., 2018). The
selectivity of productive protein degradation is influenced by the

E3 ubiquitin ligase (Lai et al., 2016), linker attachment points to
the warhead, linker attachment point to E3 ligase ligand, and
linker length (termed ‘linkerology’). The effect of E3 ubiquitin
ligase selection and cell type on the degradation profile for
PROTAC molecules will not be discussed here. This part will
focus on the impact of linkerology on the selectivity of PROTAC
molecules with promiscuous warheads.

The linker attachment point to a POI is usually selected at a
solvent-exposed site of the warhead binding in a protein pocket.
Linkers extended from a buried site may hinder the binding of a
target protein and unsuccessful degradation. This can sometimes
enhance the selectivity of a promiscuous warhead, as in the well-
discussed case of enhancing the degradation of the cellular
retinoic acid-binding protein (CRABP) over retinoic acid
receptor (RAR) with the dual protein binder all-trans retinoic
acid (ATRA) (Ishikawa et al., 2020).

Linker attachment point to E3 ligase ligand has the potential to
influence the direction of assembly of the E3 ubiquitin complex.
In a study evaluating protein degradation profile with
promiscuous c-Met tyrosine kinase inhibitor Defactinib
(Bondeson et al., 2018), p38α was found to be degraded (DC50

(nM)/Dmax 210/91%) with VHL recruiting E3 ligase in triple-
negative breast cancer cell line MDA-MB-231, while the MAPK
family homolog p38δ, which shares 61% sequence identity with
p38α, was only slightly degraded (~30%). Later, a more potent
selective p38α degrader SJF-α (MDA-MB-231 DC50 (nM)/Dmax

~7/97%) was developed (Smith et al., 2019). The linear linker and
the VHL E3 ligase ligand were connected through the amide bond
as depicted in Figure 1A. By changing the linker attachment
point to the benzene ring of the VHL E3 ligase ligand through an
ether bond, selective p38δ degradation (MDA-MB-231 DC50
(nM)/Dmax ~46/99%) was achieved. The distinct degradation
selectivity of two PROTAC molecules between two homologous
MAPK family proteins was illustrated by in vitro stable ternary
complex formation of VHL-SJFα-p38α and VHL-SJFδ-p38δ,
respectively. Molecular dynamic simulation of the ternary
complexes indicates that the VHL/p38α and VHL/p38δ
interface was altered. VHL protein was recruited in a different
direction approaching the p38α/p38δ protein due to the distinct
linker attachment points of the PROTAC molecules.

The impact of linker length on the selectivity of PROTACs is
exemplified by epidermal growth factor receptor (EGFR) and
human epidermal growth factor receptor 2 (HER2) degrader with
receptor tyrosine kinase inhibitor Lapatinib derived warhead
(Burslem et al., 2018). PROTAC 1 with two PEG
(polyethylene glycol) linker degrades both EGFR and HER2,
while PROTAC 5 with three PEG linkers selectively degrade
EGFR (Figure 1A). This type of exquisite selectivity is also
reported in the CDK4/6 case with a highly conserved kinase
active site (Anderson et al., 2020).

Design of PROTAC Synergistically Degrade
Multiple Disease-Causing Proteins to Meet
the Clinical Needs
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a serine/
threonine-protein kinase with scaffolding functions, involved in
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Toll-like receptor (TLR, except for TLR3) and Interleukin-1
receptor (IL-1R) signaling pathways (Hennessy et al., 2010;
Picard et al., 2011). IRAK4 is a 51KD protein that consists of
an N-terminal Death Domain (DD residues 1–125), a hinge
domain (residues 140–150), and a C-terminal kinase domain
(residues 150–460). Upon TLR activation, IRAK4 is rapidly
recruited by MYD88 to the receptor-signaling complex to
form the Myddosome complex, then phosphorylates initially
IRAK1 via oligomerization of the N-terminal DD in each of
these proteins, leading to NF-κB nuclear translocation and
activation. The scaffolding function of the DD of IRAK4 is
essential in IL-1 signaling, while the kinase function of
IRAK4 is partially responsible (Kim et al., 2007; De Nardo
et al., 2018). To target both scaffolding function and kinase
activity of IRAK4, degradation is superior over of
IRAK4 kinase inhibitor, similar to that reported on FAK (Law
et al., 2021). On the other hand, Ikaros and Aiolos are the
activators of the redundant NF-κB pathway and upstream type
I INF regulator. A PROTAC molecule capable of degrading
IRAK4/Ikaros/Aiolos simultaneously could meet the clinical
needs in treating B cell malignancy (Yang et al., 2012).

