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Deep-learning models can realize the feature extraction and advanced abstraction of rawmyoelectric signals without necessitating
manual selection. Raw surface myoelectric signals are processed with a deep model in this study to investigate the feasibility of
recognizing upper-limb motion intents and real-time control of auxiliary equipment for upper-limb rehabilitation training.
Surface myoelectric signals are collected on six motions of eight subjects’ upper limbs. A light-weight convolutional neural
network (Lw-CNN) and support vector machine (SVM)model are designed for myoelectric signal pattern recognition./e offline
and online performance of the two models are then compared. /e average accuracy is (90± 5)% for the Lw-CNN and
(82.5± 3.5)% for the SVM in offline testing of all subjects, which prevails over (84± 6)% for the online Lw-CNN and (79± 4)% for
SVM. /e robotic arm control accuracy is (88.5± 5.5)%. Significance analysis shows no significant correlation (p � 0.056) among
real-time control, offline testing, and online testing. /e Lw-CNN model performs well in the recognition of upper-limb motion
intents and can realize real-time control of a commercial robotic arm.

1. Introduction

Upper-limb rehabilitation robots are an innovative ap-
proach to rehabilitation training which lend strength and
promote recovery of the upper-limb motion functions in
stroke sufferers without over-burdening medical personnel
[1–3]. Many upper-limb rehabilitation robots have been
developed in recent years. MIT-Manus [4], for example, can
help stroke patients regain steady motion capability. MIME
[5], T-WREX [6], and NEREBOT [7] can train upper-limb
rehabilitation training motions over three degrees of free-
dom (3DOF). Previous researchers [8] proposed an exo-
skeleton robot also capable of 3DOF.

Training that is “active” rather than “passive” (i.e., that
centers on the patients’ intended motions throughout a
session rather than forcing them into a set regimen that does
not individually vary) can significantly enhance the effects of
training and improve patients’ rehabilitation experiences
[9–11]. Currently, existing man-machine interactive inter-
faces for body motion intent recognition function are based

on three modes: mechanical sensor signals [8], surface
myoelectric (sEMG) signals [12], and biological EEG signals
[13–15]. Mechanical sensors are accurate and reliable, but
they only reflect lag motion information and thus are not
conducive to real-time control. Man-machine interfaces
based on sEMG signal processing have seen rapid and ex-
tensive advancements in recent years. Both sEMG signals
and EEG signals reflect human motion intents. Non-in-
structive surface EMG technology effectively records the
electric activities of muscles [16–18]. Unlike the “on-off” [19]
or proportional control [16] strategies of traditional reha-
bilitation robots, patients’ sEMG signals are collected as their
upper-limb motion intents are acquired via pattern recog-
nition. /is allows for natural and flexible interactions be-
tween the patient and the rehabilitation robot.

/e support vector machine (SVM) [19], LDA [20], and
Gaussian mixture models (GMM) [18] are widely applied for
classification of robot-acquired signals. /e performance of
the technologies discussed above greatly depends on the
feature selection of signals. In most cases, feature selection is
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conducted by researchers manually based on their profes-
sional experience, which is known as “feature engineering”
[21–23]. Deep learning is a machine-learning method which
has become a wildly popular research topic in recent years. It
does not require manual feature extraction-feature extrac-
tion and advanced abstraction can instead be conducted
automatically on raw signals [24, 25].

High-performance deep-learning methods such as the
convolutional neural network (CNN) have been tested for
various gesture recognition applications [26–28]. Existing
sEMG signal collection technologies include sparse multi-
channel sEMG and high-density sEMG (HD-sEMG). HD-
sEMG records both temporal and spatial changes in muscle
activities via electrode arrays [29]; it can classify as many as
eight distinct hand motions [30]. However, an increase in
collection channels creates a dramatic increase in the
computational burden, which results in an overly complex
system that is incapable of real-time upper-limb rehabili-
tation performance. /e sparse multichannel sEMG can
recognize upper-limb motion intents while consuming
fewer computational resources.

Many previous researchers have explored gesture rec-
ognition with deep-learning methods and various dexterous
hand and artificial limb applications, but there have been
relatively few studies on deep-learning upper-limb reha-
bilitation robotics technologies. Previous researchers [31, 32]
used the traditional SVM algorithm for upper-limb motion
intent recognition and applied it in upper-limb rehabilita-
tion robots. Others [33] used a Back Propagation (BP) neural
network as a classification model, but this required manual
selection of energy and max values as inputs.

