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Abstract

Plasmids, when transferred by conjugation in natural environments, must overpass restric-

tion-modification systems of the recipient cell. We demonstrate that protein ArdC, encoded

by broad host range plasmid R388, was required for conjugation from Escherichia coli to

Pseudomonas putida. Expression of ardC was required in the recipient cells, but not in the

donor cells. Besides, ardC was not required for conjugation if the hsdRMS system was

deleted in P. putida recipient cells. ardC was also required if the hsdRMS system was pres-

ent in E. coli recipient cells. Thus, ArdC has antirestriction activity against the HsdRMS sys-

tem and consequently broadens R388 plasmid host range. The crystal structure of ArdC

was solved both in the absence and presence of Mn2+. ArdC is composed of a non-specific

ssDNA binding N-terminal domain and a C-terminal metalloprotease domain, although the

metalloprotease activity was not needed for the antirestriction function. We also observed

by RNA-seq that ArdC-dependent conjugation triggered an SOS response in the P. putida

recipient cells. Our findings give new insights, and open new questions, into the antirestric-

tion strategies developed by plasmids to counteract bacterial restriction strategies and settle

into new hosts.

Author summary

Horizontal gene transfer is the main mechanism by which bacteria acquire and dissemi-

nate new traits, such as antibiotic resistance genes, that allow adaptation and evolution.

Here we identified a gene, ardC, that enables a plasmid to increase its conjugative host

range, and thus positively contributes to plasmid fitness. The crystal structure of the anti-

restriction protein ArdC revealed a fold different from other antirestriction proteins. Our

results have wide implications for understanding how a gene enlarges the environments a

plasmid can colonize and point to new targets to harness the bacterial DNA uptake

control.
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Introduction

Horizontal gene transfer (HGT) is the transmission of genetic material between organisms

that are not in a parent–progeny relationship [1]. The clinical relevance of the HGT process

lies in the acquisition and dissemination of genes involved in conferring bacterial resistance to

antibiotics (AbR) between unrelated pathogens. When bacteria face selective pressures, as

those exerted by antibiotics, horizontal acquisition of AbR allows the diversification of the

genomes, increasing survival opportunities [2]. Conjugation is the main HGT process that

allows the transfer of genes encoded in autonomous plasmids. This process requires the

machinery to build a direct contact between a donor and a recipient cell [1]. Conjugation can

be modulated by environmental factors or bacterial strategies based on genetic approaches

that are coded in the chromosome (host barriers) or plasmid DNA (plasmid barriers). Plasmid

barriers include entry exclusion [3] or fertility inhibition [4], which reduce conjugative trans-

fer. Host barriers can be mediated through SOS response modulation [5,6], CRISPR-Cas sys-

tems [7] or restriction and modification (R-M) systems.

R-M systems allow bacteria to discern between self and foreign DNA invading the cell, lead-

ing to its destruction. They require two enzymatic activities: a methyltransferase that provides

protection to its own DNA and an endonuclease that cleaves the unmethylated invading DNA

[8]. There are four main groups of R-M systems. Type I R-M, the most sophisticated R-M sys-

tem, requires three genes: hsdR, hsdM, and hsdS and their products associate in R2M2S com-

plexes. The S subunit recognizes 13–15 bp sequences, usually asymmetric and bipartite. DNA

cleavage is at a location away from the specificity site [9–11]. There is a coevolutionary arms

race between bacteria to avoid entrance of foreign DNA molecules and parasitic DNA mole-

cules such as plasmids or bacteriophages to enter a putative host avoiding the restriction by

bacterial R-M systems. The antirestriction mechanisms to counteract R-M systems can be

divided into four main types based on its mode of action: DNA modification, transient occlu-

sion of restriction sites, sabotage of host R-M activities, and inhibition of restriction enzymes

[10].

R388 plasmid is the prototype of the IncW incompatibility group of plasmids. IncW plas-

mids have a low copy number, a wide range of AbR, and a broad host range (BHR) [12]. R388

has 35 genes assorted in functional groups or modules, among them, a gene coding for an anti-

restriction protein called ArdC [12]. Here, we present ArdC crystal structures and the ardC
role in interspecies conjugation. We have also identified transcriptional changes associated

with ardC-mediated conjugation. These results show that ArdC is involved in broadening the

R388 plasmid host range.