The key question to address for an IRAK4 degrader with
Ikaros/Aiolos degradation properties is the selectivity. By
proteomic analysis in thalidomide-treated H9 human
embryonic stem cells, C2H2 zinc finger transcription factor
SALL4 was identified as a bona fide neo-substrate of the
thalidomide-CRBN-DDB1-Cul4A E3 ligase complex. Loss of
function of SALL4 was verified to be responsible for
thalidomide-caused teratogenicity (Donovan et al., 2018).
Despite the side effects of thalidomide, it was later approved

by FDA for the treatment of multiple myeloma under strict
restrictions. Other thalidomide analogous immunomodulatory
imide drugs (IMiDs), lenalidomide, and pomalidomide, have
been developed for the treatment of cancer with fewer side
effects and increased potency. Other than SALL4, IMiDs
degrade a set of neo-substrates, most of which are C2H2 zinc
finger proteins (Krönke et al., 2014; Donovan et al., 2018; Gao
et al., 2020; Kozicka and Thomä, 2021) including Ikaros (IKZF1)
and Aiolos (IKZF3). More selective Ikaros and Aiolos degraders
are needed to reduce the safety concern as well as gain structural
insights for the selectivity of degradation. CC-92480 (Hansen
et al., 2020) (NCT03989414) and CFT7455 (Henderson et al.,
2020) (Table 1) (NCT04756726) have been developed for the
treatment of multiple myeloma and lymphoma by Bristol Myers
Squibb and C4 Therapeutics independently, and are currently in
phase I clinical trials. The selectivity of the IMiD degraders is
achieved by introducing substitution to the phthalimide,
therefore changing the approachable interface of CRBN by
neo-substrates in the presence of IMiD (Leissing et al., 2020).

Kymera Therapeutics has designed a potent multi-targets
IRAK4/Ikaros/Aiolos degrader KT-413 for treating relapsed or
refractory B-cell Non-Hodgkin’s lymphoma, which is in phase I
clinical trial (NCT05233033). Although the structure of KT-413
has not been disclosed, the molecule I-208 (Figure 1B) (Mainolfi
et al., 2020) has been disclosed to be able to induce in vivo
degradation of IRAK4/Ikaros/Aiolos in OCI-LY10 tumor
xenograft, correlated with tumor regression.

A similar approach of designing the PROTAC MS40
(Figure 1B) for the degradation of MDR5/Ikaros with a
synergistic effect in mixed-lineage leukemia (MLL)-rearranged

FIGURE 2 | Chemical probes for the identification of E3 ligases. (A) FKBP12 degrading molecules with “scout” fragment KB02, KB03, and KB05 covalently react
with Cysteine in the proteome. (B) Chemical probes for the identification of E3 ligase recruited by Nimbolide.
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leukemias was reported most recently (D. Li et al., 2022). WD
repeat domain 5 (WDR5) is an integral component of histone
lysine methyltransferase complex and MLL complex. MLL-
rearranged leukemias also exhibit high expression and
dependency on Ikaros. MS40 was shown to degrade WDR5/
Ikaros/Aiolos in acute lymphoblastic leukemia (ALL) RS4;
11 cells, and WDR5/Ikaros in biphnotypic B myelomonocytic
leukemia MV-4–11cells at submicromolar range (MV-4-11 lack
of expression of Aiolos). MS40 has also shown modular in vivo
tumor suppression activity in the subcutaneous MLL-AF9+AML
PDX model, dosing at 100 mpk once daily for five days per week
through intraperitoneal injection.

Selective Degradation of Mono- or
Bi-Target Protein With Dual Inhibitor
Navitoclax is a potent Bcl-xL and Bcl-2 dual inhibitor developed
by AbbVie for the treatment of relapsed or refractory lymphoid
malignancies. Navitoclax failed in the phase II clinical trial, due to
on-target and dose-limiting thrombocytopenia (Mohamad
Anuar et al., 2020). Platelets require Bcl-xL for survival. The
VHL recruiting PROTAC DT2216 (Table 1), utilizes Navitoclax
as a warhead, achieved potent antitumor activity while less
platelet toxicity in vivo, and is currently in Phase I clinical
trial (NCT04886622). The reduced platelet toxicity was
suggested to be due to the low expression level of VHL in
platelet (He et al., 2019; Khan et al., 2019; He et al., 2020).
The authors also validated that DT2216 selectively degrades Bcl-
xL in a Lys 87-dependent manner. Single Lys 87 mutation to
arginine is sufficient to induce resistance to Bcl-xL degradation; if
all the other lysines of Bcl-xL except Lys 87 were mutated, the
degradation of Bcl-xL was retained.