Many deep-learning models with different architectures
have been proposed for sEMG signal recognition based on
deep learning [34–37]. Training and verification are gen-
erally carried out on public or self-built datasets in an offline
manner. Accuracy usually differs between online and offline
recognition [38]; online recognition accuracy is lower than
offline [32, 38–40]. High online recognition accuracy and
good real-time performance are of great significance in
terms of practical application in rehabilitation robots or
artificial limbs. Researchers [41] have used Gaussian Naive
Bayes (GNB) and SVM for myoelectric signal recognition;
their models were verified both online and offline to realize
the real-time control of a hand exoskeleton. Others [42]
proposed an upper-limb prosthetic real-time control
method based on the motor unit drive.

/is study was conducted to test the feasibility of a
multiple-DOF, real-time robotic arm using myoelectric
pattern recognition for upper-limb rehabilitation training. A
three-channel sparse electrode is used to collect raw sEMG
signals of the deltoid, biceps brachii, and triceps brachii from
an upper limb. /e signals are then input into a Lw-CNN
model for body motion intent recognition. Six rehabilitation
motions were designed over the shoulder and elbow joints;
then, a dataset was established based on the motions of eight
volunteers. /e offline trained model was deployed and
verified through online recognition. A commercial robotic
arm was also tested to preliminarily validate the real-time
control performance of the proposed deep-learning model.

/e entire control course took 269ms, satisfying the re-
quirements for real-time control within 300ms [43–46].

2. Materials and Methods

2.1. Subjects. Eight subjects (denoted S1–S8) participated in
this experiment (Table 1). All the subjects were students of
Hebei North University at the time of their participation. All
completed a physical examination at the First Affiliated
Hospital of Hebei North University and were issued health
certificates before joining the experiment. /ey also signed a
consent form to publish details and/or images.

2.2. Experimental Protocols. /e upper-limb rehabilitation
robot investigated in this study was designed to train certain
motions in stroke patients’ elbow joints and shoulder joints.
As shown in Figure 1, six motion modes including elbow
flexion (EF), elbow extension (EE), shoulder flexion (SF),
shoulder extension (SE), elbow & shoulder flexion (ESF),
and elbow & shoulder extension (ESE) were designed
accordingly.

During his or her interaction with the robot, the subject
sat on a chair close to the table with the palm making a fist
facing upwards, the forearm perpendicular with the upper
arm, and the upper arm forming about a 20° angle with the
body for the initial training posture, “EE,” as the upper arm
was kept still. /e motion of the forearm to the body side
from EE is defined as “EF.” From this initial state, the
shoulder joints were controlled to move as the upper arm is
lifted for “SE.” For the “SF” motion, the upper arm fell from
SE back to the initial posture. /e “ESE” motion was defined
by lifting the upper arm and straightening the forearm from
the initial state. EF and EE only concerned motions of the
one-degree-of-freedom elbow joint. SF and SE concerned
simultaneous motions of elbow and shoulder joints. Subjects
actively exerted forces in performing ESF and ESE to control
the shoulder and elbow joints simultaneously. /ese two
motions were compounds of the aforesaid four motions,
including the abduction motion of upper arms, and involved
in the multi-role of musculus biceps brachii, musculus
triceps brachii, and deltoid. /ese six actions were presented
as separate action types for identification.

Figure 2 shows the experiment setup. /ree channels of
sEMG signals were collected in this research. sEMG elec-
trodes were, respectively, pasted on the surfaces of musculus
biceps brachii, musculus triceps brachii, and deltoid. In the
actual control experiment, to ensure safety, the subject’s left
hand did not touch the tail end of the robotic arm at any
point. /e system consists of three components: the sEMG
acquisition system (EAS), the motion recognition program
(MRP), and the robotic arm. As the subject’s upper limb
moved, sEMG signals were acquired from the activated
muscles via EAS./e raw sEMG signals were decoded by the
MRP to extract the subject’s motion intents, and then the
information was sent to the robotic arm.

Each experiment consisted of three sessions: offline
myoelectric pattern recognition analysis, online myoelectric
pattern recognition analysis, and real-time control sessions.
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In the first session, sEMG data were recorded to train the
deep model while collected samples were used for offline
analysis. In the online analysis session, the subject’s sEMG
signals were collected in real time and sent to the deployed
deep model for motion intent recognition. In the third
session, the robotic arm was controlled in real time based on
themotion intent recognition results of the second session to
simulate pulling motions in the subject’s “impaired” part to
complete the rehabilitation training process.

