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Papillary thyroid cancer (PTC) can be divided into classical variant of PTC (cPTC), follicular variant of PTC (fvPTC), and tall
cell variant (tcPTC). These variants differ in their histopathology and cytology; however, their molecular background is not
clearly understood. Our results shed some new light on papillary thyroid cancer biology as new direct miRNA-gene regulations
are discovered. The Cancer Genome Atlas (TCGA) 466 thyroid cancer samples were studied in parallel datasets to discover
potential miRNA-mRNA regulations. Additionally, miRNAs and genes differentiating PTC variants (cPTC, fvPTC, and tcPTC)
were indicated. Putative miRNA regulatory pairs were discovered: hsa-miR-146b-5p with PHKB and IRAK1, hsa-miR-874-3p with
ITGB4 characteristic for classic PTC samples, and hsa-miR-152-3p with TGFA characteristic for follicular variant PTC samples.
MiRNA-mRNA regulations discovery opens a new perspective in understanding of PTC biology. Furthermore, our successful
pipeline of miRNA-mRNA regulatory pathways discovery could serve as a universal tool to find new miRNA-mRNA regulations,
also in different datasets.

1. Introduction

Papillary thyroid cancer (PTC) is the most frequent thyroid
cancer (80% of cases) with the 10-year overall relative survival
rate of 93% [1, 2]. The other differentiated thyroid cancer
that originates from follicular thyroid cells, follicular thyroid
cancer (FTC), is less frequent with incidence of around
10% [1]. Most of PTC tumors have good prognosis and are
relatively easy to treat [3]. Presence of tall cells in PTC is
also considered as a risk factor, especially if percentage of
tall cells comprises more than 10% of tumor cells [4]. The
most frequent histopathological subtypes of PTC are classical
variant of PTC (cPTC) and follicular variant of PTC (fvPTC),
which are different in histopathology, but they confer similar
risk of aggressive outcome, which in case of both tumors is
relatively low [5, 6]. On both molecular and morphological
levels fvPTC shares similarities with cPTC and follicular

tumors, namely, FTC and follicular thyroid cancer (FTA)
[7]. Follicular variant of PTC, especially encapsulated fvPTC,
shares clinicopathological features of cPTC and FTC [8].
On the other hand, on molecular level fvPTC can harbor
a BRAF V600E mutation and PAX8/PPARG translocation
[9, 10]. Follicular variant of PTC standing in the middle
of two distinct tumor types creates diagnostic challenge
and incorrect diagnosis possibility. Incorrect classifications
of fvPTC-FTA could be problematic and dangerous for the
patient [11].

Genomic alterations, like BRAF mutation or PAX8/
PPARG translocation, are not distinct features of fvPTC, first
one being characteristic for cPTC and the second one for
FTC and FTA. Expression markers may be helpful to distin-
guish follicular variant from other entities and number
of studies were performed with use of both gene expres-
sion and miRNA expression markers [12–15]. Studies on
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the expression markers were limited by sample size and
therefore a larger sample cohort would be desirable to catch
population diversity.

Over the last decade miRNA importance in thyroid
pathology was intensively studied with first publication
emerging in 2005 [16]. Anumber of important directmiRNA-
mRNA regulations were described in PTC, as hsa-miR-155
downregulating APC (adenomatous polyposis coli), THRB
(thyroid hormone receptor beta) regulation by hsa-miR-21
and hsa-miR-146a, or hsa-miR-146b-5p regulating SMAD4
(SMAD family member 4) [17–19]. Specific effect of hsa-
miR-155 downregulating APC expression was an increase
in cell viability and colony formation in vitro [19]. SMAD4
expression regulation by hsa-miR-146b-5p modulated TGF-
𝛽 signal transduction [18]. Both hsa-miR-21 and hsa-miR-
146a targeting THRB caused a tumor suppressive effect on
PTC development [17]. MiRNA regulatory pathways will
indisputably shed some new light on papillary thyroid cancer
biology as new direct miRNA regulations will be discovered.