The selective degradation of Bcl-xL over Bcl-2 could be
explained by the linkerology of PROTAC molecule design.
The linker of DT2216 was designed by forming two amide
bonds with VHL ligand and Navitoclax warhead respectively,
one with the primary amine of the VHL ligand, and the other with

the secondary amine of piperazine, which was converted from
morpholine of Navitoclax. Linker extension from the morpholine
binding site of Bcl-xL exposed the Lys 87 for ubiquitination, while
Bcl-2 lacks such an accessible lysine, which results in the selective
degradation of Bcl-xL over Bcl-2. The result is consistent with the
finding that a productive ternary complex formation is required
for targeted protein degradation (Chung et al., 2020).

Furthermore, degradation of both BCL-xL and BCL-2 with
improved anti-leukemic activity was achieved by changing the
linker attachment point to the methyl group, which is solvent-
exposed located at pocket 1 (P1) and pocket 2 (P2) intersection of
Bcl-2 or Bcl-xL as indicated in Figure 1C, to generate 753b (R
enantiomer) (Figure 1C) (D. Lv et al., 2021, 2). By doing so, the
Lys 17 of Bcl-2 was accessible for ubiquitination according to the
computational modeling of the Bcl-2-753b-VHL E3 ligase.
Meanwhile, Lys 87 and Lys 20 of Bcl-xL remain accessible for
ubiquitination in the BCL-xL-753b-VHL E3 ligase composition.

Trivalent PROTAC With Bivalent Warhead
Trivalent PROTAC contains a bivalent warhead, which binds to
two domains of one protein or two proteins simultaneously.
Degrading dual-target proteins in the complimentary
pathological pathway or synthetic lethal pair could be
interesting to generate a synergistic effect in drug
development. However, simultaneous degrading of such
protein pair by a trivalent PROTAC requires the two proteins
to be present at the same time and space in a cellular context. The
design of a trivalent PROTAC requires careful planning of the
linkerology, which has been well illustrated by the structure-
guided design of a trivalent PROTAC with a warhead binding to
two domains of one protein (Imaide et al., 2021). Bromodomain-
containing proteins BRD2/3/4 and BRDT are members of the
bromodomain and extra terminal domain (BET) family of
proteins, structurally featuring two bromodomains (BD1 and
BD2), which recognize acetylated lysine during transcriptional
regulation. The well-known BET BD inhibitor JQ1
(Filippakopoulos et al., 2010) was converted to MZ1 (Zengerle

FIGURE 3 | Structures of RBM39 degrading sulfonamides and CDK12 dependent Cyclin K degraders.
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et al., 2015) to give a VHL E3 ligase recruiting BET degrader. A
more potent bivalent BD inhibitor MT1, which binds to the
BD1 and BD2 of BET family proteins, was also reported with
significant in vivo efficacy (Tanaka et al., 2016). Ciulli and
coworkers validated the concept of developing a trivalent
PROTAC SIM1 (Figure 1D), guided by the chemical structure
ofMZ1,MT1, and the crystal structure of the BRD4 (BD2)-MZ1-
VHL E3 ligase ternary complex (Gadd et al., 2017). The structure
of BRD4 (BD2)-MZ1-VHL E3 ligase ternary complex suggests a
three PEG point could be a branching point for another
BD1 binding JQ1 ligand. The eight PEG linker SIM1 suggests
sufficient length for linker attachment to the VHL ligand. The
trivalent SIM1 binds to both BD1 and BD2 domains of the BET
protein and recruits VHL E3 ligase for targeted degradation of
BET proteins. SIM1 degrades BET family proteins with a
preference for BRD2, which is different from MZ1’s
preference for BRD4 degradation.

