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An empirical analysis of the Ebola 
outbreak in West Africa
Abdul Khaleque*, Parongama Sen

The data for the Ebola outbreak that occurred in 2014–2016 in three countries of West Africa are 
analysed within a common framework. The analysis is made using the results of an agent based 
Susceptible-Infected-Removed (SIR) model on a Euclidean network, where nodes at a distance l are 
connected with probability P(l) ∝ l−δ, δ determining the range of the interaction, in addition to nearest 
neighbors. The cumulative (total) density of infected population here has the form R t =( ) a t T

c t T1
exp( / )

+ exp( / )
, 

where the parameters depend on δ and the infection probability q. This form is seen to fit well with the 
data. Using the best fitting parameters, the time at which the peak is reached is estimated and is shown 
to be consistent with the data. We also show that in the Euclidean model, one can choose δ and q values 
which reproduce the data for the three countries qualitatively. These choices are correlated with 
population density, control schemes and other factors. Comparing the real data and the results from the 
model one can also estimate the size of the actual population susceptible to the disease. Rescaling the 
real data a reasonably good quantitative agreement with the simulation results is obtained.

Mathematical modelling of the phenomena of disease spreading has a long history, the first such attempts being 
made in the early twentieth century1–7. Typically, an individual is assumed to be in either one of the three possible 
states: susceptible, infected and removed (or recovered) denoted by S, I, and R respectively in the simplest models. 
Diseases which can be contracted only once are believed to be described by the SIR model in which a susceptible 
individual gets infected by an infected agent who is subsequently removed (dead or recovered). A removed per-
son no longer takes part in the dynamics. In SIS model, an infected person may become susceptible again. In the 
SIR model, S, I and R represent the densities of population in the three different states and are related through the 
normalization condition

+ + =S t I t R t( ) ( ) ( ) 1, (1)

 
The following set of deterministic differential equations are obeyed by the densities:

= − −
dS
dt

q k IS( 1) , (2)

µ= − + −
dI
dt

I q k IS( 1) , (3)

µ= .
dR
dt

I (4)

These equations can be interpreted as follows: infected nodes become recovered at a rate μ, while susceptible 
nodes become infected at a rate proportional to both the densities of infected and susceptible nodes. Here, q is the 
infection rate and k is the number of contacts or degree. Without loss of generality, one can take μ =  1. Due to the 
conservation of the total population (eq. 1), only two of the three variables are independent. For the SIS model, 
one has only two similar equations connecting S and I, one of which is independent only. In most theoretical 
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models, the epidemic has a threshold behaviour as the infection probability q is varied. However, an estimate of q 
from real data is difficult as it is related to biological features like nature of the pathogen etc.

Plenty of variations and modifications of the SIR and SIS models have been considered over the last few 
decades. Resurgence of interest in these models has taken place following the discovery that social networks do 
not behave like random or regular networks8,9. The current emphasis has been to study these models on complex 
networks like small world and scale free networks. A few surprising results have been derived theoretically in the 
recent past9.

The test of a model lies in its ability to match real data. No appreciable success has been made so far for the 
familiar models although some qualitative consistency has been achieved9,10. The available data is usually in the 
form of number of newly infected patients and total (cumulative) number of cases. In the SIR model, the newly 
infected fraction shows an initial growth followed by a peak and a subsequent decay. This matches with the over-
all structure of the real data (e.g. for Severe Acute Respiratory Syndrome (SARS)11), which however, show local 
oscillatory behaviour in addition. Such a behaviour may be due to demographic non uniformity12.

The set of equations (2–4) represent only a mean field picture. The mean field equations do not depend on the 
topology of the network and are also essentially deterministic. It is therefore more meaningful to study the epi-
demic spreading by considering an agent based model on spatial networks where the dynamics of each agent can 
be tagged and the averages can be extracted easily. Agent based models for epidemic spreading on regular lattices 
have been studied quite extensively in the last few decades and in the more recent studies, the complex nature of 
the network connecting the individuals has been taken into consideration. It has been shown that the geographi-
cal factor plays an important role in the spreading process13–21. In particular, the SIR model on an Euclidean net-
work, where the agents may be connected not only to their nearest neighbours but also to a few randomly chosen 
long range neighbours has been considered in detail20,21.

