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ABSTRACT
Background. Myocardial injury is a frequent complication after cardiac surgery with
cardiopulmonary bypass (CPB). This study aimed to test the hypothesis that melatonin
could attenuate myocardial injury in a rat CPB model.
Methods. Eighteenmale Sprague-Dawley rats were randomly divided into three groups,
n= 6 for each group: the sham operation (SO) group, CPB group and melatonin
group. Rats in the SO group underwent cannulation without CPB, rats in CPB group
intraperitoneal injected an equal volume of vehicle daily for 7 days before being
subjected to CPB and rats in melatonin group intraperitoneal injected 20 mg/kg of
melatonin solution daily for 7 days before being subjected to CPB. After 120 min
for CPB, the expression levels of plasma interleukin (IL) -6, IL-1β, superoxide dis-
mutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), creatine
kinase (CK) -MB and cardiac troponin T (cTnT) were measured. Reactive oxygen
species (ROS) were detected by dihydroethidium (DHE). Apoptosis was detected
by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining.
Mitochondrial damage and autophagosomes were detected by electron microscopy.
Apoptosis inducing factor (AIF) was detected by immunofluorescence. The expression
of B cell lymphoma/leukemia2 associated X (Bax), B cell lymphoma/leukemia 2
(Bcl-2), cytochrome C (Cyto-C), cleaved caspase-9, AKT, p-AKT, signal transducer
and activator of transcription 3 (STAT3), p-STAT3, LC3, P62, mechanistic target of
rapamycin kinase (mTOR), p-mTOR and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were determined using western blotting.
Results. Melatonin significantly decreased the levels of IL-1β, IL-6, MDA, CK-MB and
cTnT and increased the levels of SOD and GSH-Px, all of which were altered by CPB.
Melatonin reduced cardiomyocyte superoxide production, the apoptosis index and
autophagy in cardiomyocytes induced by CPB. The AKT, STAT3 and mTOR signaling
pathways were activated by melatonin during CPB.
Conclusion. Melatonin may serve as a cardioprotective factor in CPB by inhibiting
oxidative damage, apoptosis and autophagy. The AKT, STAT3 and mTOR signaling
pathways were involved in this process.
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INTRODUCTION
Cardiopulmonary bypass (CPB) is widely used in most cardiac surgeries and in the
treatment of other diseases. However, CPB is aggressive and can result in a high degree
of injury to organs, such as heart (Whitlock et al., 2015), lungs (Hirao et al., 2017), brain
(Von Rhein et al., 2014), kidneys (Belley-Cote et al., 2016), and intestines (Adamik et al.,
2017). Thus, an increasing number of studies have focused on organ protection after
CPB, especially myocardial protection. In addition to prompt coronary revascularization
to reduce myocardial ischemia time, antiapoptotic and anti-autophagic medication is
considered an effective potential therapy by cardiovascular surgeons (Khoynezhad, Jalali
& Tortolani, 2004).

Melatonin (N-acetyl-5-methoxytryptamine) is a highly conserved molecule, mainly
produced by the pineal gland andmitochondrial-rich organs such as the heart (Semak et al.,
2005; Tan et al., 2013), liver and brain (Reiter et al., 2017; Venegas et al., 2012). Because of
its antioxidant properties, it is regarded as an antiapoptotic and anti-autophagy medication
(Pi et al., 2015; Reiter et al., 2018; Zhang & Zhang, 2014). Previous studies demonstrated
that melatonin has significant effects on ischemia-reperfusion (I/R) injury, myocardial
chronic intermittent hypoxia injury, pulmonary hypertension, vascular diseases, valvular
heart diseases, and lipidmetabolism, suggesting its potential as a new therapeutic option for
cardiovascular disease (Sun, Gusdon & Qu, 2016). Pretreatment with melatonin increased
cell survival by activating a series of signaling pathways, thus leading to a reduction in
mitochondrial and cellular oxidative stress, mitochondrial fission, endoplasmic reticulum
stress, and apoptosis after cardiac I/R injury (Singhanat et al., 2018). However, the
protective effects of melatonin against CPB-induced myocardial injury are still little
know, although there is some evidence regarding its effect on decreasing the renal and
hepatic damage induced by CPB (Huang et al., 2008;Wang et al., 2009).