2.2.1. Session 1: Offline Analysis. In the first session, the
robotic arms were powered off while the EAS and MRP
started working. Before the experiment, the subjects fa-
miliarized themselves with the six motion modes. After
starting the experiment, the laboratory technician issued EF,
SE, or ESE motion commands to the subjects who then
completed motions at a constant rate within 2s according to
the instructions received. After 3s, the subjects completed
the corresponding extension or flexion motions within 2s
and returned to the initial state. EF, SE, and ESE motion
sequences were not strictly prescribed. /e reason why the
definite executive sequences were not used was that the
robustness of the model should be verified. Furthermore,
other potential factors introduced by fixed sequences on
impact test results could be prevented. For example, subjects
would subconsciously adapt to principles of such sequences
but would unconsciously adjust the strength of motions to
enhance the model’s recognition accuracy. After repeating
the motion 15 times, the subject was given a 5-minute break
to combat any muscle fatigue. While completing each
motion, the subject applied a level of comfortable force
(ranging within 30–40% as a maximum contraction). /ree
hundred motions were collected from each subject with 50
patterns for each motion. /ese 300 motions were used to
make deep-learning datasets, 70% of which were taken as
deep-model training sets and the remaining 30% as testing
sets for offline analysis of the deep model.

2.2.2. Session 2: Online Analysis. In this session, sEMG
signals were collected and sent to the trained deep model
from Session 1 for motion intent recognition. /e robotic
arm was then powered off. /e recognition results and
motion sequence numbers were recorded automatically in
the program. /e subject and tester were not allowed to
check the recognition results while the experiment was in
progress. Before making each motion, the subject reported

the name of the motion to be made to the tester who
recorded it immediately. /e subject completed the motions
in the same manner as in Session 1, with a 5-minute break
between every 15 motions. Each motion was completed at
least 50 times./e first 50 recognition results of each motion
were used for online analysis.

2.2.3. Session 3: Real-Time Robotic Arm Control. In the third
session, the robotic arm was powered on. /e deep model
trained in Session 1 was used to recognize the subject’s
motion intents; then, motion instructions were sent to the
robotic arm in real time. /e subject thus received real-time
classification feedback. /e real-time control experiments,
which are based on the online experiments, were addi-
tionally provided with the robotic arm control function, in
order to verify the delay of the robotic arm system and the
data transmission and to observe whether the total delay of
the system affected the user experience. Only the CNN
classifier was applied in the real-time control experiment
because the robotic arms in this experiment should move in
accordance with the recognition results. If two classifiers are
applied simultaneously, contradictory motion commands
might be generated, while the robotic arms only could re-
spond to the motion commands of one classifier./e robotic
arm was placed on the left side of the subject and simulated
pulling of the patient’s left hand to complete the rehabili-
tation motion of the left upper limb. /e subject randomly
started performing EF, SE, and ESE motions with the cor-
responding extension or flexion. Before beginning each
motion, the subject reported the motion name to the tester
who recorded it alongside the actual motions of the robotic
arm. Each motion was completed 50 times. /e PC appli-
cation program recorded the computation duration of the
deep model and order-sending delay as a reflection of the
system’s real-time performance. /e time delay of the ro-
botic arm system was determined by checking a datasheet of
the robotic arm (10ms).

2.3. Robotic Arm. A robotic arm, the Dobot Magician (Yue
Jiang Technology Co. Ltd., Shenzhen, China), was employed
in this study. /e robotic arm simulated a rehabilitation
robot to pull the subject’s upper limb to complete the desired
motion in real time. Dobot Magician robotic arms are
lightweight, easy to program, safe, and capable of 4DOF
(3DOF without the end effector) by rotation of the base by
−90°–+90°, big arm pitching of 0°–105°, forearm flexion or
extension of −10°–−95°, and horizontal rotation of wrist of
−90°–+90°. /ree stepping motors motivated each DOF
through real-time USB-UART connection according to
commands given by the computer. /e robotic arm’s end
effector was not installed because the focus of this work is
rehabilitation of the shoulder and elbow joints. /ree shafts
of the robotic arm were moved to simulate pulling of the
patient’s hand, driving the “impaired” limb to move.

In Session 3 of the experiment, the robotic arm was
placed on the left side of the subject with its tail end in
horizontal alignment with the palm center under the sub-
ject’s initial motion (EE), but not touching it. /e robotic

Table 1: Subject features.

Subject ID Age Gender Hand
S1 20 M R
S2 21 F R
S3 21 M L
S4 19 M R
S5 20 M R
S6 22 M R
S7 19 F R
S8 20 F L
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arm started a robot teaching mode immediately after it was
powered on. /e tester cooperated with the subject to
complete robot teaching operations of the six training
motions. /e robotic arm was switched into real-time
control mode and relevant motions were completed after
receiving control instructions sent by the PC.