Trivalent PROTAC with a warhead targeting the synthetic lethal
pair of EGFR and poly (ADP-ribose) polymerase (PARP) has been
reported (Zheng et al., 2021). Based on the report that EGFR
mutated lung cancer cells were sensitized to the treatment of
PARP inhibitor Olaparib (Pfäffle et al., 2013), Zheng and
coworkers designed a trivalent PROTAC with bivalent warhead
derived from Olaparib and EGFR inhibitor Gefitinib (DP-C-1,
Figure 1D). Both VHL and CRBN recruiting trivalent PROTACs
were designed, and dose- and time-dependent degradation of EGFR
and PARP was observed in non-small cell lung cancer cell line
H1299 and pancreatic adenocarcinoma cell line SW1990 at μM
range, respectively. Most recently, trivalent degraders targeting two
synergistic protein targets, IRAK4 and BTK in B cell lymphoma,
have been disclosed by Kymera Therapeutics (Weiss et al., 2022).
The degraders represented by I-8 (Figure 1D) also degrade Ikaros
and Aiolos. Overall, these researches set a foundation for structure-
guided design of PROTACmolecules for multidomain proteins, and
potentially two protein targets synergistically for therapeutic benefits.

SYSTEMATIC PROFILING OF E3 LIGASES,
LIGANDS, AND MOLECULAR GLUE
DEGRADERS
Chemoproteomics Approach and Chemical
Biology Assay Development for the
Identification of New E3 Ligases and
Ligands for Targeted Protein Degradation
The majority of PROTAC molecules in clinical trials recruit CRBN
E3 ubiquitin ligase for targeted protein degradation (Table 1),
including the AR degrader (ARV-110) (Crew et al., 2021), ER
degrader (ARV-471) (Chen X. et al., 2021; Halford 2021),
IRAK4 degrader (KT-474) (Mainolfi et al., 2020) (NCT04772885)
and BRD9 degrader (CFT8634) (Nasveschuk et al., 2022)
(NCT05355753). The Helios degrader, GSPT1 degrader (CC-
90009) (Hansen et al., 2021) (NCT04336982), and Ikaros/Aiolos
degraders are CRBN E3 recruiting molecular glue degraders. The
only VHL E3 ligase recruiting PROTACmolecule currently in Phase
I clinical trial is the Bcl-xL degrader (DT2216). Ligands of several
E3 ubiquitin ligases including Nutlin-3a for MDM2 (Schneekloth

et al., 2008) and Bestatin for cIAP (Itoh et al., 2010), have been
reported for targeted protein degradation, and their application in
drug development is still limited. The systematic approach for the
identification of E3 ligases DCAF16 and RNF114 could be
inspirational for the discovery of other new E3 ligases and their
corresponding ligands (Spradlin et al., 2019; Zhang X. et al., 2019).

Chloroacetamide and acrylamide containing “Scout” fragments
are cysteine reactive electrophiles used by the pioneer of the Cravatt
research team in activity-based protein profiling (Backus et al.,
2016; Bar-PeledKemper et al., 2017). The ‘Scout’ fragments KB02,
KB03, and KB05 (Figure 2A) displayed broad cysteine reactivity
in the human proteome, thus capable of capturing reactive cysteine
residues of the E3 ubiquitin ligase pool once the scout fragments
are turned into PROTACmolecules. Such PROTACmolecules are
designed by linking FKBP12 binding protein-ligand SLF to the
scout fragment. The molecules were tested in the HEK293 T cell
line transduced with FLAG-tagged FKBP12 either with or without
C-terminal NLS (nuclear localization sequence) KKKRKV. The
compound KB02-SLF was found to promote the loss of nuclear
FKBP12 in a Cullin E3 ligase and proteasome system-dependent
manner. FLAG-mediated affinity enrichment was used to identify
that the DCAF16 E3 ligase was associated with FKBP12_NLS
degradation in a KB02-SLF-dependent manner (Zhang X. et al.,
2019).

Nimbolide is a natural product derived from the Neem tree
and possesses anticancer activity (Elumalai and Arunakaran
2014). The chemical structure of Nimbolide features an α,β-
unsaturated ketone as Michael acceptor with the potential to act
as an electrophile for the reactive cysteine residues of the target
protein (Figure 2B). This enables isoTOP-ABPP (isotopic
tandem orthogonal proteolysis-activity-based protein profiling)
(Weerapana et al., 2010) to identify the direct protein targets of
Nimbolide. The iodoacetamide-alkyne was used as the chemical
probe in the experiment to react with those Cysteines spared by
Nimbolide so that Nimbolide reactive cysteine-containing
proteins will show differences in the quantitative mass
spectrometry analysis. The E3 ligase RNF114 was identified to
be the target of Nimbolide. The anticancer reactivity of
Nimbolide arises from the inhibited ubiquitination and
degradation of tumor suppressor p21 in the 231MFP breast
cancer cell line by RNF114. The interaction of Nimbolide with
RNF114 was further validated by pulldown of Flag-tagged
RNF114 in 231MFP cells with the Nimbolide-alkyne probe
(Figure 2B). The capability of E3 ligase RNF114 recruited by
Nimbolide for targeted degradation was evaluated by the
PROTAC molecule XH2 (Spradlin et al., 2019), to degrade
BRD4 with the Bromodomain ligand JQ1 as a warhead.