In most of the cases when new miRNA-gene regulatory
pair is introduced it is unclear how the pair was selected.
Most frequently bioinformatics analysis leading to selection
of interestingmiRNA regulatory pathway is poorly described,
not reproducible or just missing. Some publications are very
focused on finding regulation/regulations of one chosen gene
[17] or gene regulation/regulations by one chosen miRNA
[18]. Global analysis of thyroid cancer miRNA regulations
was done in PTC and in follicular thyroid tumors (FTC, FTA)
[20, 21]. Both experiments were performed using microarray
platforms for both gene and miRNA expression analysis
with small sample size for follicular thyroid tumors (total
24 samples) [20] and relatively large sample size for PTC
samples (126 samples) [21]. One problem with expression
measurement by hybridization method applied in microar-
rays is that very similar sequences will hybridize to the
same probe on microarray, which is extremely important
especially for miRNAs, which are small in size and have
been proven to have multiple isoforms ranging in size and in
sequence [22]. In our opinion high-throughput sequencing
is a method more suitable for correct miRNA expression
evaluation since it is more isoform specific and enables us to
evaluate expression of each miRNA isoform.

Lately published repository of deep sequencing data
comprises a large dataset of PTC samples. The Cancer
Genome Atlas (TCGA) project enables us to perform large
scale analysis with high number of samples, and experiments
were performed with high-throughput sequencing, a method
most suitable to study miRNA expression [23]. In parallel,
the TCGA thyroid cancer dataset covers gene expression data
studied by RNA-Seq for the same cohort of patients.

2. Material and Methods

2.1. Samples. We analyzed miRNA and mRNA expression
profile of 466 thyroid cancer samples sequenced in The
Cancer Genome Atlas (TCGA): http://cancergenome.nih
.gov/. Data included 321 Thyroid Papillary Carcinoma,
classical/usual; 99: Thyroid Papillary Carcinoma, follicular

(≥99% follicular patterned); 35: Thyroid Papillary Carci-
noma, tall cell (≥50% tall cell features); and 11: other
thyroid tumor samples. All 466 samples were annotated
as presented in Supplementary File 1 (in Supplementary
Material available online at http://dx.doi.org/10.1155/2016/
1427042), Sample Annotations. Out of all 500 TCGA reposi-
tory thyroid cancer samples we extracted samples for which
both mRNA and miRNA high-throughput sequencing data
were available.

2.2. Analysis of miRNA High-Throughput Sequencing Data.
Expression of 46681 unique miRNA isoforms was detected
in the miRNA sequencing data in at least one sample of all
available in TCGA thyroid samples. Each of the isoforms was
described by reads per million miRNA mapped as described
in theTCGAdata portal. 4133 of those isoformswere detected
in at least half of 466 studied samples. Only those 4133
were taken into further consideration to diminish effect of
low abundance isoforms on the outcome of the expression
analysis. Quantile normalization with R/Bioconductor pre-
processCore library was performed. After normalization log

2

transformation of data was carried out together with subtrac-
tion of batch effects. Batch effect removal was performed by
subtraction of average expression from each of 16 batches for
each single miRNA isoform and for mRNA data. Results of
batch removal were observed in the Principal Components
Analysis of data before removal (Supplementary Figure 1A)
and after removal (Supplementary Figure 1B). miRNA iso-
form data obtained from above preprocessing steps were
passed to integrative analysis.

2.3. Analysis of mRNA High-Throughput Sequencing Data.
20531 genes were detected in the mRNA sequencing data.
Normalized counts of sequences aligning to particular genes
were extracted for all of 466 samples common for mRNA,
miRNA, and clinical data. 17438 genes were expressed in at
least half of the samples so theywere considered in the further
analysis. Similar to miRNA data preprocessing log

2
trans-

formation, quantile normalization and batch removal were
performed. Results of batch removal for gene expression data
were presented in Supplementary Figure 1C (before batch
removal) and Supplementary Figure 1D (after removal).

2.4. Statistical Testing and Annotation. Median based fold
changes (MBFC) were introduced to diminish outlier effects
and considered significant when higher than 1.25 or lower
than 0.8. 𝑡-test 𝑝 values were considered as statistically
significant when lower than 0.05. False discovery rates (FDR)
were computed with reference to total number of miRNAs
on the microarray to take into account multiple testing
bias. To compute 𝑡-test and FDR only expression features
with variance higher than 1st quartile (25%) of variance
in analyzed dataset were considered. Annotations were
prepared according to miRBase version 20 [24–27] (ftp://
mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3).