In the present study, the effect of melatonin on preventing CPB-induced myocardial
injury was investigated in a rat model, and the downstream regulatory mechanism of its
function was also studied.

MATERIALS & METHODS
Animals
Approximately 12-week-old healthy male Sprague-Dawley (SD) rats (450–500 g) were
obtained from the Laboratory Animal Center of Sun Yat-sen University (Guangzhou,
China, SYXK 2015-0107). All animals weremaintained in cages under constant temperature
(22 ± 2 ◦C), humidity (45 ± 5%), a 12 h day and 12 h night cycle, and they were given
standard rodent chow andwater ad libitum. There was no enrichment provided throughout
the study. All rats were euthanized by intraperitoneal injection of pentobarbital sodium
(50 mg/kg) to avoid or limit pain/distress. The rats were also euthanized if, (1) severe
body weight loss up to 10% in 1 week; (2) animal showing no inclination to feed or drink;
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(3) animal can’t tolerate the experiment. However, no rats were euthanized prior to the
planned end of the experiment. Any surviving rats at the conclusion of the experiment were
euthanized. All animal protocols were approved by the Institutional Animal Care and Use
Committee, Sun Yat-Sen University, Guangzhou, China (SYSU-IACUC-2020-000058),
and were performed in accordance with the NIH guidelines (Guide for the Care and Use
of Laboratory Animals).

Animal grouping and administration
A total number of 18 rats were randomly divided into three groups, n= 6 for each group:
the sham operation (SO) group, CPB group and melatonin group. Rats in the SO group
underwent cannulation without CPB, rats in CPB group intraperitoneal injected an equal
volume of vehicle daily for 7 days before being subjected to CPB and rats in melatonin
group intraperitoneal injected 20 mg/kg of melatonin solution daily for 7 days before
being subjected to CPB. The melatonin administration protocol (dose, way and duration
of administration) in this study was determined based on previous studies (Di et al., 2020;
Huang et al., 2008; Wang et al., 2009). Melatonin (Sangon Biotech, Shanghai, China) was
initially dissolved in ethanol and then diluted in sterile water (final concentration of ethanol
<5%).

Surgical procedure and sample collection
The ratmodel of CPBwas generated as previously describedwith somemodifications (Dong
et al., 2005). Briefly, individual SD rats were intraperitoneally administered pentobarbital
(50 mg/kg), and additional pentobarbital was used to maintain anesthesia. Respiration
was maintained by lung ventilation (Harvard Apparatus, Holliston, MA, USA) via a 16-G
tracheotomy tube. The right femoral vein was cannulated with a 20-gauge heparinized
catheter (Becton Dickinson Medical Devices, Suzhou, China), which was followed by
systemic administration of heparin (250 U/kg). The right femoral artery was cannulated
with a 22-gauge heparinized catheter for arterial infusion via the CPB circuit. The left
femoral artery was cannulated with a 22-gauge heparinized catheter to monitor arterial
pressure and to collect arterial blood for arterial blood gas analysis. An 18-gauge catheter
was inserted into the right jugular vein. The mini-CPB circuit consisted of a venous
reservoir, a roller pump (Longer Precision Pump, Baoding, China), a specially designed
membrane oxygenator (Kewei Medical Instrument, Dongguan, China), and sterile tubing
with an inner diameter of two mm for the venous and arterial lines. The CPB circuit was
primed with a total volume of 10 mL synthetic colloid solution (8.5 mL sterile hydroxyethyl
starch and 1.5 mL 5% NaHCO3). A flow rate of 100 mL/(kg/min) was maintained during
cardiopulmonary bypass. After 120 min for CPB, the remaining priming solution was
transferred into the rat, the cannulas were removed, and the incisions were sutured. The
sham control rats were anesthetized, ventilated, and cannulated but did not receive CPB.
Post-CPB monitoring lasted for 120 min, and then all the animals were euthanized.