Results

ardC is required for R388 conjugation from E. coli to P. putida
R388 plasmid (GenBank Accession Number BR000038.1) is composed of three functional sec-

tors (S1 Fig): one for general maintenance (modules of replication, stable inheritance and

establishment) located in the leading region, a sector for AbR and integration, and a third one

for conjugation (modules of DNA transfer replication and mating pore formation) [12]. We

expected the stable inheritance and establishment region to be required in interspecies conju-

gation. pSU2007, a KnR R388 derivative, was transferred with different efficiencies from E. coli
BW27783-NxR to other bacteria (Fig 1A). The transfer of pIC10 (R388ΔkfrA-orf14), an R388

derivative without the stability and maintenance region, was more dissimilar to that of

pSU2007 from E. coli to P. putida KT2440 where the conjugation frequency dropped around

1000-fold. In the stability and maintenance gene region deleted in pIC10 there are 13 genes
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that code for proteins homologous to some with predicted function of fertility inhibition (osa)

[13], proteins of unknown function (klcB, nuc1, nuc2, orf7, orf8, orf9, orf12, and orf14), tran-

scriptional regulators (kfrA, and ardK), ssDNA binding protein (ssb), and antirestriction

(ardC). ArdC protein (297 amino acids and 33.2 KDa, GenBank Acc. No. FAA00054.1) exhib-

ited an in vitro antirestriction function towards Type I and II R-M systems [14]. Thus, we con-

structed plasmid pLGM25 (R388ΔardC) to check if the effect observed in conjugation with

pIC10 could be due to the lack of the ardC gene. This plasmid was introduced into E. coli
BW27783-NxR and then conjugated to E. coli BW27783-RifR or P. putida KT2440 (Fig 1B).
We observed that the absence of ardC in the conjugative plasmid pLGM25 reduced the conju-

gation frequency to P. putida from 3.8E-02 to 9.0E-05, but not to E. coli. Thus, the results

observed for pIC10 could be explained to a large extent by ardC absence.

ardC is needed in recipient cells

To check if ArdC was needed in donor or recipient cells, transfer of ΔardC pLGM25 plasmid

was measured when complemented by the overexpression of ardC in donor E. coli cells, or in

recipient P. putida cells. As shown in Fig 1C, ardC did not improve the conjugation frequency

when overexpressed in donors. On the other hand, overexpression of ardC in recipient cells

increased the conjugation frequencies, reaching pSU2007 conjugation levels. Thus, it seems

that the expression of ArdC is specifically required in the recipient, and not in donor cells.

ArdC is a ssDNA-binding protein with a metalloprotease domain

R388 ArdC crystal structure was solved at 2.6 Å resolution using a selenomethionine-derivative

protein structure solved by single anomalous dispersion as described in Materials and Methods.

Using this preliminary structure, the apo ArdC structure was solved at 2.0 Å resolution by

Fig 1. ArdC effect in conjugation. A) Effect of the kfrA-orf14 region on R388 plasmid conjugative transfer from E. coli to different bacteria.

Conjugations were performed as described in Materials and Methods at 37 ºC except for P. putida and A. tumefaciens (done at 30 ºC) for 1 h except

for A. baumannii and V. cholerae (done for 4 h). R388 was used in conjugations towards E. coli, S. typhimurium and K. pneumoniae. The pSU2007

plasmid was used in conjugations towards the rest of the strains. Donor E. coli BW27783-RifR cells were used as donors in mating experiments with

E. coli, S. typhimurium, and K. pneumoniae. Donor E. coli BW27783-NxR cells were employed in matings with the rest of the strains. Conjugation

frequencies are shown as transconjugants per recipient (T/R). Horizontal bars represent the mean ± SD of N = 9–20 (Student’s t-test: � p< 0.1, ��

p< 0.01, ��� p< 0.001, ���� p<0.0001). B) Effect of ardC and kfrA-orf14 deletions on plasmid conjugative transfer (1 h at 37˚C) from E. coli
BW27783-NxR to E. coli BW27783-RifR or P. putida KT2440 (N = 6–12). C) Effect in the conjugation frequency of pLGM25 when expressing ardC in

donors or recipients. The effect of the presence of plasmid pUCP22 or pUCP22::ardC in donors or recipients is shown. Conjugation was done for 1 h

at 37˚C with 0.1 mM IPTG in the mating mixture (N = 9).

https://doi.org/10.1371/journal.pgen.1008750.g001
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molecular replacement (MR). Apo ArdC crystallized in the H3 space group containing one mole-

cule per asymmetric unit. Data collection and refinement statistics are given in Table 1.