2.5. Integrative Analysis of miRNA and mRNA. Prepro-
cessed expression data of miRNA (4,133 annotated) and
mRNA (17438 annotated) were correlated with each other

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://dx.doi.org/10.1155/2016/1427042
http://dx.doi.org/10.1155/2016/1427042
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Figure 1: Principal Components Analysis of miRNA expression (a) and gene expression (b) data. fvPTC samples and tcPTC samples gather
in 2 barely overlapping clusters (left and right parts of the plots, resp.). fvPTC and tcPTC difference represents the 1st principal component
in both datasets; thus, it is the main source of miRNA and mRNA expression variability in the entire experiment.

independently in 3 sample groups: cPTC (321 samples),
fvPTC (99 samples), and tcPTC (35 samples). Spearman
correlation coefficient was calculated with respective 𝑝
value for each correlation using Hmisc R library [28]. For
each one of sample groups (cPTC, fvPTC, and tcPTC) a
number of 72,071,254 independent correlation values with
their respective 𝑝 values were calculated. Raw 𝑝 values
were adjusted with False Discovery Rate (FDR) method.
Correlation coefficient threshold of < −0.6 was applied to
filter the best inverse correlations. Subsequently best inverse
correlations for all 3 samples sets (cPTC, fvPTC, and tcPTC)
were tested with miRNA regulation prediction algorithms:
miRanda and TargetScan [29, 30]. For this analysis pur-
pose miRNA chromosomal coordinates annotations were
transformed to miRNA IDs according to miRBase version
20 (ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa
.gff3, chromosomal coordinates annotations being still pri-
mary annotations). Both algorithms (miRanda and Tar-
getScan) were applied to predict miRNA binding sites in 3-
UTR and 5-UTR and coding sites of mRNAs. Correlation of
<−0.6 from all 3 sample groups was considered for further
testing when both applied prediction tools (miRanda and
TargetScan) were independently predicting a putative regula-
tion ofmiRNA formiRNA-mRNApair in tested correlations.
To test analysis pipeline utility the best putative regulations
were tested with isoform specific method of miRNA-target
prediction: TargetRank, which takes into account binding of
the seed region of miRNA to target mRNA sequence [31].

Only best putative regulations that were predicted by both
miRanda and TargetScan and had 𝑟 coefficient value of
correlation below −0.65 for cPTC (321 samples in corre-
lation), below −0.7 for fvPTC (99 samples in correlation)
and −0.8 for tcPTC (35 samples in correlation), were tested
with TargetRank algorithm. For better explanation of our
analysis pipeline appropriate block diagram was presented in
Supplementary Figure 2.

3. Results

3.1. Molecular Difference between fvPTC and tcPTC. Molecu-
lar difference between fvPTC and tcPTC was observed in the
unsupervised analysis of expression data. For both miRNA
and mRNA datasets we performed unsupervised Principal
Components Analysis (PCA) and observed diverse clusters
of samples (Figures 1(a) and 1(b)). 1552 miRNA isoforms and
8461 genes were differentiating fvPTC and tcPTC with FDR
< 0.05. The most differentiating miRNA was hsa-miR-21-5p
(FDR = 4.96∗10−26, MBFC = 0.35, downregulated in fvPTC)
whereas the most differentiating gene was SFTPB (FDR =
3.20 ∗ 10−31, MBFC = 0.01, downregulated in fvPTC).

3.2. Follicular Variant of PTC and Its Molecular Difference
from Classic PTC. We find fvPTC standing in between of
two thyroid cancer types, PTC and FTC, and therefore we
show differences of this variant contrary to cPTC based on
TCGA data. Molecular difference between fvPTC and cPTC

ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3


4 International Journal of Endocrinology

is of similar level to fvPTCand tcPTCdifference, 1689miRNA
isoforms and 8721 genes differentiating with FDR < 0.05.
The most differentiating miRNA is hsa-miR-21-3p (FDR =
4.12∗10−26, MBFC = 0.36, downregulated in fvPTC) and the
most differentiating gene is TMPRSS11E2 (FDR= 1.72∗10−32,
MBFC = 0.36, downregulated in fvPTC). Distributions of the
most differentiatingmiRNAs and genes (fvPTC versus cPTC)
are presented on the box plots in Figure 2. Top 8miRNAs and
genes with both significant FDR and significant MBFC were
presented in the figure.