Blood samples were collected from the right jugular vein via a drainage tube after
cannulation (T0), at the end of CPB (T1), and 120min after operation (T2). Approximately
0.6mL of bloodwas collected at each time point. The plasmawas obtained by centrifugation
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Figure 1 Experimental protocol (A) and schematic diagram of the CPBmodel (B). Experimental pro-
tocol (A) and schematic diagram of the CPB model (B). T0: after cannulation; T1: at the end of CPB; T2:
120 min after operation. SO, sham operation; CPB, cardiopulmonary bypass; MEL, melatonin; ip, in-
traperitoneal; MAP, mean arterial pressure; HR, heart rate; LV, left ventricle.

Full-size DOI: 10.7717/peerj.11264/fig-1

and stored at −80 ◦C before detection. The left ventricle tissues were sampled after
euthanized for further evaluation.

A detailed diagram of the experimental procedure is presented in Fig. 1.

Echocardiography
Cardiac function was assessed in conscious rats by using transthoracic echocardiography
(VisualSonics system, Toronto, Ontario, Canada), which was performed after cannulation
(T0), at the end of CPB (T1), and 120 min after operation (T2). M-mode and two-
dimensional echocardiography were performed to assess cardiac parameters, including
ejection fraction of the left ventricle, fractional shortening of the left ventricle, wall
thickness, left ventricular internal diameter, left ventricular mass, and left ventricular
volume. Echocardiography data were analyzed by investigators blinded to treatment and
genotype. The average of at least three measurements was used for each single data point.
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Plasma sample detection
The plasma levels of interleukin (IL)-6, IL-1β and cardiac troponin T (cTnT) were
analyzed according to the instructions of the commercial rat-specific enzyme-linked
immunosorbent assay kit (Elabscience Biotechnology, Wuhan, China). The plasma levels
of creatine kinase (CK)-MBweremeasured by an automated analyzer (Chemray 800, Rayto
Life and Analytical Sciences, Shenzhen, China). The plasma levels of superoxide dismutase
(SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were measured
using colorimetric kits (Jiancheng Institute of Bioengineering, Nanjing, China) according
to the manufacturer’s instructions.

In situ superoxide detection
Dihydroethidium (DHE) was used to assay the production of Reactive oxygen species
(ROS) in situ as described previously (Chan et al., 2007). Briefly, the slides of unfixed tissue
from different groups were incubated with DHE (Sigma, 10 µmol/L) in PBS at room
temperature for 30 min. Then, the slides were washed, fixed, mounted, and subjected to
fluorescence microscopic analysis (Carl Zeiss Microscopy, LLC, Thornwood, NY, USA).

Histologic analysis
The heart tissues were fixed in 4% paraformaldehyde, embedded in paraffin and sectioned
at a thickness of 5 µm. In situ apoptosis was examined by the terminal deoxynucleotidyl
transferase dUTP nick-end labeling (TUNEL) staining method using an In-Situ Cell Death
Detection Kit (Fluorescein) (Roche Applied Science, Mannheim, Germany) as reported
previously (Yue et al., 2017). Briefly, the slices were washed three times in 0.01 M PBS
and then permeabilized in proteinase K for 10 min. After an additional three washes, the
sections were incubated in TdT buffer at 37 ◦C for 1 h and then with antibody at 37 ◦C
for 1 h. Afterward, 4 Elzverts, 6-diamino-2-phenylindole (DAPI) was used to stain the cell
nuclei. The TUNEL/DAPI-positive cells represented apoptotic cardiomyocytes. Sections
were randomly selected, and five areas were randomly selected from each section. The
percentage of TUNEL-stained positive nuclei = number of TUNEL-positive nuclei/total
nuclei ×100. Apoptotic nuclei were quantified by counting the total number of TUNEL-
positive nuclei in an entire section from 6 different rat hearts per group.

The immunofluorescence staining procedure was reported previously (Hou et al., 2020).
Immunofluorescence staining of apoptosis inducing factor (AIF) was performed using
a primary antibody against AIF (Cell Signaling Technology, Danvers, MA, USA) and an
Alexa Fluor 568 secondary antibody (Invitrogen, Shanghai, China). Finally, the nuclei were
stained with DAPI (Sigma-Aldrich, St. Louis, MO, USA).