ArdC is composed of two structural domains: An N-terminal domain (residues 1–134) and

a C-terminal domain (residues 151–297) joined by a long and flexible loop (135–150) (Fig 2A

and 2B). Electron density was not observed for the N-terminal residues 1–6, the flexible small

loop residues 33–39, residues 136–141 in the region connecting both domains and C-terminal

residues 294–297. The N-terminal domain is composed of three α-helices (α1-α3), a three-

stranded β-sheet (β1, β3, and β4) that supports a long and protuberant β-hairpin (β3-β4), a

smaller two-stranded antiparallel β-sheet formed by β2 and β5, as well as three 310 helices

labeled from η1 to η3 (Fig 2A and 2B). The C-terminal domain is composed of six α-helices

(α4-α9) and short three-stranded antiparallel β-sheets (β6-β8) as shown in Fig 2A and 2B.

The ArdC structure was compared to those deposited in the PDB using the Dali server [16].

ArdC N-terminal domain closest structural homolog is present in a nucleotide excision repair

Table 1. Data collection and refinement statistics for ArdC structures a.

ArdC SeMet ArdC native ArdC-Mn

Wavelength (peak) 0.9792 0.9793

Resolution range 47–2.6 (2.69–2.6) 39.5–2.0 (2.07–2.0) 54.8–2.7 (2.8–2.7)

Space group R 3: H R 3: H P 32

Unit cell a = b = 136.9 c = 51.3

α = β = 90 γ = 120

a = b = 136.8 c = 51.7

α = β = 90 γ = 120

a = b = 116.5 c = 162.1

α = β = 90 γ = 120

Total reflections 443798 (44597) 537291 (33696) 1158240 (114678)

Unique reflections 10970 (1098) 24366 (2408) 66345 (6492)

Multiplicity 40.5 (40.6) 22.1 (13.9) 17.5 (17.4)

Completeness (%) 99.82 (99.64) 99.8 (98.5) 96.6 (96.9)

Mean I/sigma(I) 66.78 (6.54) 37.1 (3.1) 25.7 (2.6)

Wilson B-factor 46.69 31.87 47.81

R-merge 0.5962 (1.055) 0.7636 (1.274) 0.6992 (1.47)

R-meas 0.6046 (1.07) 0.7814 (1.326) 0.7198 (1.514)

CC1/2 0.937 (0.901) 0.773 (0.474) 0.691 (0.572)

CC� 0.984 (0.974) 0.934 (0.802) 0.904 (0.853)

Reflections used in refinement 24339 (2406) 65278 (6491)

Reflections used for R-free 1230 (111) 3008 (320)

R-work 0.1726 (0.2154) 0.2207 (0.2823)

R-free 0.1976 (0.2410) 0.2943 (0.3499)

CC(work) 0.864 (0.814) 0.855 (0.672)

CC(free) 0.817 (0.837) 0.845 (0.581)

Number of non-hydrogen atoms 2412 16374

Protein residues 276 2008

RMS(bonds) 0.008 0.010

RMS(angles) 1.16 1.17

Ramachandran favored (%) 97.76 92.79

Ramachandran allowed (%) 1.49 5.71

Ramachandran outliers (%) 0.75 1.5

Rotamer outliers (%) 0.00 0.00

Clashscore 3.46 16.63

Average B-factor 36.39 46.75

a Statistics for the highest-resolution shell are shown in parentheses.