An indirect chemical biology method to evaluate the function
of E3 ubiquitin ligases for targeted protein degradation is induced
protein proximity by using a heterobifunctional small molecule
(Ottis et al., 2017). E3 ubiquitin ligase and GFP were fused with
HT7 (HaloTag7) and FKBP (FK506 binding protein) respectively,
a heterobifunctional small molecule was designed with one side
forming a covalent bond with Asp106 of HT7 while the other side
binds to FKBP in a bump-hole mode. The E3 ubiquitin ligase and
POI were induced close in space to evaluate the degradation
signal. In the assay, GFP was used to give a fluorescent signal for
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monitoring the degradation event. More recently, the HiBit
technology has been developed for measuring endogenous
protein dynamics (Schwinn et al., 2020); and the NanoBRET
assay (Riching et al., 2018) has also been developed to measure
the kinetics of cellular degradation cascades. Those assays in
combination provide methods to evaluate E3 ubiquitin ligases for
targeted protein degradation in a high-throughput manner.

Cell Biology Assay in Combination With
Multi-Omics Methods for the Identification
of Molecular Glue Degraders
In the past, molecular glue degraders were usually found by
serendipity while searching for the mode of action of small

molecule drugs (Dong et al., 2021). Examples include
thalidomide (Ito et al., 2010) and RBM39 (RNA binding motif
protein 39) (T. Han et al., 2017) degrading sulfonamides
(Figure 3) which were discovered to be molecular glue
degraders. Thalidomide was used in the late 1950s and early
1960s for the treatment of morning sickness in pregnant women,
which resulted in severe tragedies in causing thousands of
miscarriages and birth defects. Via affinity-based protein
profiling with a thalidomide-based probe in HeLa cell extracts,
CRBN was found to bind to thalidomide, a substrate recognition
subunit of DDB1-Cul4A Cullin RING E3 ubiquitin ligase.
Indisulam was a small molecule compound with anticancer
activity. The mode of action of indisulam was not revealed
until recently by using a forward genetic method. Several

FIGURE 4 | Structure modification to improve oral bioavailability. (A) Structures of AR degraders, ARD-69 with VHL ligand, ARD-2542 with a flexible linear linker,
ARD-2585 with the rigid linker. (B) Structures of SMARCA2/4 degraders. Red arrows indicate atoms with long rang NOE.
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single amino acid mutations of Indisulam were found in common
across the RBM39 resistant HCT-116 cell line. RBM39 was later
found to be degraded by indisulam in a dose-dependent manner.
Following co-immunoprecipitation and liquid chromatography
and mass spectrometry analysis, DCAF15 E3 ligase was found to
be engaged in the degradation of RBM39.

Small molecules targeting protein homeostasis specifically by
engaging protein-E3 ligase interactions for targeted degradation
might be more common than previously known. Cell biology
assays in combination with multi-omics methods have been
developed for systematically searching for small molecules
with such capability (Mayor-Ruiz et al., 2020; Scholes et al.,
2021). Phenotypic screening of 2,000 cytotoxic compounds
was carried out in WT and UBE2M (E2 enzyme) mutated
(hyponeddylated) myeloid leukemia cell line KBM-7 to
identify correlations between the toxicity of small molecules
with the neddylation level. Since the neddylation of cullin-
RING E3 ligases (CRLs) is highly associated with the E3s’
activity, the small molecules identified in the screen will be
E3 ligase activity-dependent cytotoxic compounds. Four
compounds (dCeMM1/2/3/4) were identified in the
phenotypic screening. Quantitative expression proteomics
revealed dCeMM1 to be RBM39 destabilizer and dCeMM2/3/
4 to be a cyclin K degrader. CRISPR-Cas9 screening against all
components of known CRLs revealed that cyclin K degradation is
mediated by the CUL4B complex. Affinity-based protein profiling
using a dCeMM3-derived chemical probe identified drug-
mediated DDB1-CDK12-cyclin K complex formation. Drug
sensitivity data for 4,518 clinical and pre-clinical compounds
tested in 578 cancer cell lines were compared with the mRNA
expression level of 499 E3 ligase components, and the cytotoxicity
of the CDK inhibitor R-CR8 (Figure 3) was found to correlate
with the expression levels of CUL4 adaptor DDB1 (Słabicki et al.,
2020). In the counter-confirmation experiment, sgRNA targeting
DDB1 conferred resistance to R-CR8. In the proteome-wide
analysis of protein abundance following R-CR8 treatment,
cyclin K was the only protein shown to be consistently
decreased. In the in vitro pulldown experiment of CDK12
(AA713-1052 kinase domain) bound cyclin K in the presence