Images were captured by a Zeiss digital camera connected to a Zeiss VivaTome
microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY, USA).

Fluorescence intensity analysis
Data were collected as previously described in Hou et al. (2020). Immunohistochemical
expression was evaluated using Image-Pro Plus 6.0 software (Media Cybernetics, Silver
Spring, Maryland, USA). In brief, at least five fields with positive expression in a section of
myocardial tissue were randomly selected, and then these positive regions were analyzed
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with Image-Pro Plus 6.0 software to determine their integral optical density and area. The
average of the optical density values, which represented the expression intensity in the
section, was subsequently calculated.

Electron microscopy
The technique usedwas described previously (Mei et al., 2018). The specimenwas immersed
in 2.5% glutaraldehyde and then postfixed in 2% osmium tetroxide in sodium phosphate
buffer for 2 h at 4 ◦ C. The samples were dehydrated in a graded series of ethanol and
propylene oxide. Then, all samples were embedded in araldite. One-micrometer sections
were cut with an ultramicrotome (Leica EM UC7; Leica, Nussloch, Germany). After
staining with lead citrate and uranyl acetate, the sections were observed using a Hitachi
Transmission Electron Microscope (HT7700; Hitachi, Tokyo, Japan).

Western blotting
The technique used was described previously (Hou et al., 2020). Proteins were isolated
from heart tissues with lysis buffer (Beyotime Institute of Biotechnology, Shanghai, China)
that included a protease inhibitor cocktail (Millipore, Billerica, Massachusetts, USA).
Proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) membranes (Millipore,
Billerica, Massachusetts, USA). Primary antibodies against LC3, p-AKT, AKT, p-mTOR,
mTOR, p-STAT3, STAT3, Bax (Cell Signaling Technology, Danvers, MA, USA), P62, Bcl-2,
Cytochrome C and Caspase-9 (Abcam, Cambridge, MA, USA) were used. Subsequently,
the membranes were incubated with an HRP-conjugated secondary antibody (Thermo
Fisher Scientific, Waltham, MA, USA) at room temperature for 1 h, and antigen-
antibody complexes were detected by a western blotting luminol reagent (Sigma-Aldrich).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Proteintech, Rosemont, IL, USA)
served as an internal reference. ImageJ software was used to analyze the mean light density
of each band. The expression of target genes was normalized to that of GAPDH.

Statistical analysis
Data are presented as the mean ± Standard Error of Mean (SEM). Statistical analysis was
performed using SPSS v. 22.0 (IBM Corp, Armonk, NY, USA). The differences in the data
between the two groups were determined by Student’s t test. Comparisons among groups
were performed using one-way ANOVA followed by Tukey’s post hoc test. For all tests,
p< 0.05 was considered statistically significant.

RESULTS
Pretreatment with melatonin protects the heart from CPB-induced
injury
All rats survived the surgical procedures. The blood biochemical indexes of the rats during
the procedure are shown in Fig. 2. In the present study, we focused on the levels of
pro-inflammatory cytokines (IL-6 and IL-1β), oxidative stress markers (SOD, GSH-Px
and MDA) and myocardial injury markers (CK-MB and cTnT). In the CPB group, the
plasma levels of IL-6 (p< 0.05 at T1 and p< 0.001 at T2, Fig. 2A), MDA (p< 0.05 at T1
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and p< 0.001 at T2, Fig. 2E), CK-MB (p< 0.001 at both T1 and T2, Fig. 2F) and cTnT
(p< 0.001 at both T1 and T2, Fig. 2G) were significantly increased during the procedure
compared with those in the sham operation group at T1 and T2, while upregulation of
IL-1β at T2 (p< 0.05, Fig. 2B) was observed. The plasma levels of SOD (p< 0.01 at both
T1 and T2, Fig. 2C) in the CPB group were significantly decreased during the procedure
compared with those in the sham operation group at T1 and T2, while downregulation
of GSH-Px at T1 (p< 0.05) was observed (Fig. 2D). No abnormal heart function was
observed (Supplemental Fig. 1 and Table S1). Our results were consistent with those of
other previous studies (Pan et al., 2020; Song et al., 2018;Wang et al., 2018), indicating that
the CPB model was successfully established in this study and could be used for further
investigation. Compared with CPB alone, pretreatment with melatonin significantly
reduced the levels of IL-6 (p< 0.05 at both T1 and T2, Fig. 2A), CK-MB (p< 0.001 at both
T1 and T2, Fig. 2F), and cTnT (p< 0.05 at both T1 and T2, Fig. 2G) and increased the levels
of SOD (p< 0.05 at both T1 and T2, Fig. 2C) and GSH-Px (p< 0.05 at T1 and p< 0.01
at T2, Fig. 2D). Moreover, melatonin decreased the levels of MDA (p< 0.05, Fig. 2E) and
IL-1β at T2 (p< 0.05, Fig. 2B). These results suggested that the cardioprotective effect of
melatonin may exist during CPB.