https://doi.org/10.1371/journal.pgen.1008750.t001
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protein called Rad4 (PDB: 2QSG; Z-score: 4.5), a component of the eukaryotic nucleotide exci-

sion repair (NER) pathway. Rad4 is composed of an inactive transglutaminase fold domain

and three different β-hairpin domains (BHD). The three tandem BHD domains form a large

DNA binding surface [17]. ArdC N-terminal domain is more similar at a sequence level to the

second BHD domain of Rad4 (BHD2), although BHD2 is considerable smaller (about 50

amino acids long compared to the 134 residues of ArdC-N). It lacks some ArdC-N structural

features, such as the starter ArdC α1, α2, and final 310 motifs. Moreover, the protuberant β-

hairpin formed by β3 and β4 is larger in ArdC (Fig 3A). ArdC N-terminal domain possesses

the V121FNADQ126 sequence located within a 310 helix (η2) between β4 and β5 (Fig 2B). This

region forms a crossover with the β2 to β3 region and creates a sharp twist of the chain known

as the “squiggle” motif [15]. This motif in Rad4 is proposed to be responsible for a highly flexi-

ble region that could facilitate recognition of DNA sequences.

Fig 2. ArdC structure. A) Cartoon representation of two views of the ArdC structure. N-terminal ssDNA-binding domain (ssDBD) is shown in blue and C-

terminal metalloprotease domain (MPD) in orange. α-helices are labeled from α1 to α9 and β-strands are labeled from β1 to β8. A dashed line schematizes the

disordered loop joining both domains. B) ArdC sequence with secondary structure information. ArdC sequence is colored by domains and α-helices and β-

strands are labeled as in A). 310 helices are labeled from η1 to η3. The residues involved in metal coordination are framed. The “squiggle” signature proposed

by [15] for Rad4 is underlined in blue. C) Electron density of the metal-binding site in the ArdC-Mn crystal structure solved at 2.7 Å resolution. Residues and

molecules involved in metal coordination (H201, H205, E229, and H2O) or activity are labeled. Distance in Å to the metal is shown in purple. D) Electrostatic

potential surface. The negative surface is colored in red and the positive surface in blue (calculated by APBS tool). The expected binding areas for DNA and

metal cofactor are indicated.

https://doi.org/10.1371/journal.pgen.1008750.g002
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The surface electrostatic map (Fig 2D) reveals a positively charged groove in the region of

the N-terminal domain adjacent to the C-terminal domain, suggesting a DNA binding site

between both structural domains. By electrophoretic mobility shift assays (EMSA), we deter-

mined that ArdC preferentially binds ssDNA oligonucleotides over dsDNA molecules (Fig 4)

in accordance with previous results [14]. Moreover, binding to partial dsDNA with 5’ or 3’ ter-

minal ssDNA overhangs is preferred over binding to perfectly paired complementary dsDNA

duplex (Fig 4). We will name ArdC N-terminal domain hereafter ssDNA-binding domain

(ssDBD).

Regarding the C-terminal domain (amino acids 151–297), according to the Dali server [16]

the closest structural homologs were the DNA binding metalloproteases Spartan (PDB:

6MDW; Z-score: 6.4) and IrrE (PDB: 3DTE; Z-score: 5.5) (Fig 3C and 3D). Spartan is a protein

involved in the cleavage of proteins irreversibly cross-linked to DNA to preserve this way

genome stability [18]. IrrE protects D. radiodurans from UV radiation DNA damage by prote-

olysis of a negative transcriptional regulator, DdrO, which represses the expression of DNA

damage response genes involved in SOS response [19]. These proteins belong to the gluzinzin

metalloprotease family characterized by the presence of the conserved residues HExxH located

on the “active site helix” (α5 in ArdC) and an additional conserved motif (E,H)xx(A,F,T,S,G)

located in the contiguous α-helix or “glutamate helix” (α7 in ArdC) [20] (Fig 2A and 2B). The

surface electrostatic map revealed a negatively charged catalytic pocket (Fig 2D). We will name

ArdC C-terminal metalloprotease domain MPD.

Fig 3. ArdC structural homologs. A) Superposition of ArdC (green) with the Rad4 protein bound to UV-damaged DNA

(2QSG). The Rad4 TGD domain is shown in beige, BHD1 in pink, BHD2 in purple, and BHD3 in red. For clarity, Rad23

(present in 2QSG structure) has been removed. Detailed view of ArdC ssDBD domain superposed to the Rad4 BHD2 domain.