3.3. miRNA-mRNA Regulations in PTC. Correlation coef-
ficient threshold of 𝑟 < −0.6 applied resulted in a list
of 3488 miRNA-mRNA correlation pairs for cPTC (321
samples), 9460 for fvPTC (99 samples), and 35028 for
tcPTC (35 samples). Out of correlations below −0.6 thresh-
old miRanda or TargetScan has predicted 370 independent
putative miRNA regulations targeting 3-UTR, 5-UTR, or
coding region of mRNA for cPTC samples, 1786 for fvPTC,
and 10492 for tcPTC. CPTC had 97 putative miRNA reg-
ulations confirmed independently by two prediction tools
(miRanda and TargetScan), fvPTC had 483, and tcPTC had
2628. In Supplementary Tables 1, 2, and 3, we presented
putative miRNA regulations predicted independently by two
prediction algorithms (miRanda and TargetScan). Calculated
correlation coefficients from TGCA dataset below −0.65 for
cPTC samples (321 samples correlated), below −0.70 for
fvPTC (99 samples correlated), and below −0.80 for tcPTC
(35 samples correlated) were considered for further testing.
TargetRank algorithm tested on putative regulations with 𝑟 <
−0.65 for PTC, 𝑟 < −0.70 for fvPTC, and 𝑟 < −0.80 for
tcPTChas confirmed 4putativemiRNAregulatory pairs: hsa-
miR-146b-5p with PHKB and IRAK1; hsa-miR-874-3p with
ITGB4 within cPTC samples (Table 1, Figure 3). Hsa-miR-
152-3p with TGFA pair was confirmed within fvPTC samples
(Table 1, Figure 3).

4. Discussion

We present in this work a successful pipeline of analysis
for miRNA-mRNA regulation discovery in a large dataset of
PTC samples from TCGA project. An important statement
to make is that our analysis pipeline is designed only for
miRNAs causing cleavage of target mRNAs, while it would
rather fail in discovering or confirming miRNA triggered
translation repression. A simple reason for that is that we
correlate in our analysis mRNA expression with miRNA
expression and we lack protein expression data to study
translation repression.

Described miRNA-mRNA regulations were obtained
with very stringent filtering criteria: best inverse correlation
coefficient values (<−0.65 for cPTC, <−0.70 for fvPTC, and
<−0.80 for tcPTC), additionally confirmed independently
with 3 prediction algorithms (miRanda, TargetScan, and Tar-
getRank). We provide extended tables with putative miRNA
regulatory pairs with correlations below −0.60, confirmed by
miRanda and TargetScan for all studied PTC histotypes in
supplemental materials (Tables S1, S2, and S3). Sample size of

tcPTC set (35 samples) is a limiting factor in analysis and one
should be cautious with drawing conclusions for this sample
subgroup.Thus, main effort was done to compare fvPTC and
cPTC sample sets.

Out of the best correlations (below −0.60) calculated
for cPTC (3488 correlations), fvPTC (9460 correlations),
and tcPTC (35028 correlations) 10–30% were confirmed
by miRanda or TargetScan prediction algorithms. Both
miRanda and TargetScan concordantly were predicting 3–
7.5% from best correlations (below −0.60). Low percent of
those confirmed miRNA regulations from all of the correla-
tion results may seem surprising. On the other hand, large
part of high correlations may simply represent coexpression
or coregulation of miRNAs and genes. Putative regulation
discovery should be well reinforced by suitable confirmation
to avoid false positives, coming from biological processes that
may also produce high correlation coefficient values.

MiRNAs most deregulated between cPTC and fvPTC
were different isoforms of hsa-miR-21 andhsa-miR-146b, hsa-
miR-30c-2-3p, hsa-miR-126-5p, hsa-miR-204-5p, and hsa-
miR-148b-3p (Figure 2). Hsa-miR-21 was shown to be sig-
nificantly deregulated in solid tumors [32]. Moreover, it
was one of four miRNAs (with hsa-miR-222, hsa-miR-328,
and hsa-miR-197) included in the classifier that reported
sensitivity of 100% and specificity of 86% for a predictive
accuracy of 90% in differentiating malignant from benign
indeterminate lesions [33]. More importantly hsa-miR-21
and hsa-miR-146b along with 3 other miRNAs (181b, 221,
and 222) were reported to be significantly upregulated in
PTC when compared to both FAs and multinodular goiters
(MNG), suggesting that both miRNAs may be characteristic
for classical PTC and not for benign lesions (MNG, FA) [13].
In our work we report that both hsa-miR-146b and hsa-miR-
21 isoforms are downregulated in fvPTC when compared
to cPTC. Upregulation of other miRNAs on fvPTC when
compared to cPTC (miRNA 30c-2-3p, 126-5p 204-5p, and
148b-3p) was to the best of our knowledge not reported yet.