Melatonin inhibits cardiomyocyte superoxide production and
apoptosis induced by CPB
Due to the alteration of MDA, SOD and GSH-Px levels in plasma, the intracellular
generation of ROS in cardiomyocytes was evaluated by DHE staining. As shown in Figs. 3A
and 3B, minimal fluorescence was detected in the SO group, and the fluorescence intensity
was dramatically enhanced in the CPB group but was significantly decreased in the
melatonin pretreatment group (SO vs. CPB, p< 0.001; CPB vs. MEL, p< 0.01).

TUNEL staining was used to detect the effect of melatonin on apoptosis induced by
CPB. Our data showed that few apoptotic cardiomyocytes were detected in myocardial
tissues from the SO group, but a significant number of TUNEL-positive cardiomyocytes
were observed in the CPB group (p< 0.001. Figures 3C, 3D). Pretreatment with melatonin
led to a significant antiapoptotic effect, as shown by reduced TUNEL-positive staining
(p< 0.001. Figures 3C, 3D). Then, electronmicroscopic analysis of cardiomyocytes showed
that mitochondrial swelling was more severe in the CPB group and was relieved after
melatonin pretreatment (Fig. 3E), suggesting that the mitochondrial apoptosis pathway
was involved. Furthermore, the detection ofmarkers of mitochondrial apoptosis by western
blotting confirmed this suggestion. Melatonin significantly decreased the expression of
the pro-apoptotic proteins Cyto-C, Bax, cleaved caspase-9 and AIF, the expression of
which were induced by CPB, and increased the expression of the anti-apoptotic protein
Bcl-2, while the Bax/Bcl-2 ratio was significantly decreased (all p< 0.05, Figs. 3F–3M).
These results suggest that melatonin might serve as a potential antiapoptotic medication
by regulating Bcl-2 family proteins and cleaved caspase-9 for cardioprotection during the
CPB procedure.
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Figure 2 Plasma levels of pro-inflammatory cytokines, oxidative stress markers andmyocardial in-
jury markers. Plasma levels of pro-inflammatory cytokines, oxidative stress markers and myocardial in-
jury markers. (A) IL-6 and (B) IL-1β; (C) SOD, (D) GSH-Px, (E) MDA; (F) CK-MB and (G) cTnT. CPB
vs. SO: * p < 0.05, ** p < 0.01, *** p < 0.001; MEL vs. CPB: # p < 0.05, ## p < 0.01, ### p < 0.001. SO,
sham operation; CPB, cardiopulmonary bypass; MEL, melatonin; IL: interleukin; SOD, superoxide dismu-
tase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde; CK-MB, creatine kinase-MB; cTnT, car-
diac troponin T; T0: after cannulation; T1: at the end of CPB; T2: 120 min after operation. n= 6 for each
group. Data are presented as the mean± SEM.