B) Superposition of ArdC (green) with the Spartan SprT domain (6MDX; grey). The SprT Zn2+-binding sub-domain (ZBD) is

shown in light grey and the metalloprotease sub-domain (MPD) is shown in dark grey. Detailed view of the metalloprotease

active center with the residues involved in catalysis in sticks numbered as (MPD/ArdC). C) Superposition of the ArdC structure

(green) with the IrrE-Zn protein from Deinococcus radiodurans (3DTI, grey). Detailed view of the active center with the

residues involved in catalysis in sticks numbered as (IrrE/ArdC).

https://doi.org/10.1371/journal.pgen.1008750.g003

Fig 4. ArdC DNA-binding preferences assessed by EMSA. ArdC binding of a 6FAM-labeled 45 bases ssDNA oligonucleotide (Fluor-

T87I2), a perfectly paired complementary 45bp dsDNA duplex (Fluor-T87I2 + T87I1), and two partial dsDNA with 5’ or 3’ terminal

ssDNA overhangs (Fluor-T87I2 + Mid1) and (Fluor-T87I2 + Mid2) was performed at increasing concentrations of ArdC (0, 125 nM,

250 nM, 500 nM, and 1 μM), as described in Materials and Methods. Protein-DNA complexes were resolved by native 10%

polyacrylamide gels and visualized by a fluorescent image analyzer.

https://doi.org/10.1371/journal.pgen.1008750.g004
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The two histidines of the active site helix and the glutamic acid of the glutamate helix have

been shown to coordinate a catalytic divalent metal ion, usually zinc. However, gluzinzin

metalloproteases maintain the catalytic activity with Co2+, Mn2+ or Ni2+ too due to the flexibil-

ity of these three metal coordination geometries [20,21]. To assess the metal used by ArdC the

stability of ArdC was assayed in the presence of different metal cofactors. ArdC showed

increased thermal stability (assayed by ThermoFluor) in the presence of Ni2+, Mn2+ or Co2+

(ΔTM> 4˚C), but not in the presence of Zn2+, Ca2+, Mg2+, Cu2+ or Fe3+ (S1 Table). Moreover,

to know the conformation of the active site when bound to metals, ArdC was crystallized in

the presence of MnCl2 (Materials and Methods). ArdC-Mn crystallized in the P32 space group

containing eight molecules per asymmetric unit and the structure was solved at 2.7 Å
(Table 1). Mn2+ is tetrahedrally coordinated by H201, H205, E229 and an H2O molecule (Fig

2C). H205 is oriented towards the metal by interaction with the conserved E228 through the

non-coordinating nitrogen atom. The E202 residue of the HE202xxH motif orients and acts as

a catalytic base for the activation of a water molecule that coordinates the metal. The H2O mol-

ecule could act as a Lewis acid to allow the nucleophilic attack [20]. By analogy with other glu-

zinzin metalloproteases, the conserved ArdC residue Y255 could stabilize by a hydrogen bond

the polypeptide chain to be cleaved [22]. The metalloprotease sub-domain (MPsD) in Spartan

shares the active center structure with ArdC MPD except that MPsD uses a third histidine

instead of a glutamic acid for metal coordination (Fig 3B).

It had been proposed that ArdC could avoid ssDNA degradation by HhaI, a type II restric-

tion enzyme able to cleave both ssDNA and dsDNA [14]. According to our structural results,

this ArdC DNA protection could be due to ArdC MPD activity targeting the restriction

enzyme. To test this hypothesis, the inhibition of HhaI by ArdC was assayed in the presence of

ssDNA M13mp18 (7.2 kb) and Mg2+. As observed in S2 Fig, ArdC was able to avoid ssDNA

cleavage by HhaI but we did not observe HhaI degradation by ArdC.

Since its 3D structure defined ArdC as a protease, we tried to find a specific protein target.