We have presented the most significantly deregulated
genes between cPTC and fvPTC: TMPRSS11, CEACAM6,
ACTBL2, FN1, CRLF2, LDLR, LY6G6C, and TM7SF4 (Fig-
ure 2). Fibronectin 1 (FN1) is a well-described PTC marker
[34, 35]. However, we should say that based on our results it
is a marker of cPTC samples, as it was highly upregulated in
cPTC samples. To the best of authors knowledge, remaining
genes (TMPRSS11, CEACAM6, ACTBL2, CRLF2, LDLR,
LY6G6C, and TM7SF4) were never reported in the context
of thyroid neoplasia and according to our results they should
be considered as differentiation markers between cPTC and
fvPTC (Figure 2).

According to our integrative analysis we report four
new regulations in PTC: hsa-miR-146b-5p regulating PHKB
(phosphorylase kinase, beta), hsa-miR-146b-5p regulating
IRAK1 (interleukin-1 receptor-associated kinase 1) and hsa-
miR-874-3p regulating ITGB4 (integrin, beta 4) in cPTC
samples, and hsa-miR-152-3p regulatingTGFA (transforming
growth factor, alpha) in fvPTC samples. TGFA/EGFR pair
is one of the most tightly controlled ligand/receptor pairs in
PTC samples [36]. In light of our results in a fvPTC histotype
miRNA-152-3p may control TGFA expression and balance
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Figure 2: miRNAs and genes with the most differentially changed expression in classic PTC versus follicular variant PTC. Distributions
of cPTC and fvPTC expression data overlap significantly; on the other hand, fvPTC and tcPTC distributions are relatively diverse. Top 8
miRNAs and genes were selected according to rules presented in Section 2, Statistical Testing and Annotation. miRNA data were annotated
with hsa-miR number and hg19 isoform loci, whereas gene expression data were annotated with gene symbol and Gene ID.
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Table 1: Selection of 10 top scoring putative miRNA regulations in PTC, fvPTC, and tcPTC. Selected Spearman correlations of mRNAs and
miRNAs were calculated independently in cPTC (321 samples), fvPTC (99 samples), and tcPTC (35 samples) datasets. All shown correlations
were predicted by two used prediction tools: miRanda and TargetScan as putativemiRNA regulations. Top 10 from each type of thyroid cancer
(cPTC, fvPTC, and tcPTC) were ranked by correlation coefficient value and 10 lowest correlations are shown for each dataset (cPTC, fvPTC,
and tcPTC). In columns from left, “regulation name,” assigned name of correlation; “correlation 𝑟,” correlation coefficient value (Spearman);
“Correlation FDR,” DR corrected 𝑝 value of correlation; “mature miRNA,” mature miRNA name; “confirmed by TargetRank,” stating that if
regulation is confirmed by TargetRank (rank and score in the parenthesis); “gene symbol,” HGNC symbol of gene in correlation; and “gene
name,” HGNC official full name.

Regulation
name

Correlation
𝑟

Correlation FDR Mature miR Confirmed by
TargetRank Gene symbol Gene name

PTC 1 −0.750 <1e − 12 hsa-miR-146b-5p YES (19, 0.48) PHKB Phosphorylase kinase, beta
PTC 2 −0.681 <1e − 12 hsa-miR-146b-5p NO TMEM164 Transmembrane protein 164
PTC 3 −0.675 <1e − 12 hsa-miR-204-5p NO LAD1 Ladinin 1
PTC 4 −0.670 <1e − 12 hsa-miR-21-5p NO BTBD11 BTB (POZ) domain containing 11
PTC 5 −0.662 <1e − 12 hsa-miR-874-3p YES (36, 0.39) ITGB4 Integrin, beta 4