Full-size DOI: 10.7717/peerj.11264/fig-2
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Figure 3 Effect of melatonin on cardiomyocyte superoxide production and apoptosis induced by CPB.
Effect of melatonin on cardiomyocyte superoxide production and apoptosis induced by CPB. (A, B) The
production level of ROS in fresh myocardium was detected by using DHE fluorescence (red color, 400×,
n = 6 per group). (C, D) A TUNEL assay was used to assess cardiomyocyte apoptosis in ventricular tis-
sue (400×, n= 6 per group). (E) Electron microscopic analysis of cardiomyocyte cells. CPB led to the de-
struction of the myocardial ultrastructure and mitochondrial swelling, which was alleviated after mela-
tonin treatment (n = 3 for each group). Black arrow: mitochondria. Original magnification: 8000× and
15,000×. (F–K) Western blotting was used to assess the protein levels of Bax, BCL-2, Cyto-C, and cleaved
caspase-9. GAPDH served as the internal reference (n = 6 for each group). (L, M) Immunofluorescence
was used to detect AIF expression (n= 6 for each group). SO, sham operation; CPB, cardiopulmonary by-
pass; MEL, melatonin; ROS, reactive oxygen species; DHE, dihydroethidium; TUNEL, terminal deoxynu-
cleotidyl transferase dUTP nick-end labeling; Bax, B cell lymphoma/leukemia2 associated X; BCL2, B cell
lymphoma/leukemia2; Cyto-C, cytochrome C; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; AIF,
apoptosis inducing factor. Data are shown as the mean± SEM. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.

Full-size DOI: 10.7717/peerj.11264/fig-3

Melatonin activates the AKT and STAT3 signaling pathways in
cardiomyocytes during CPB
Melatonin can inhibit apoptosis by regulating the AKT and STAT3 signaling pathways via
specific receptors (Singhanat et al., 2018). To investigate whether these signaling pathways
were involved in the anti-apoptotic effect of melatonin, we used western blotting to detect
the levels of p-AKT, AKT, p-STAT3 and STAT3. As shown in Fig. 4, CPB significantly
decreased the phosphorylation of AKT and slightly elevated the phosphorylation of STAT3,
as shown in a previous investigation (Pan et al., 2020). Moreover, melatonin significantly
increased the phosphorylation of AKT and STAT3 compared with CPB alone (all p< 0.05,
Fig. 4). These data suggested that melatonin might inhibit apoptosis by upregulating the
AKT and STAT3 signaling pathways.

Melatonin treatment ameliorates CPB-induced autophagy of
cardiomyocytes
Melatonin can inhibit autophagy by interacting with its nuclear receptor ROR α (He et
al., 2016) or by regulating the AKT/mTOR pathway (Xu et al., 2020). In the present study,
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Figure 4 Effect of melatonin on the apoptosis signaling pathway induced by CPB. Effect of melatonin
on the apoptosis signaling pathway induced by CPB. The expression and phosphorylation of (A) AKT
and (B) STAT3 were detected by western blotting. SO, sham operation; CPB, cardiopulmonary bypass;
MEL, melatonin; STAT3, signal transducer and activator of transcription 3; n= 6 for each group. Data are
shown as the mean± SEM. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.

Full-size DOI: 10.7717/peerj.11264/fig-4

we investigated whether melatonin plays a role in cardiomyocyte autophagy induced by
CPB. As shown in Figs. 5A–5C, electron microscopic analysis revealed that the CPB group
showed an increase in the number of autophagosomes in the heart compared with the
SO group, and the number of autophagosomes in the heart was significantly decreased
in the melatonin-treated group. Moreover, western blotting showed that melatonin could
significantly reduce the levels of the autophagy marker LC3 while increasing the level of
P62, which was altered by CPB (Figs. 5D–5F). Furthermore, melatonin could significantly
increase the phosphorylation of mTOR (Figs. 5G, 5H), suggesting that the mTOR pathway
was involved in the anti-autophagy effects of melatonin. Thus, these data suggested that
melatonin could inhibit the autophagy of cardiomyocytes induced by CPB via the mTOR
signaling pathway.