In 2014, the Ebola virus caused large scale outbreaks mainly in three West African countries and only recently 
it has been declared as over (June 2016). Ebola virus is transmitted through body fluids and it is also believed 
that a person can contract the disease only once. A few attempts have been made to analyse the data so far22–27. 
Different factors like demographic effect, hospitalization, vaccination and treatment plans have been incorpo-
rated in the traditional and well-known SIR model to understand the dynamics of Ebola disease25–27. However, 
in these models, a mean field approximation has been used which is rather unphysical. Using the results of an 
agent based SIR model on Euclidean network20, mentioned in the last paragraph, we have analysed the Ebola 
data for the three countries Guinea, Liberia and Sierra Leone in West Africa where the outbreak extended over 
approximately two years. We have also reproduced the comparative treads using appropriate parameter values in 
the model, albeit qualitatively.

Results
Data analysis. We have studied the available data for total (cumulative) number of cases R(t) as a function 
time t and extracted the data for number of new cases I(t) from these.

Most of the earlier studies have dealt with the actual numbers of cases. However, as we attempt to provide 
a comparative picture, we have taken the fraction i.e., divided the numbers by the total population Np for each 
country. One can easily see that the comparative trends become different in the two different approaches (Fig. 1). 
The disease is seen to affect the least fraction of the population in Guinea and the maximum in Liberia. However, 
the number of cases is maximum for Sierra Leone and not for Liberia. Considering the time at which the data 
reach a saturation value, one can also conclude that the disease has existed over a longer period in the case of 
Sierra Leone and Guinea.

Had the infection probability been the sole factor responsible for the spread, the patterns would have been the 
same for the three countries. We argue that the network structure is responsible for the different trends. Hence a 
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Figure 1. (a) Cumulative number of infected individuals as a function of time (day) for the three countries 
Guinea, Liberia and Sierra Leone. (b) Same data normalised by the population of each country.
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theoretical model that yields results comparable to the observed data must have more than one parameter. A min-
imal model would consist of two parameters like the one considered in ref. 20. Here the agents have two nearest 
neighbour connections and a random long range connection to a agent located at a distance l with probability l−δ 
(details given in the Methods Section). The parameter δ essentially controls the network structure and the other 
parameter is of course the infection probability q. This study revealed that for a given δ, above a threshold value of 
q (which depends on δ), an epidemic can occur.

The removed population in the model in ref. 20 was fitted to the form:

=
+

R t a t T
c t T

( ) exp( / )
1 exp( / )

,
(5)

where a, c and T depend on the values of δ and q. Note that the removed population in the model essentially 
corresponds to the cumulative infected cases since in the model the infected agents were assumed to be removed 
immediately after being infected. This fitting form is used for the cumulative data of infected cases and shows 
very good agreement for Guinea (Fig. 2(a)), while there is fairly good agreement with the data of the other two 
countries (Fig. 2(b,c)). Rescaling R(t) such that it varies from 0 to 1, one can find out the goodness of fit. We 
performed the Kolmogorov-Smirnov test to evaluate the goodness of the fit for all the three sets of data. The 
values are: 1.1294 for Guinea (sample size Ns =  217), 1.1070 for Sierra Leone (Ns =  235) and 1.4959 for Liberia 
(Ns =  233). Thus the fittings are acceptable at the level of significance α =  0.10 for Guinea and Sierra Leone and 
at α =  0.01 for Liberia.

From eq. (5), one can show that a peak value for I(t) will occur at tp =  T log(1/c). The associated values of the 
exponents a, c and T are found out for the three countries and the values of tp also extracted. We have plotted the 
data for I(t) against t in the insets of the Fig. 2(a–c). We observe a lot of fluctuations and not a very clear peak in 
the data just as in the case of SARS11. Even then, the theoretically estimated values of tp tally with a large value of 
new cases occurring close to this time. The exponent values and tp are tabulated in Table 1. The errors in the esti-
mation of exponents are −(10 )6  for a,  −(10 )3  for c and (10 )0  for T (beween 0.9 to 7.6 percent). One can see 
that tp is also directly proportional to the total duration, being least for Liberia and maximum for Guinea.