2.4. sEMG Data Acquisition. Six elbow and shoulder joint
motions related to the biceps, triceps, and front deltoids were
designed to support this experiment. A sparse multichannel
sEMG (3 channels) was used to collect sEMG signals re-
flective of the subjects’ upper-limb motion intents. /e
sEMG acquisition system (EAS) is composed of electrode
plates, an analog front-end circuit board (AFE-board)
(sAFE-300, Zhituo Intelligent Technology Co. Ltd., Qing-
dao, China), and USB data collection card (USB3100, ART
Technology Co. Ltd., Beijing, China). /e subject’s skin was
cleaned with alcohol before pasting on the electrode plate
adjacent to the selected muscle. To simulate a compact
electrode, reference electrodes were placed at the non-
motorized muscle tendons near the differential electrodes.
/e raw sEMG signals were very weak in this case and highly

susceptible to electromagnetic interference, so they were
amplified and filtered with the AFE-board for AD conver-
sion into digital quantities.

/e AFE-board is mainly constituted of a differential
amplification circuit with AD8220 and a band pass filtering
circuit with OPA 364. Raw sEMG signals were input into the
data collection card after 1000-multiple differential ampli-
fication and 30–400HZ band pass filtering. /e USB3100
data collection card has an 8-channel, 12-digit AD input, 4K
FIFO memory, USB2.0 interface with a sampling rate of up
to 20 KS/s. /e data collection card provides a uniform,
shared driving program interface and supports multiple
development languages (e.g., Visual C++, NI LabVIEW).
/e data collection card was configured with the sampling
rate of 20KHz; then, signals were imported into a desktop
via USB interface (Windows 10, Intel core i5-7300HQ at
2.5GHz, NVIDIA GeForce GTX 1050 with 2GB GDDR5).
An application program was developed based on Microsoft
Visual C++ and Python3.6 and deployed on the desktop to
manage the sEMG data. /is program also processed sEMG
data with the deepmodel and controlled the robotic arm that
connected to the desktop.

2.5. sEMGData Processing. Figure 3 shows a diagram of the
data collection and processing program, where the collected
data is preprocessed before sEMG images and feature
vectors are generated and fed into the classifiers for motion
intent recognition. In Session 3, in order to avoid different
classification results generated from any two classifiers and
subsequent contradictory motion instructions for the ro-
botic arm, only the Lw-CNN classifier was used to output
results and generate control instructions.

Lw-CNN and SVM models were built based on Ten-
sorflow1.12, an open source machine-learning framework
launched by Google. /e designed and trained Lw-CNN
model can be easily deployed in an embedded system as per
its development in Tensorflow.

2.5.1. sEMG Data Preprocessing. /e discrete sEMG signals
sent by the data collection card were preprocessed for better
signal quality and acquisition of inputs needed by the deep
model classifier and SVM classifier. As shown in Figure 2,

Elbow
flexion

Elbow 
extension

(a)

Shoulder
extension

Shoulder flexion

(b)

Elbow and shoulder
extension

Elbow and shoulder
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Figure 1: Upper-limb motions. (a) Elbow flexion and extension; (b) shoulder flexion and extension; (c) elbow and shoulder flexion and
extension.

Robot arm

PC

Data acquisition card

AFE-board

sEMG 
electrode

Figure 2: Experimental setup.
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1KHz downsampling was conducted on the raw input
sEMG signals. A notch filter (Q� 30) was established to filter
50Hz power interference of the AC power supply. A
20–450Hz digital band pass filter and amplitude normali-
zation were operated to improve the signal-to-noise ratio
(SNR) of the sEMG signal. In view of the real-time appli-
cation of the proposed method, the total duration for col-
lection, preprocessing, classification, and robotic arm
control of sEMG signals was restricted within an upper limit
of 300ms [43–46]. /e sEMG data were segmented into
192ms analysis windows with 15ms of slippage rate in-
cluding offline/online classification and real-time control.

A motion trigger was used to judge whether a motion
had taken place in the experiment. /e average mean ab-
solute value (MAV) of each channel signal was computed at
the pre-collection stage, wherein 75% of MAV was set as the
threshold [47]. /e MAV of each analysis window was
computed during the experiment. If the threshold was
exceeded, the analysis window was deemed to contain
motion intent information. /e analysis window and two
subsequent windows were processed and input into the deep
model classifier and SVM classifier for motion intent clas-
sification. /ree-channel analysis windows containing
motion intent information and 192× 3� 576 data points
were obtained. /ree sEMG images were input into the deep
model for processing; then, the final classification result was
obtained with the majority voting algorithm based on three
judgments.

As with most traditional pattern recognition algorithms,
the SVM classifier requires a discretized characterization of
the signal [32]. In a previous study, different signal eigen-
values were selected in order to train three SVM classifiers
for the offline test. Specifically, SVM1 chose the fourth-order
autoregressive (AR), the root mean square amplitude (RMS),
the waveform length (WL), and the number of zero crossings
(ZC) as feature vectors [39]. SVM2 chose the mean absolute
value (MAV), the number of zero crossings (ZC), the
waveform length (WL), and the number of slope sign
changes (SSC) as feature vectors. SVM3 chose the root mean
square (RMS) amplitude, the mean absolute value (MAV),
the fourth-order autoregressive(AR) coefficients, and
waveform length (WL) as feature vectors. /e research

results proved that the SVM3 classifier boasted the highest
recognition accuracy, namely, (82.5± 3.5)%. /erefore, the
SVM3 classifier was selected for comparison with the Lw-
CNN classifier in subsequent experiments.