PTC 6 −0.657 <1e − 12 hsa-miR-204-5p NO ERBB3
v-erb-b2 avian erythroblastic
leukemia viral oncogene

homolog 3

PTC 7 −0.657 <1e − 12 hsa-miR-30c-2-3p NO EHBP1L1 EH domain binding protein
1-like 1

PTC 8 −0.655 <1e − 12 hsa-miR-146b-5p YES (44, 0.41) IRAK1 Interleukin-1 receptor-associated
kinase 1

PTC 9 −0.655 <1e − 12 hsa-miR-30a-3p NO TNFSF11 Tumor necrosis factor (ligand)
superfamily, member 11

PTC 10 −0.653 <1e − 12 hsa-miR-30c-2-3p NO RAP2B RAP2B, member of RAS
oncogene family

PTC 11 −0.653 <1e − 12 hsa-miR-146b-5p NO DNTT DNA nucleotidylexotransferase

PTC 12 −0.653 <1e − 12 hsa-miR-146b-5p NO FHOD3 Formin homology 2 domain
containing 3

PTC 13 −0.652 <1e − 12 hsa-miR-204-5p NO POU2F3 POU class 2 homeobox 3
fvPTC 1 −0.786 <1e − 12 hsa-miR-874-3p NO LASP1 LIM and SH3 protein 1
fvPTC 2 −0.729 <1e − 12 hsa-miR-484 NO MET met protooncogene
fvPTC 3 −0.724 <1e − 12 hsa-miR-152-3p NO LIPH Lipase, member H

fvPTC 4 −0.714 <1e − 12 hsa-miR-874-3p NO SHF Src homology 2 domain
containing F

fvPTC 5 −0.714 <1e − 12 hsa-miR-874-3p NO LMNA Lamin A/C
fvPTC 6 −0.709 3.89e – 12 hsa-miR-152-3p NO QSOX1 Quiescin Q6 sulfhydryl oxidase 1
fvPTC 7 −0.708 3.89e − 12 hsa-miR-152-3p NO PRR15 Proline rich 15
fvPTC 8 −0.707 6.83e − 12 hsa-miR-148b-3p NO CD276 CD276 molecule
fvPTC 9 −0.706 6.83e − 12 hsa-miR-874-3p NO PTK7 Protein tyrosine kinase 7

fvPTC 10 −0.704 6.83e − 12 hsa-miR-152-3p NO CORO2A Coronin, actin binding protein,
2A

fvPTC 11 −0.704 6.83e − 12 hsa-miR-874-3p NO GNAI2
Guanine nucleotide binding
protein (G protein), alpha

inhibiting activity polypeptide 2

fvPTC 12 −0.703 6.83e − 12 hsa-miR-152-3p YES (79, 0.38) TGFA Transforming growth factor,
alpha

tcPTC 1 −0.874 1.02e − 05 hsa-miR-342-5p NO KCNG3 Potassium voltage-gated channel,
subfamily G, member 3

tcPTC 2 −0.833 0.00018 hsa-miR-7-2-3p NO SDC3 Syndecan 3
tcPTC 3 −0.831 0.00020 hsa-miR-454-3p NO TBX10 T-box 10
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Figure 3: Putative miRNA-gene regulations. Pairs hsa-miR-146b-5p with PHKB (a), hsa-miR-146b-5p with IRAK1, (b) and hsa-miR-874-3p
with ITGB4 (c) were selected from best inverse Spearman’s correlations (below−0.65) within 321 cPTC samples and confirmedwithmiRanda,
TargetScan, andTargetRank prediction algorithms. Pair hsa-miR-152-3pwithTGFA (d)was selected frombest inverse Spearman’s correlations
(below −0.70) within 99 fvPTC samples and confirmed with miRanda, TargetScan, and TargetRank algorithms. Gene expression values were
plotted on 𝑦-axis whereas miRNA expression values on 𝑥-axis. Both cPTC (filled dots) and fvPTC (empty dots) samples are depicted. Lines
on graphs represent regression lines (gene expression values ∼miRNA expression values) for cPTC samples ((a), (b), (c)) and regression line
for fvPTC samples (d). Approximated correlation coefficients (𝑟) are calculated for both cPTC and fvPTC samples and presented in the above
graphs.

proliferation/differentiation signals of TGFA on thyroid cells
(Figure 3). hsa-miR-152-3p regulation of TGFA expression is
rather absent or antagonized by other regulationmechanisms
in cPTC, correlation of this two RNAs expressions in cPTC
samples is rather high (−0.42), and samples distribution is not
suggesting a strong dependence of TGFA expression on hsa-
miR-152-3p expression (Figure 2).