Results from the model. The cumulative data for infected people has a sigmoid form in general and has 
been shown to have a form given by eq. (5) in a recent study as well27. To establish that indeed the Euclidean net-
work is an appropriate model responsible for the epidemic spreading, one should be able to reproduce from the 
model the consistent results and trends using suitable values of the parameters, at least qualitatively.

Epidemic spreading on the Euclidean model with the two parameters δ and q, already mentioned in the con-
text of data analysis, was first considered in ref. 20. The model and simulation methods are given in detail in the 
Methods section. The behaviour of the network depends on the value of δ. The network behaves as a small world 
network for δ <  1 and as a regular one dimensional lattice for δ >  2. For 1 <  δ <  2, it shows short range behaviour. 
These properties of the network had been earlier detected by considering its network properties as well as critical 
phenomena on the network (see refs 20 and 28 and the references in these papers).

The Ebola virus spreads through actual body contact and in most cases the infection occurred within family 
members. Hence the underlying network must be short ranged. Therefore to get results comparable to the real 
data, one should use a value of δ larger than 1. Also, δ <  2 is chosen as a real network is more connected than a 
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Figure 2. Cumulative fraction of population infected and the fitted curve as a function of time (day) for 
countries (a) Guinea, (b) Liberia and (c) Sierra Leone. Insets are for the fraction of newly infected population as 
a function of time of each country.

Country a c T tp a/c

Guinea 0.0000059 ±  0.0000002 0.0182146 ±  0.0006 57.9150 ±  0.503 231.98 0.0003239

Liberia 0.0001125 ±  0.0000085 0.0434763 ±  0.0032 42.1957 ±  1.043 132.30 0.0025876

Sierra Leone 0.0000549 ±  0.0000041 0.0247653 ±  0.0018 51.758 ±   1.040 191.41 0.0022168

Table 1.  Exponents a, c and T for three different countries using the total population as normalization 
factor.
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regular one. The values of q should be same in principle as it depends on biological factors. However, the value 
of q may be effectively altered using control schemes like contact tracing, quarantining the patient and efficiently 
treating the disease. Such possibilities have not been directly included in the model. We will address this issue in 
the next section again.

We first discuss the case of Liberia and Sierra Leone. We note that the saturation values are quite close while 
the saturation in Liberia has been reached earlier (Fig. 1). We find that the same value of q but a different value 
of δ can indeed reproduce these features; the red and green curves in Fig. 3(a) show the results for δ =  1.4 (for 
Liberia) and 1.6 (for Sierra Leone) while the q values are same (q =  0.70).

We next discuss the case for Guinea. It has the lowest saturation value of the cumulative data for infected pop-
ulation while the disease is of duration slightly longer than that of Sierra Leone. This makes it quite apparent that 
one has to use a smaller value of q to get data consistent with that of Guinea. We find that indeed one can get such 
values of q keeping δ =  1.4 such that the saturation value is smaller while the duration is larger comparatively. We 
show the data by the blue curve in Fig. 3(a) using q =  0.58.

Of course these are some typical values which yield results comparable to the real data. A range of values exist 
which more or less show the same behaviour. However, that range is not too large which would mean that the 
values are irrelevant. For δ, this range is ± 0.05 while for q it is ± 0.02.

Figure 3(b) shows the data for I(t) against t from the Euclidean model. Again we find consistency, the red 
curve has a peak occurring earliest while the disease lasts for the shortest duration which corresponds to Liberia. 
The green curve shows a peak occurring at a later time and the duration is also longer. This we claim to corre-
spond to Sierra Leone. The peak value is slightly less in height for the green curve compared to the red which is 
also consistent with the real data (up to a multiplicative factor) if one takes the single spike occurring in Fig. 2(c) 
inset to be spurious. The data for Fig. 2(a) inset is easily comparable to the red curve in Fig. 3(b). The blue curve 
in Fig. 3(b) corresponds to Guinea as the peak value occurs at a slightly larger time compared to the green curve 
while the duration is longest. The quantitative values of tp shown in Table 2 are also consistent with the real data. 
The errors in the estimates lie between 0.04 to 0.49 percent. The argument behind the choices of δ and q are dis-
cussed in the next section.