2.5.2. Deep-Learning Model. /e feasibility and real-time
performance of the upper-limb motion intent recognition
based on the Lw-CNN architecture were assessed in a series
of experiments. /e network topology is shown in Figure 4.
/e model stacks 2 convolutional blocks composed of one
convolutional layer (16 filters 3× 3 in size, step length of 1,
and padding parameter set as “same”) and another con-
volutional layer (32 filters 3× 3 in size, step length of 1, and
padding parameter set as “same”). A Maxpolling pooling
operation (2× 2 kernel, padding parameter set as “same”)
was conducted after each convolution to minimize the
quantity of model parameters and prevent overfitting.

After the convolution, two-dimensional sensors were
converted into one-dimensional vectors by flattening. A
Softmax operation and two fully connected (FC) layers were
then imposed. A dropout with a probability of 0.5 was placed
after the first fully connected layers to prevent overfitting. All
layers have ReLU nonlinearity as activation function and are
equipped with Batch-Normalization (BN) to counter the
internal covariate shift. /e Lw-CNN model presented in
this paper can process a 192ms input window using only
367 k parameters. It is especially well-suited to real-time
applications and can be deployed in an embedded system.

2.6. StatisticalAnalysis. /e accuracy was computed for each
subject under different sessions and with two different
recognition models, the Lw-CNN and SVM, to assess the
performance of the proposed model. Two-way ANOVA was
used to test two classifiers (CNN and SVM) and classifi-
cation accuracies to compare offline versus online testing
(significance level of p< 0.05). One-way ANOVA was used
to further compare offline and online testing and determine
whether there was significant difference when Lw-CNN was
used (p< 0.05). Confusion matrices of the recognition result
with different models under each session were drawn.
Precision, recall, and F1-score results were used to evaluate

AFE-board (analog 
amplifier, filter),
USB3100 (A/D)

Trigger
Digital filter,
amplitude,

normalization,
downsampling

sEMG
acquisition system

(EAS)

Motion recognition program (MRP)

Segmentation Lw-CNN

SVM
RMS

MAV

AR

WL

sEMG image

Feature vector

Preprocessing Motion
recognition

Robtic arm

Subject

Figure 3: Flowchart of collection and processing of sEMG signals. Note: EAS includes an analog front end filtering amplification circuit and
a data collection car. /e motion recognition program (MRP) runs on the PC.
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the recognition performance of the model towards the six
motions (equations (1)–(3)). FP denotes the number of false
positives, TP denotes the number of true positives (labeled
correctly), and FN denotes the number of false negatives.

precision �
TP

TP + FP
, (1)

recall �
TP

TP + FN
, (2)

F1-score �
2∗ precision∗ recall
precision + recall

. (3)

3. Results

Figure 5 shows average classification accuracy of each
subject with two classifiers. /e error line denotes the
standard deviation for recognition accuracy of each subject’s
six motions. /ere were significant differences among
subjects, but the Lw-CNN model outperformed the SVM
model in terms of overall recognition accuracy. /e highest
recognition accuracy of the Lw-CNNmodel in offline testing
was 95% (S7) and the lowest accuracy was 85% (S1). /e
maximum recognition rate of the SVM model was 86% (S5)
and its lowest rate was 79% (S4, S6). /e standard deviations
of recognition accuracy on themotions were lower than 7 for
both models with a maximum of 6.5 (S1, Lw-CNN). /e
highest recognition accuracy of Lw-CNN model in online
testing was 90% (S5, S7) and the lowest was 78% (S4). /e
highest recognition rate of the SVMmodel was 83% (S6) and
the lowest was 75% (S7). /e standard deviations of rec-
ognition accuracy for the six motions were lower than 7 in
both models with a maximum of 6.16 (S1, SVM).

/e accuracies of all subjects in each session are displayed
in Figure 6. /e Lw-CNN’s average offline classification
accuracy was (90± 5)% and its median value was 89.75%./e
SVM’s average accuracy was (82.5± 3.5)% with a median of
82%./emean online classification accuracy of Lw-CNNwas
(84± 6)%, wherein the medium was 85%. /e average SVM
value was (79± 4)% with a median value of 79.25%. In the
control session, the recognition accuracy of the Lw-CNN
model was (88.5± 5.5)% and its median value was 88.75%.