DISCUSSION
In the present study, we first provided in vivo evidence that continuous intraperitoneal
injection of melatonin for 7 days protected the heart from injury induced by CPB. Different
from the previous study of adding melatonin to the prime of CPB (Huang et al., 2008;
Wang et al., 2009), we used intraperitoneal injection of melatonin. Melatonin significantly
decreased the levels of myocardial injury markers (CK-MB and cTnT), oxidative stress
markers (MDA) and pro-inflammatory cytokines (IL-6 and IL-1β), whichwere upregulated
byCPB, and increased the levels of the antioxidative production ofGSH-Px and SOD,which
were downregulated by CPB. Moreover, melatonin inhibited cardiomyocyte superoxide
production and apoptosis induced by CPB, in which the AKT and STAT3 signaling
pathways might be involved. Furthermore, melatonin could inhibit the autophagy of
cardiomyocytes induced by CPB, in which the mTOR signaling pathway was involved.
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Figure 5 Effect of melatonin on cardiomyocyte autophagy induced by CPB. (A–C) Electron micro-
scopic analysis of cardiomyocyte cells (n = 3 for each group). Western blotting was used to assess the
protein levels of LC3 and P62 (D–F) as well as p-mTOR and mTOR (G, H). GAPDH served as the in-
ternal reference. Black arrow: mitochondria, white arrow: autophagosome. SO, sham operation; CPB,
cardiopulmonary bypass; MEL, melatonin; mTOR, mechanistic target of rapamycin kinase; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase. n = 6 for each group. Data are shown as the mean± SEM.
∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.

Full-size DOI: 10.7717/peerj.11264/fig-5

Taken together, the results show that melatonin could serve as a cardioprotective factor in
CPB by inhibiting oxidative damage, apoptosis and autophagy.

Melatonin has been recognized as a potential cardioprotective agent that may have
beneficial effects on cardiovascular diseases, including hypertension, cardiac hypertrophy,
heart failure and ischemic heart disease (Reiter, Tan & Galano, 2014; Yang et al., 2014).
Patients with coronary heart disease have low plasma melatonin levels, especially patients
with a higher risk of cardiac infarction and/or sudden death (Dominguez-Rodriguez &
Abreu-Gonzalez, 2010; Dominguez-Rodriguez, Abreu-Gonzalez & Avanzas, 2012). A clinical
report showed that melatonin supplementation can ameliorate myocardial ischemic-
reperfusion injury by increasing the LVEF and reducing the levels of troponin-I, IL-
1β, iNOS and caspase-3 (Dwaich et al., 2016). The post hoc analysis of the MARIA
trial showed that the effect of melatonin was affected by the timing of reperfusion.
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It’s found that melatonin given <2.5 h after symptom onset could reduce myocardial
infarct size by approximately 40% as measured by cardiovascular magnetic resonance.
The results thus suggest that melatonin administered earlier may result in a greater
cardioprotective effect compared with delayed administration and this has potential
clinical implications for the treatment of patients with ST-segment elevation myocardial
infarction (Dominguez-Rodriguez et al., 2017). Several studies have shown that melatonin
protects against myocardial infarction (Ciosek & Drobnik, 2012), arrhythmias (Lee et al.,
2002), and cardiac toxicity (Tengattini et al., 2008). Thus, melatonin can serve as a novel
potential cardioprotective agent. However, few studies on its protective effects against
CPB-induced myocardial injury have been reported. Our study showed that melatonin
pretreatment could significantly decrease the levels of CK-MB, cTnT,MDA, IL-1β and IL-6
while increasing the levels of SOD and GSH-Px, which were altered by CPB, suggesting
that melatonin pretreatment could be an effective therapy for preventing CPB-induced
myocardial injury.