As in the real data, one can quote here the goodness of fit for R(t) from the simulations. The 
Kolmogorov-Smirnov test for the three cases yield the largest errors as 0.1653 for δ =  1.40, q =  0.70; 0.3558 for 
δ =  1.60, q =  0.70; and 1.2261 for δ =  1.40, q =  0.58. The sample size is 2000 for each and therefore the first two 
results are acceptable at level of significance α =  0.2 and the last one at α =  0.05.

Comaparison of data by rescaling. While qualitative features of the data obtained from the model are 
quite similar to the real data, the actual values of the fitting parameters a, c and T (and consequently tp) are quite 
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Figure 3. (a) Fraction of population infected as a function of time (Monte Carlo time step) for different pairs of 
infection rate q and δ. (b) Fraction of newly infected population as a function of time (Monte Carlo time step) 
for same pairs of infection rate q and δ.

Parameters a c T tp a/c

δ =  1.4, q =  0.58 (Guinea) 0.011842 0.032342 7.09658 24.35107 0.3661492

δ =  1.4, q =  0.70 (Liberia) 0.005116 0.006974 3.39171 16.8415 0.7335818

δ =  1.6, q =  0.70 (Sierra Leone) 0.011130 0.015718 5.10908 21.2175 0.7081053

Table 2.  Exponents a, c and T for different values of parameters. The countries to which the data correspond 
are shown within the parenthesis.
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different (see Tables 1 and 2). It may be noted that a/c corresponds to the saturation value of R(t) and c and T 
determine the value of tp. The mismatch of the tp values is not surprising, unit of time in the model is just one 
Monte Carlo (MC) time step that has got nothing to do with real time. On the other hand, the saturation values 
depend heavily on the normalization factor. The actual population who are susceptible may form only a subset 
of the total population so saturation values can be different changing the values of a and c. Nevertheless, we find 
that the ratio of of a/c from the data and from the model for Sierra Leone and Liberia are very close which indi-
cates that the fractions of susceptible population in these two countries were comparable while for Guinea it was 
smaller. Indeed, Table 3 shows that the density of infected population were same for Sierra Leone and Liberia and 
order of magnitude smaller in Guinea.

However, one can still explore the possibility of rescaling the real data to obtain better quantitative agreement 
between the parameters. This may be possible by suitably choosing a normalization factor for each of the three 
data sets. Assuming the total population which has been removed at time t to be Rtot(t) and ρNp the actual popu-
lation susceptible to the disease, we calculate the density

ρ ρ= =R t R t N R t( ) ( )/ ( )/ , (6)s tot

where R(t) is the density calculated earlier by dividing Rtot(t) by the total population Np and ρ a proportionality 
constant. Taking Rs(t) to be the saturation value of R(t) obtained from the model and equating it to the saturation 
value of R(t) obtained from the real data, one can estimate the value of ρ. For example, for Guinea, the saturation 
value of R(t) is 0.000328 from the data and from the model it is 0.354720. Hence ρ ≈ . × −9 24 10 4. Similarly for 
Sierra Leone and Liberia it is 3.27 ×  10−3 and 3.58 ×  10−3 respectively. On the other hand, one can compare the tp 
values from real data and the model and we find that the timescales in the real data are approximately 8–9.2 times 
the timescales in the Monte Carlo simulations. Hence we also rescale the time for the results obtained for the 
model. The rescaled data Rs(t) and R(t) are plotted against “real time” in Fig. 4 and show an excellent agreement 
for Guinea and a reasonably good agreement for Sierra Leone. The agreement for Liberia is not that good, how-
ever, the data for Liberia are somewhat irregular and it is difficult to fit them with a smooth function very accu-
rately as already noted. Particularly for Liberia and Sierra Leone we find that before saturation, there is a slower 
increase in R(t); this might be due to an enhancement in the treatment and preventive measures against the 
disease.

One can similarly rescale the newly infected density I(t), however, the data being too noisy, we do not attempt 
that. Nevertheless, we find that the peak values of the newly infected density I(t), when scaled by ρ shows order of 
magnitude agreement with the model data.