/e effects of online and offline testing modes and
classifiers on recognition accuracy were determined by
conducting variance analysis on four groups of data of
classification models, Lw-CNN and SVM offline and online,
through two-way ANOVA. /e classifiers exerted the most
significant influence on recognition accuracy
(p � 0.11∗ 10 – 4, η2 � 0.447, ω2 � 0.426); different testing
methods also significantly affected testing accuracy
(p � 0.0045, η2 � 0.138, ω2 � 0.122). No significant influences
were observed among different recognition modes or clas-
sifiers on recognition accuracy (p � 0.4177, η2 � 0.001,
ω2 � −0.005). /ough no significant difference between
online and offline classification accuracy and real-time
control accuracy was found in the Lw-CNN according to
one-way ANOVA (p � 0.056), the real-time control and
offline accuracy was obviously higher than the online ac-
curacy (Figure 6).

Figure 7 shows confusionmatrices of Lw-CNN and SVM
classifiers in offline and online sessions as well as the control
session experiment. Each confusion matrix synthesizes the
recognition results of six motions across eight subjects. /e
Lw-CNN model performed the best in the offline testing
scenario, showing more accurate recognitions of all six
motions than other experimental modes or the SVM model.
/e quantity of accurate recognitions on the motions was
higher in the offline mode than online regardless of which
model was used. /e quantities of wrong recognitions were
higher for ESE and ESF motions than the other four
motions.

Figure 8 shows the precision, recall, and F1-score of
recognition results of the six motions of the classifiers Lw-
CNN and SVM in offline and online modes and the classifier
Lw-CNN in the control session. /e Lw-CNN model more
accurately recognized all six motions than the SVM model.
/e recognition accuracy was also higher on all six motions
in the offline testing mode than online. /e recognition
accuracy of the EF motion was highest in the offline mode
(p � 92.5%); the recognition accuracy for the EE motion was
highest in the online mode (p � 84%). /e recognition re-
sults were worst for motions ESE and ESF regardless of
which recognition model or testing mode was used. /e
confusion matrices and fold lines show lower recognition
accuracies for SE and SF than EE or EF. /e system appears
to easily and accurately recognize elbow joint motions.

C2:12 × 12@32
C1:24 × 24@16

Kernel size:3 × 3
stride length:1

Padding = “same”

Kernel size:3 × 3
Stride length:1

Padding = “same”

P1:12 × 12@16

Max pooling 
padding = “same”

P2:6 × 6@32

Max pooling 
Padding = “same”

FL1:1 × 1152@1

F1:1 × 256@1
F2:1 × 6@1

So�max

Dropout 0.5

Figure 4: Proposed Lw-CNN architecture.
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Figure 9 shows statistical results of time spent on each
function of the system under real-time control testing with
the proposed Lw-CNNmodel./e hardware delay caused by
analog front end (AFE) circuit was neglected. Data trans-
mission between the data collection card and PC was re-
alized by a high-speed USB2.0 while time spent on FIFO
function, transmission delay, and data preprocessing were
also neglected. /e response time of the whole system se-
riously influenced the sizes of analysis and slippage win-
dows. Only three analysis windows were recognized while
the window slippage rate was set to 15ms to satisfy the real-
time requirements, so preparation time for generating and
inputting data to the Lw-CNN model was
192 + 15 + 15� 222ms. /e computation time of the Lw-
CNNmodel was dominated by the data processing time./e
time spent sending control commands to the robotic arm
after motion recognition via UART (115200 bps) was also
counted. /e robotic arm datasheet showed that the com-
mand response delay of robotic arm was 10ms. /e data

processing time was 19–29ms and the command trans-
mission delay was 5–8ms. /e maximum total delay of the
system was 269ms (S5) and the minimum was 257ms (S6),
which satisfy the lowest relevant real-time requirements
(300ms delay).

4. Discussion

In this study, a three-channel sparse multichannel sEMG
was used to collect sEMG signals of deltoid, biceps, and
triceps of subjects’ upper limbs in a motion intent recog-
nition experiment centered on six shoulder and elbow joint
motions. /e motions of the robotic arm were controlled in
real time using Lw-CNN classifiers. /e Lw-CNN classifier
performed better both online and offline than the SVM.
Motion intent recognition via Lw-CNN is feasible in upper-
limb rehabilitation training where feature values do not need
to be selected manually; the optimum model parameters are
instead obtained automatically by training the model on
different subjects. /e flexibility and robustness of the
proposed model are stronger than those of traditional
machine-learning methods.

Deep-learning models generally require more burdensome
and lengthy computations than traditional machine-learning
methods (e.g., SVM, LDA) [18], which is not conducive to real-
time application [48]. /e total time spent by the system in
completing the recognition task should be lower than 300ms to
satisfy real-time requirements. A commercial robotic arm was
used for end-to-end verification of the Lw-CNN model’s real-
time capability over an analysis window of 192ms and window
slippage rate of 15ms. /e real-time requirement was indeed
satisfied in the experiment (<269ms). /e maximum time for
recognition computation with the Lw-CNN model was 29ms
and the maximum computation time for recognition with the
SVM classifier was 15ms.