of R-CR8, DDB1 was significantly enriched versus in the absence
of R-CR8. The crystal structure of CDK12713−1052-cycK1−267

bound to R-CR8 and DDB1ΔBPB was determined to illustrate
the structural mechanism of R-CR8 acting as a molecular glue
degrader for cyclin K by strengthening the CDK12-DDB1
interaction.

At the same time, serendipitously, a screening effort for
NRF2 inhibitors using NRF2 activity-based luciferase reporter
assay, HQ461 (Figure 3) was found to down-regulate
NRF2 mRNA and expression levels (L. Lv et al., 2020).
However, HQ461’s potent cytotoxicity in the A549 cell line
was independent of NRF2 function. To explore the
mechanism of function of the molecule, HQ461 sensitive
colorectal cancer cell line HCT-116 was treated with the
compound to select resistant clones. Whole-exome sequencing
against the HQ461 resistant clones was performed to find the
top-ranking variant was CDK12 G731E mutation. Both
CDK12 and its interacting protein Cyclin K protein level were
quantified, showing more than the 8-fold reduction of Cyclin K
was observed after treatment with HQ461 in the CDK12 wild-
type cell line. The downregulation of Cyclin K was UPS-
dependent. Pulldown using Flag-tagged CDK12 in the cell
lysate treated with HQ461 identified the interaction between
CDK12 and DDB1. The HQ461-induced CDK12 (kinase
domain)/CCNKΔC/DDB1 complex was further evaluated by
AlphaScreen assay and chemical cross-linking mass
spectrometry. The assay results give evidence that HQ461
function as a molecular glue between CDK12 and DDB1,
which triggers UPS-dependent depletion of Cyclin K.

IMPROVING THE ORAL BIOAVAILABILITY
OF PROTAC MOLECULES

PROTAC molecules are usually beyond Lipinski’s rule of five
(Ro5) (Caron et al., 2021) for orally administered drugs,
conventionally considered to indicate poor permeability and
oral bioavailability. A classical PROTAC molecule harnesses a
warhead which is the small molecule ligand of the target protein,

FIGURE 5 | A PROTAC molecule is represented by a heterobifunctional molecule with a linker, which induces proximity between VHL and POI. Molecular glue
degraders are represented by Thanlidomide and Indisulam-induced protein-protein interaction between neosubstrate and substrate-binding subunit of E3 ubiquitin
ligase (Bulatov and Ciulli 2015).
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an E3 ligase ligand to recruit the VHL or CRBN subunit of Cullin
ring E3 ligase, and a linker that brings the E3 ubiquitin ligase
complex in close proximity to the target protein. Linkers of
PROTAC molecules not only have a great influence on the
degradation efficiency and selectivity of the target protein as
previously reviewed (Cyrus et al., 2011; Zagidullin et al., 2020),
but also had a profound impact on the in vivo PK profile of
PROTACs, as shown in the cases of Androgen Receptor
degraders and SMARCA2/4 degraders (Xiang et al., 2021;
Kofink et al., 2022).

Linker Rigidification to Improve the Oral
Bioavailability of PROTAC
In castration-resistant prostate cancer (CRPC), the progression of
the disease is uncontrolled despite the low testosterone level, due
to AR (androgen receptor) amplification and hypersensitivity, AR
mutations, and intra-tumoral androgen production
(Chandrasekar et al., 2015). In resistance development, AR
antagonists could also be switched to agonists after treatment
with inhibitors (Culig et al., 1999). Degradation offers new
opportunities to tackle these problems with the event-driven
pharmacological mechanism (Salami and Crews 2017). ARV-
110, an orally available AR PROTAC developed by Arvinas Inc.,
is currently a Phase II clinical trial for the treatment of metastatic
castration-resistant prostate cancer. With the success of ARV-
110, Wang and coworkers achieved an orally available AR
PROTAC by linker rigidification with a CRBN E3 recruiting
ligand. ARD-69 (Figure 4A) is a potent AR PROTAC with an
enzalutamide analog as an AR binder and a rigid linker connected
with the optimized VHL ligand (X. Han et al., 2019). ARD-69,
with molecular weight >1000, calculated TPSA (topological polar
surface area) = 197 and ClogP = 8 respectively, was administered
intraperitoneal in the in vivo PD study. By changing the
E3 recruiting element to thalidomide, the molecule ARD-2542
induced efficient in vitro degradation of AR, since both VHL and
CRBN are expressed ubiquitously and could induce efficient
degradation of AR. Although with significantly reduced
molecular weight, calculated TPSA and ClogP, ARD-2542
exhibited a low plasma concentration of about 17 ng/ml after
1 h of oral administration at 10mpk in amouse pharmacokinetics
study. Changing the linear linker to rigid piperazine and
azetidines, ARD-2582 plasma concentration in mice was
increased with Cmax at 1140 ng/ml after oral administration
at 5 mpk. The oral bioavailability increased to 51% in mice (Xiang
et al., 2021).