Further, we have fitted Rs using equation 5 and present the value of the parameters in Table 4. The values from 
the model and the real data are easily comparable now showing order of magnitude agreement for most of them.

Country Total Cases Density of Infected Population Lab-Confirmed Cases Total Deaths

Guinea 3814 3.0 ×  10−4 3358 2544

Sierra Leone 14124 2.2 ×  10−3 8706 3956

Liberia 10678 2.2 ×  10−3 3163 4810

Total 28616 15227 11310

Table 3.  Statistics of Ebola data for three different countries.
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fraction of population infected (real data) Rs(t) as a function of real time for the three countries Guinea, Liberia 
and Sierra Leone.



www.nature.com/scientificreports/

6Scientific RepoRts | 7:42594 | DOI: 10.1038/srep42594

Discussion
In this section we justify the choice of the parameters used in the model to obtain the results consistent with 
the real data. One can of course attempt to get a full calibration of a and c for given values of δ and q so that the 
choice of δ and q are automatically obtained from this calibration, however, we have refrained from doing so as it 
involves a huge computational calculation.

We have already justified the choice of δ between 1 and 2 in the last section. We have used a larger value of δ 
for Sierra Leone and a smaller value of q for Guinea to get the consistency. To justify why δ should be larger for 
Sierra Leone we note the following. Sierra Leone and Liberia are comparable in size but the density of population 
is much higher in the former. The density of population is 79.4/km2 and 40.43/km2 respectively for these two 
countries29. Hence the number of neighbours within the same distance is larger for Sierra Leone which implies a 
larger value of δ effectively (more short ranged).

On the other hand, the population densities of Guinea (40.90/km2)30 and Liberia are quite close so that one 
should use the same δ value. However, we need to justify why a smaller value of q is able to reproduce the data 
for Guinea. A smaller value of q indicates less infection probability which is possible if proper medical care and 
control measurements are taken. This is indeed true as we find from several documents that the disease was 
tackled most effectively in Guinea. Table 3 clearly shows that the maximum percentage of cases for Guinea were 
laboratory-tested which indicates that the process of contact tracing and treatment were more efficient. This is 
supported by the fact that in Guinea, about 56 contacts per infected person were traced compared to 23 in case 
of Sierra Leone31. We find from ref. 32 that MSF treated the largest number of reported cases in Guinea, in Sierra 
Leone the minimum out of reported cases. Thus most cases in Sierra Leone, even when reported, had received 
less attention while in Liberia, a large number is not confirmed or reported at all. Apparently, medical centers by 
international organisations have also been set up much earlier in Guinea as it was the epicenter of the disease and 
the disease started as early as in 2013 December. However, later activities could control the disease in Liberia and 
Sierra Leone as well, and the final number of deaths had been far less than initially anticipated. We also note a 
curious fact - though Guinea may have recorded the minimum number of cases, yet the disease spanned a longer 
duration compared to Liberia. Further analysis, beyond the scope of the present paper, may be able to explain this.

Although we have shown that by rescaling the real data by ρNp and the MC time by a suitable factor, one can 
get fairly good agreement between the real data and the simulated data, it has to be emphasized that the rescaling 
is somewhat manipulated by the results of the model. The ratio of the saturation values for the real data and the 
simulated data corresponds to the factor ρ. In principle one should incorporate more factors in the model to fit 
the real data independently. However, at the present stage qualitative consistency is what we emphasize on. To 
achieve quantitative consistency one needs to introduce more parameters making the model complex. These 
parameters may be related to features like inhomogeneity, mobility, more general initial conditions to name a few. 
We have made simple assumptions like homogeneity, i.e., uniform number of contacts for all agents. The initial 
condition has been taken to be identical: the disease commences with only one infected person. Our assumption 
that agents are immobile is supported by ref. 27 in which it is argued that migration did not play a role in the 
spreading. Even so, this simple model is able to yield data which is consistent with real data and we conclude that 
it captures the basic mechanism of the epidemic spread. The effect of the Ebola outbreak has been devastating in 
the West African countries. Apart from the human losses, economic loss has also been considerable33. The present 
study shows that the Euclidean model can be treated as a basic starting point and can be further developed by 
adding other features. This will make it very useful and important for making accurate predictions.