/e real-time control accuracy of the proposed method
was higher than its online classification accuracy, unlike the
results of previous studies [33, 34]. /is can be attributed to
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Figure 5: Offline (a) and online (b) classification accuracies of each subject under classifiers L-CNN and SVM. Note: each bar has an error
line which denotes the mean value and standard deviation of recognition accuracy across each subject’s six respective motions.
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the hardware limits of the robotic arm. For example, when
the robotic arm was under the EE state, the EF instruction
was recognized as EE and triggered to move; this result was
skipped, so it did not influence the overall accuracy. /e
subject was also allowed to see the motion results during the
real-time control experiment, so he or she received real-time
feedback from the robotic arm. /e subject was asked to use
a comfortable force level (preferably around 30–40% of
maximum voluntary contraction), but he or she may have
unconsciously made fine adjustments to the rate and force of
the motions to realize higher accuracy. One-way ANOVA
showed no significant difference (p � 0.056) in real-time
control in offline versus online modes.

/e recognition accuracies of Lw-CNN and SVM clas-
sification models on EE, EF, SE, and SF motions were higher
than those on ESE or ESF (Figure 9). /e ESE and ESF
involved motions of both shoulder and elbow joints, so
coordinated effects between muscles were generated and
drove down the recognition accuracies of the classifiers. It is
very difficult to recognize body motion intents in the context
of coordinated muscle effect [19]. Additional sEMG or HD-
sEMG channels and more complicated classification models
are often used to increase classification accuracy in studies
concerning gesture recognition [49]. However, this greatly
increases the amount of system computation necessary
making these methods unsuitable for real-time control.

/e feasibility of sEMG signal-based motion recognition
with deep models for the real-time control of upper-limb
rehabilitation equipment was explored in this study. Rela-
tively few channels were used with the Lw-CNN model to
allow for effective real-time performance./emodel showed
high recognition rates on six separate motions. A deep
model must be trained on a dataset composed of numerous
samples; higher quantities of samples enhance the recog-
nition accuracy. In this study, the analog signal was band-
pass-filtered using AFE-board. In the data preprocessing, a
digital band-pass filter and a 50Hz notch were used to
further improve the signal quality (SNR). For stroke pa-
tients, the muscle movement on the affected side was im-
paired, and the EMG signal strength was weaker compared
to the healthy side; i.e., the signal SNR was relatively low.
However, it is theoretically possible to identify the patho-
logical signals using the proposed analog filtering and digital
filtering preprocessing methods.

In this study, 300 samples were selected for each subject
to train Lw-CNN model. To determine whether greater
quantities of samples would significantly enhance the
model’s accuracy, 2000 samples for each motion of subjects
S1 and S2 were collected for a total of 12000 samples; 300,
600, 1800, 3600, 7200, and 12000 samples were then selected,
respectively, to create training datasets (denoted DS-3, DS-6,
DS-18, DS-36, DS-72, and DS-120). Figure 10 shows the

362

370

380

367

329

345

5

5 4

5 12 7

99

4 8

10

2

5

21

9

3

4 2

1 98

11 11 15 13

12 161188

EE

EF

SE

SF

ESE

ESF

EE EF SE SF ESE ESF
Offline (CNN)

350

300

250

200

150

100

50

(a)

336

331

345

329

308

319

11 10 14 17 12

191513913

13

12 14 17 18 31

3011161311

8 7 12 14 14

1520158

EE

EF

SE

SF

ESE

ESF

EE EF SE SF ESE ESF
Offline (SVM)

300

250

200

150

100

50

(b)

352

361

374

365

336

6 7 11 13

8757

2 4

4 4

14 1186

7 9 12 9 21

12

6

342

11

12

25

11

86

4

EE

EF

SE

SF

ESE

ESF

EE EF SE SF ESE ESF
Control (CNN)

300

250

350

200

150

100

50

(c)

9 6 12 16 10

1614117

4 8 9 11 14

13

26

1638

9

6 11 14 11 24

14 15 15

16

12

347

340

354

344

321

334

EE

EF

SE

SF

ESE

ESF

EE EF SE SF ESE ESF
Online (CNN)

350

300

250

200

150

100

50

(d)

323

324

338

327

294

296

35

2219

16 1714

1611 15 21

1822141211

13

6 9

10 148

17 14 20 20

3321191516

EE

EF

SE

SF

ESE

ESF

EE EF SE SF ESE ESF
Online (SVM)

300

250

200

150

100

50

(e)