Solution Conformation of PROTAC Impacts
the Permeability
SMARCA2 and SMARCA4 are close homologs as a component of
the SWI/SNF complex, involved in chromatin remodeling and repair
(Mashtalir et al., 2018; Chetty and Serra 2020). In SMARCA4-
deficient cancer, selectively targeting SMARCA2 would be a
potential synthetic lethal therapeutic method to treat cancer
(Hoffman et al., 2014). SMARCA2 and SMARCA4 share 73.6%
of protein sequence identity by EMBOSS Needle pairwise sequence

alignment (Madeira et al., 2019), containing both ATP-dependent
helicase domain and bromodomain (BD) domain. Small molecule
inhibitors of the bromodomain developed so far inhibit the
bromodomain of both SMARCA2 and SMARCA4 (Theodoulou
et al., 2016). Additionally, the ATP-dependent helicase function of
SMARCA2 is not targeted by the bromodomain inhibitor. An orally
available SMARCA2 selective degrader would have potential
therapeutic value over small molecule inhibitors. ACBI2
(Figure 4B) was reported by Kofinik and coworkers to be
SMARCA2 selective PROTAC with improved oral bioavailability
over PROTAC 10 (Figure 4B) via a minor change of the linker
(Kofink et al., 2022). The PROTAC 10, with a five-carbon chain to
link a SMARCA2/4 BD inhibitor and a VHL E3 ligase ligand, turned
out to be a SMARCA2/4 degrader with only 4.3% oral bioavailability
in mouse pharmacokinetic studies. The poor oral bioavailability was
attributed to its poor permeability as indicated by the high efflux ratio
from an in vitroCaco-2 permeability test. Introducing amethyl group
to the full carbon chain to generateACBI2, dramatically reduced the
efflux ratio and thus increased the oral bioavailability to 22%. MD
(Molecular Dynamics) simulation and NOE (Nuclear Overhauser
effect) NMR spectroscopy were carried out to elucidate the link
between conformational restraint and reduced efflux ratio. ACBI2
was found to have reduced TPSA by MD simulation compared to
PROTAC 10. NOE is usually observed inNMR experiments between
protons close in space. Long-range NOE observed in ACBI2 but not
PROTAC 10 indicates that ACBI2 adopts a more constrained
solution structure, which explains the reduced efflux ratio. For
PROTAC with a constrained structure, macrocyclization could be
a design strategy. In a case reported by Testa and coworkers,
macrocyclization of MZ1 leads to a 12-fold loss of binding to
BRD4, however, the comparable cellular degradation activity to
MZ1 may indicate increased cell permeability (Testa et al., 2020).
Because of the unique properties of bRo5 molecules, new descriptors
such as EPSA and ChameLogD (Ermondi et al., 2020; Caron et al.,
2021) have been introduced to take dynamic intramolecular
hydrogen bond (dIMHB) into consideration for better correlation
of the physicochemical properties of PROTACs with Caco-2 cell
permeability profiles.