Methods
How the database was handled. We consulted the Ebola data for the number of cases detected in the 
three countries Guinea, Liberia and Sierra Leone in West Africa (The Centers for Disease Control and Prevention 
(CDC)34). The data is available from 25th March 2014 to 13th April 2016 at the time interval of a few days. The 
data is noisy and contains obvious errors as sometimes the cumulative data is shown to decrease which is unphys-
ical. The first available data is from March 2014 when Guinea was already struck with the disease for some time 
(first case in Guinea reported in December 2013) such that the data for the initial period is missing. For Liberia 
and Sierra Leone, the data for initial stage are available, however these are sparse and unreliable; often the data for 
number of death exceeds the number of cases. For this reason, the data has been analysed from the date when the 
number of cases detected is at least 50 for each country. Even then the errors cannot be fully avoided as for very 
late stages, the data being rare, also become somewhat unreliable. Hence, the entire data set has to be handled 
carefully.

In Table 3, a summary of the statistics of the Ebola data is presented and one can immediately note that all 
cases could not have been confirmed in the laboratory in the case of Liberia where number of deaths exceeds the 
laboratory confirmed cases. Obviously many cases were unreported. For Guinea, these two figures are closest and 
the data for Guinea is in fact the cleanest one.

Country a c T tp a/c

Guinea 0.0077722 ±  0.00070 0.0214467 ±  0.00189 59.5716 ±  1.33 228.88 0.362399

Liberia 0.0320618 ±  0.00464 0.0443399 ±  0.00636 42.5638 ±  2.02 132.62 0.723091

Sierra Leone 0.0274868 ±  0.00450 0.0387566 ±  0.00603 57.3669 ±  2.41 186.47 0.709215

Table 4.  Exponents a, c and T for rescaled data Rs(t) for three different countries. The values of a and c can 
be compared to those appearing in Table 2. tp values are approximately 8–9 times compared to the tp values 
obtained in the Monte Carlo simulations (Table 2).
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Another point needs to be mentioned. The disease has been officially declared over on 1st June 2016 for 
Guinea, 9th June 2016 for Liberia and 17th March 2016 for Sierra Leone35. But one can see from Fig. 1 that the 
cumulative data shows a saturation over fairly long period of time. Apparently a few stray cases delayed the 
declaration of the disease being over. For Liberia, for example, the disease was originally declared to be over as 
early as in May 2015 but two small flare-ups were reported later. However the cumulative data is hardly affected 
by the later cases. The data can be downloaded by clicking on the link “Ebola Data” in the page http://www.
physics-caluniv.in/parongama-sen/index.html

Model and Simulation method. In the Euclidean model, the nodes of the network are assumed to occupy 
the sites of a chain of length N. We generated random long range bonds by connecting nodes located at a distance 
l along the chain with a probability ∝ δ−P l l( ) ; the probability is normalised by making the total probability equal 
to unity. Once N/2 such bonds are constructed, the network is completed. The average degree of each node is 
three and it is expected that the inhomogeneity of the degree distribution is negligible. The disease spreading 
process is then simulated by assuming a single infected agent at any randomly chosen site in the beginning. All 
the neighbours are likely to be infected with a probability q in the next step. One generates a random number 
between 0 and 1, if it is less than q, the agent is taken to be infected. From the agents who are infected in the sec-
ond step, the disease spreads to their neighbours and the process continues. Infected people are removed within 
one unit of time, with the assumption that they are either dead or cured, and they can infect the susceptible agents 
during this one time step only. The dynamical evolution stops when there is either no infected agent at a particular 
step or when all of them have died. Several configurations are considered and the dynamical variables averaged.

In the present simulation, for the same network, the initial choice of infected site was repeated 400 times and 
the quantities averaged. A secondary averaging is made by considering 100 different network configurations. 
The number of nodes N and the total number of edges were kept fixed for any value of δ and q in the different 
realisations. Periodic boundary condition has been used in the simulation. Systems with size N =  211 has been 
considered.
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