Figure 7: Confusion matrices obtained by different classifiers and different testing methods for eight subjects performing six motions: (a)
offline testing results of Lw-CNN classifier; (b) offline testing results of SVM classifier; (c) real-time control testing results of Lw-CNN
classifier; (d) online testing results of Lw-CNN classifier; (e) online testing results of SVM classifier.
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offline experimental results with the same Lw-CNN model
and training parameters on these datasets. /e recognition
accuracy of S2 increased from 88% to 92% when the DS6
dataset was used. After further increase in the number of
dataset samples, the accuracy did not substantially increase.
/e same phenomenon was observed for subject S1. When

the DS-120 dataset was used, the recognition accuracy was
slightly lower than that of the DS-72 dataset. Due to the large
number of DS-120 dataset samples, the subject is required to
make a lot of movements during the sample collection
process, during which muscle fatigue and poor contact of the
labeled electrodes were unavoidable. Some sample points
might generate big noise, resulting in slight reduction of the
model’s recognition rate. As a whole, for the dataset of
different scale sizes, the deep model had a higher recognition
accuracy, showing the stronger generalization ability of the
deep model.

Recognition accuracy is also influenced by analysis and
slippage window sizes. Smaller windows and lower slippage
rates enhance the real-time performance of the system and
reduce the amount of recognition computation necessary
but also significantly affect the recognition accuracy. /e
analysis window sizes selected in this study were 50ms,
150ms, and 192mwhile slippage rates were 5ms, 10ms, and
15ms. /e corresponding recognition accuracies of the Lw-
CNN model in offline mode are shown in Table 2. Recog-
nition accuracy was markedly influenced by the window size
and greatly reduced by lower slippage rates. When the 50 s
analysis window was selected, the recognition accuracy was
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Figure 8: Precision, recall, and F1-score obtained by different classifiers and different testing methods. Each result curve combined
recognition results of 6 motions of 8 subjects: (a) offline testing results of Lw-CNN classifier; (b) offline testing results of SVM classifier; (c)
real-time control testing results of Lw-CNN classifier; (d) online testing results of Lw-CNN classifier; (e) online testing results of SVM
classifier.
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lower than 50%. Larger windows would be necessary in
practice to satisfy real-time requirements.

Deep models were used in this study for high-precision
recognition of elbow and shoulder joint motion intents in
real time. /e proposed method can be deployed in an
intelligent man-machine interactive interface of upper-limb
rehabilitation robots. It can also be used to improve the
interactive flexibility of existing rehabilitation robots. /e
trained Lw-CNN model only has 367 k parameters and can
be very easily deployed into an embedded system.

5. Conclusions

A novel technique was developed in this study to rec-
ognize upper-limb motion intents based on myoelectric
patterns. /e proposed technique can be used for upper-
limb rehabilitation training based on the real-time con-
trol of robotic equipment. /e offline and online

classification accuracies of two classifiers, Lw-CNN and
SVM, were measured on eight subjects. Both classifiers
were more accurate when deployed offline than online.
/e Lw-CNN performed better than the SVM in online
classification. /e Lw-CNN was further used to recognize
six separate upper-limb motions as a commercial robotic
arm was controlled in real time. An average control ac-
curacy of 88.75% was achieved. /e proposed Lw-CNN
model has only 367 K parameters. /is paper concluded
that applying a lightweight deep model for motion intent
recognition was feasible and met the real-time require-
ments. /e performance of the deep-learning model in
the online control test and the evaluation criteria need to
be further studied in the future. A real upper-limb re-
habilitation robot will also be applied to optimize the
rehabilitation motions discussed here. /is will allow for
the intelligent and flexible control of the upper-limb
rehabilitation robot.
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Figure 10: Offline testing with Lw-CNN model and different sizes of datasets (subjects 1 and 2).

Table 2: Offline testing accuracies with use of Lw-CNN model under different analysis window sizes and slippage rates.

Offline CNN-accuracy (%)
W50–O52 W50–O10 W50–O15 W150–O5 W150–O10 W150–O15 W192–O5 W192–O10 W192–O15

S1 42 37 53 76 79 78 79 83 85
S2 32 41 40 79 82 84 81 84 88
S3 39 46 57 80 78 86 83 86 92
S4 22 37 30 83 85 89 85 87 91
S5 41 48 63 73 81 82 82 86 87
S6 43 40 45 80 90 93 89 90 94
S7 32 51 50 84 82 90 89 93 95
S8 29 38 48 80 82 87 84 86 86
Mean 35 42.25 48.25 79.38 82.38 86.13 84 86.88 89.75
SE1 7.45 5.39 10.22 3.54 3.74 4.76 3.59 3.23 3.77
1Standard error. 2w50–O5 denotes the analysis window of 50ms, slippage 5ms.
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