DRUG RESISTANCE IN TARGETED
PROTEIN DEGRADATION

One of the advantages of PROTAC is in overcoming some of the
resistance mechanisms to traditional targeted therapies (Burke et al.,
2022), represented by AR PROTAC ARV-110 to address metastatic
castration-resistant prostate cancer (mCRPC) (Salami and Crews
2017; Halford, 2021; Mullard 2021). Acquired drug resistance quite
often occurs during the use of clinical small molecule inhibitors or
antagonists, such as T790M and C797Smutation of EGFR conferred
drug resistance induced by EGFR inhibitors (Thress et al., 2015).
Although the resistance could be addressed by developing third- or
fourth generations of EGFR inhibitors, new drug resistance will
emerge. PROTAC technology has shown certain advantages in
overcoming drug resistance against cancer drug targets due to the
degradation of target proteins with reduced evolutionary pressure of
target mutations (Shibata et al., 2017; Burslem et al., 2018; Burslem
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et al., 2019; Flanagan et al., 2019; Cheng et al., 2020; Robbins et al.,
2020; Liu et al., 2021; Robbins et al., 2021). However, new
mechanisms of drug resistance may occur (Zhang L. et al., 2019).
Several research teams have revealed the vulnerabilities of UPS using
siRNA-based loss-of-function screening (Ottis et al., 2019),
resistance mutations by CRISPR-suppressor scanning (Gosavi
et al., 2022), and potential acquired resistance mechanism against
degraders by whole-exome sequencing in degrader selected cells
lines (Zhang L. et al., 2019). The study of acquired resistance was
carried out in SKM1, MV4; 11, LNCaP, and OVCAR8 cell lines.
Resistance cell lines were selected after 4 months of treatment with
BET PROTACs. The two AML cell lines (SKM-1 andMV4; 11) and
the prostate cancer cell line (LNCaP) were much more sensitive to
the compounds’ treatment compared with the ovarian cancer cell
line OVCAR8. No stable resistant clones were obtained from SKM-
1, MV4; 11, and LNCaP cell lines. The resistant clones from the BET
PROTAC insensitive OVCAR8 cell line were further validated. The
genomic and transcriptional analysis indicated that resistance to
VHL-based BET PROTACwas caused by CUL2 loss due tomultiple
genetic alterations at the CUL2 locus; the resistance to CRBN-based
BET PROTAC was due to chromosomal CRBN gene deletion.
PROTAC is usually applied to the cancer cell lines highly
dependent on the UPS system for therapeutic purposes, therefore
the probability of acquired resistance due to loss of function of
E3 ubiquitin ligase is small. Although there is no reported PROTAC
resistance in the clinic yet, with more degraders approaching clinical
trial, it is important to look for new cancer cell line essential
E3 ligases for precision medicine.

Perspective
In cells, DNA, RNA, and proteins are the key elements at the
foundation of biological complexity, forming the backbone of what
Francis Crick in 1957 termed the “Central Dogma” of molecular
biology. However, according to Stuart Schreiber, there is a missing
link in the network of Central Dogma: small molecules. Small
molecules have critical roles at all levels of biological complexity
and yet remain orphans of the Central Dogma (Schreiber 2005).
Small molecule perturbation of protein functions has contributed a
profound part to modern small molecule drug discovery (Beck et al.,
2022). In addition to individual protein targeting by small molecules,
chemically-induced proximity by heterobifunctional small molecules
could redirect the biological processes of protein homeostasis.
Targeted protein degrader is the type of induced-proximity
molecule which targets POI for the posttranslational modification
(PTM) of ubiquitination and subsequent proteasomal degradation
(Figure 5). Protein homeostasis is regulated by many other types of

PTMs (Uversky 2013), including but not limited to phosphorylation,
acetylation, SUMOlyation, hydroxylation, farnesylation,
glycosylation, and ADP-ribosylation. These PTMs of proteins
regulate protein life span, protein cellular location, and protein
function. Small molecules targeting the protein homeostasis by
inducing PTM beyond ubiquitination may impact small molecule
drug development in the pharmaceutical industry. PROTAC will
offer the opportunity to target traditionally undruggable targets by an
event-driven pharmacological approach, opening new therapeutic
modalities (Békés et al., 2022) to expand the druggable space.
Inspired by PROTAC, induced-proximity drug modalities
including LYTAC (Banik et al., 2020), AUTAC (Takahashi et al.,
2019), ATTEC (Z. Li et al., 2020), PhosTAC (Yamazoe et al., 2020;
Chen P.-H. et al., 2021), DUBTAC (Kanner et al., 2020; Henning
et al., 2021) andRIBOTAC (Haniff et al., 2020; P.; Zhang et al., 2021),
are of interest to the pharmaceutical industry, allowing targeting of
disease-causing proteins and even RNAs. This has resulted in the
emergence of new start-up companies in the targeted protein
degradation area (https://www.ventureradar.com/startup/Protein%
20Degradation). The developments within Cryo-EM and X-ray
crystallography technology, CRISPR-Cas technology-based assay
development, and increasing sequencing capability will
additionally strengthen the structure-guided design and multi-
omics approach to designing small molecule therapeutics with
induced-proximity mechanisms.
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