Melatonin can increase cell survival by activating a series of important signaling
pathways, resulting in a reduction in mitochondrial and cellular oxidative stress,
mitochondrial fission, endoplasmic reticulum stress, and apoptosis. Melatonin can activate
p-Akt and p-STAT3 by interacting with the receptors of the SAFE, RISK and Notch1/Hes1
pathways, resulting in reduced mitochondrial oxidative stress, increased antioxidant levels,
and reduced apoptosis (Nduhirabandi et al., 2016; Yu et al., 2016; Yu et al., 2015). STAT3
activation can lead to the formation of a STAT dimer that translocates into the nucleus
and promotes antioxidant gene expression, leading to oxidative stress. On the other hand,
STAT3 can inhibit Bax translocation, enhance the expression of the anti-apoptotic protein
Bcl2, and suppress opening of the mitochondrial permeability transition pore (mPTP),
resulting in cell apoptosis (Nduhirabandi et al., 2016; Yu et al., 2016). AKT activation can
decrease the level of the pro-apoptotic protein Bax and enhance the production of the
anti-apoptotic protein Bcl-2 (Yu et al., 2015). Next, the activation of caspase promotes the
release of cytochrome C and AIF, which mediate the mitochondrial regulation of apoptosis
(Ola, Nawaz & Ahsan, 2011). Our study showed that melatonin can reduce intracellular
ROS generation, the TUNEL-stained cell percentage, and the mitochondrial swelling of
cardiomyocytes during CPB (Figs. 3A–3E), which might result from the alteration of Bax,
Bcl-2, Cyto-C, AIF and Caspase-9, which are regulated by the AKT and STAT3 pathways
(Figs. 3F–3M, 4A, 4B). Taken together, the results suggest that melatonin can serve as an
antiapoptotic medication for cardioprotection during CPB.

Autophagy, an important degradation process that participates in the turnover of
damaged intracellular cytosolic proteins and organelles that is dependent on lysosomes,
is critical for the maintenance of normal cell function (Füllgrabe et al., 2014). CPB can
cause myocardial injury by altering myocardial autophagy (Hua et al., 2017). In the present
study, we observed that CPB dramatically increased the accumulation of autophagosomes
and enhanced LC3 levels while decreasing the p62 level, suggesting the presence of excessive
autophagy (Figs. 5A–5F). Our study also showed that melatonin can significantly decrease
the number of autophagosomes and the level of LC3 and enhance p62 levels (Figs. 5A–
5F), which is consistent with previous findings (Xu et al., 2020). Melatonin can inhibit
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autophagy by interacting with its nuclear receptor ROR α (He et al., 2016) or by regulating
the AKT/mTOR pathway (Xu et al., 2020). In our study, we found that p-mTOR was
downregulated in the CPB group but was significantly upregulated in the melatonin
treatment group (Figs. 5G, 5H), suggesting that mTOR signaling was involved in the
resistance to autophagy induced bymelatonin during CPB. Thus, melatonin can ameliorate
myocardial injury by attenuating autophagy via the mTOR pathway during CPB.

There are several potential limitations of this study that need to be discussed. First,
we only investigated the protective effect of melatonin on myocardial injury induced by
cardiopulmonary bypass, and did not study the adverse effects of melatonin. Second, we
used CPB in this study but did not perform aortic cross clamp and cardioplegic arrest in
this study due to the technical limits. Finally, we injected melatonin intraperitoneally rather
than orally. In terms of pharmacokinetics, previous study has shown that the bioavailability
of oral melatonin at 10 mg/kg in rats is 53.5%, while the bioavailability of melatonin at the
same concentration by intraperitoneal injection is 74%. Because of the first pass effect of the
liver, the bioavailability of oral melatonin in rats is relatively lower, while intraperitoneal
and intravenous injections of melatonin in rats have higher bioavailability (Yeleswaram et
al., 1997). For better clinical application, we will compare the therapeutic effects of oral,
intravenous and intraperitoneally.

CONCLUSIONS
In summary, melatonin significantly decreased the levels of myocardial injury markers
(CK-MB and cTnT), oxidative stress markers (MDA) and pro-inflammatory cytokines
(IL-6 and IL-1β). On the contrary, melatonin increased the levels of the oxidative stress
markers SOD and GSH-Px during CPB. Melatonin inhibited cardiomyocyte superoxide
production and apoptosis via the AKT and STAT3 pathways in CPB. Melatonin could
inhibit the autophagy of cardiomyocytes via the mTOR pathway in CPB. Taken together,
the results indicate that melatonin may serve as a cardioprotective factor in CPB by
inhibiting oxidative damage, apoptosis and autophagy.
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