Integrin, beta 4 is involved in cell adhesion and motility
[37, 38]. Putative regulation of ITGB4 expression by hsa-
miR-874-3p was observed in cPTC samples and may be also
present in fvPTC variant (Figure 3). Expression of ITGB4
is low in most of fvPTC samples and rather high in cPTC
samples suggesting different patterns of regulation and/or
additional regulation of ITGB4 expression (Figure 3). PTC
variants are known to be different in their metastatic poten-
tial, as fvPTCmore often gives distantmetastases and cPTC is
more frequently observedwith local nodemetastases and soft
tissue invasion noted during surgery [39]. Hsa-miR-874-3p

was already reported to control cell invasiveness in non-
small cell lung and gastric cancers [40, 41]. Regulation of
ITGB4 may be a one aspect controlling PTC cells invasive
potential and as presented on Figure 3 there are samples of
PTC where miRNA-874-3p is significantly downregulating
ITGB4 expression and there are samples that escape this
regulation and have high ITGB4 expression.

Hsa-miR-146b-5p is very well described in a context
of thyroid cells biology and neoplastic transformation [15,
18, 42]. In cPTC it may regulate PHKB and IRAK1 genes
expression, and both regulations are most likely absent or
antagonist by other regulatory processes in fvPTC (Figure 3).
What is striking about both regulatory pairs is that regulation
seems to be present only when hsa-miR-146b-5p expression
is relatively high (approximately more than 8, Figure 3),
suggesting a threshold of miRNA expression that is necessary
to trigger the regulation. Most of fvPTC samples have lower
hsa-miR-146b-5p expression and that is why they escape this
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regulation by miRNA. PHKB is a gene encoding enzyme
involved in carbohydrates metabolism [43]. Hsa-miR-146b-
5p may control carbohydrate metabolism in cPTC, as energy
supply is crucial for cancer cell development. Second putative
regulation exerted by hsa-miR-146b-5p is IRAK1 regulation
that is in fact a confirmed and validated miRNA regu-
lation [44–46], reported also by miRTarBase, database of
experimentally validated miRNA-target interactions [47]. In
fact a closely related hsa-miR-146a was already suggested
to regulate IRAK1 in PTC [48]. We find highly concordant
results regarding hsa-miR-146b-IRAK1 regulation as an indi-
rect proof that our pipeline of analysis is correctly predicting
real miRNA regulations in PTC. IRAK1 has been reported
to have pleiotropic effect on cell biology, so it is hard to
speculate what functional effect hsa-miR-146b-5p regulation
of IRAK1 can produce. As IRAK1 is activated by interleukin-1
it is very likely that miRNA 146b controlling IRAK1 activity
has a modulating effect on interactions with inflammatory
cells infiltrating thyroid parenchyma.

5. Conclusion

A successful pipeline of miRNA-mRNA regulatory path-
ways discovery was proposed and applied to 466 miRNA
and mRNA high-throughput sequenced samples. 8 human
miRNA expression markers differentiating between conven-
tional and follicular variants of PTC were proposed: 21-
3p, 21-5p, 146b-3p, 146b-5p, 30c-2-3p, 126-5p 204-5p, and
148b-3p. Similarly 8 gene expression markers differentiating
between conventional and follicular variants of PTC were
observed: TMPRSS11, CEACAM6, ACTBL2, FN1, CRLF2,
LDLR, LY6G6C, and TM7SF4. Four putative miRNA regu-
latory pairs were discovered: hsa-miR-146b-5p with PHKB
and IRAK1, hsa-miR-874-3p with ITGB4 characteristic for
cPTC samples, and hsa-miR-152-3p with TGFA characteristic
for fvPTC samples. Our computational analysis proposed
a number of miRNA-mRNA interactions acting in PTC.
Results should be interpreted carefully and need further
experimental verification in the light of currently available
evidence.
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