ArdC mutant E229A (supposed to be inactive) was purified and used as prey for co-purifica-

tion of potential targets in P. putida KT2440 cell lysate by the pull-down technique. The only

protein that co-eluted with ArdC was PP_0941, a protein of unknown function similar to the

50S ribosome subunit associated protein YjgA (S3 Fig).

SOS response is activated in P. putida recipient cells by the transfer of an

ardC-containing plasmid

IrrE, the bacterial closest structural homolog to ArdC, triggers SOS response by cleaving the

transcriptional regulator DdrO in an analogous way to the RecA-LexA system [19]. To check

if ArdC could have similar activity on plasmid conjugation, we analyzed by RNA-seq changes

in gene expression when an ardC-containing plasmid was transferred from E. coli to P. putida.

As described in Materials and Methods, P. putida KT2440 was mixed in a conjugation filter

with either E. coli BW27783-NxR bearing no plasmid (NP), E. coli BW27783-NxR bearing

pSU2007 (ardC+) or E. coli BW27783-NxR bearing pLGM25 (ardC-).
As expected according to the results shown in Fig 1B, significant conjugation frequency dif-

ferences between ardC+ and ardC−conditions were observed (S2 Table). RNA-seq results (S3–

S5 Tables and S4 Fig) showed that: (a) R388 genes involved in conjugation are highly upregu-

lated in the ardC+ condition regarding the ardC−condition (S5 and S6 Tables and S4A Fig).

This is consistent with the zygotic induction observed in the recipient cells after conjugation

[23]; (b) several donor E. coli genes and pathways involved in flagellar motility, SOS and stress

responses and different metabolic pathways are downregulated in the ardC−condition regard-

ing the NP or ardC+ conditions (S5 and S7 Tables, and S4B Fig); (c) SOS genes are upregulated

PLOS GENETICS ArdC antirestriction protein
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in recipient P. putida cells when receiving ardC+ containing plasmid with respect to NP or

ardC−conditions. Differential expression of P. putida genes in recipient cells when the ardC-

containing plasmid is transferred is shown in S8 Table and S4C Fig.

ArdC metalloprotease activity is not required for conjugation to P. putida
Being ArdC a ssDNA binding protein with a metalloprotease domain, we checked if this pro-

teolytic activity was needed for ArdC activity in conjugation. The ardC gene was mutated to

ardC_E229A in pSU2007 to generate plasmid pLGM33. Mutation of the glutamic acid of the

active site involved in metal coordination to alanine, E229A, is expected to deactivate the pro-

teolytic center of ArdC, as it occurs in other family members. Plasmids pSU2007 or pLGM33

were conjugated from E. coli to P. putida. Surprisingly, pLGM33 conjugation frequency

resulted to be like that of pSU2007, around 0.01 transconjugants per recipient (T/R) (Fig 5A).

Besides, the ardC_E229Amutant gene was tested for its ability to complement pLGM25 (R388

ΔardC) plasmid in mating experiments from E. coli to P. putida KT2440. The in trans expres-

sion of ardC_E229A in P. putida KT2440 recipient cells was able to increase the conjugation

frequency of pLGM25 at the same levels as the expression of the wt ardC gene (Fig 5B). Thus,

ArdC metalloprotease activity is not required for the host range broadening activity at least in

P. putida.

ArdC counteracts the HsdRMS system in both P. putida and E. coli
To identify the functional target of ArdC, different P. putidamutant strains were assessed as

recipients in mating experiments. RecA dependent SOS response is activated in ardC+ conju-

gation recipient cells as shown by the RNA-seq experiments (S8 Table). To check the role of

this response in conjugation, firstly pSU2007 and pLGM25 were conjugated from E. coli to P.

putida KT2440ΔrecA. The frequency of conjugation of pSU2007 to P. putida KT2440ΔrecA

Fig 5. Effect of ArdC E229A mutant on plasmid conjugative transfer. A) Conjugation of E. coli BW27783 bearing pSU2007 or pLGM33

(pSU2007_ardC_E229A) to P. putida KT2440. Conjugation was performed for 1 h at 37˚C. Horizontal bars represent the mean ± SD of N = 3

observations. B) Effect in the conjugation frequency of pLGM25 when expressing ardC_E229A in recipient cells. Conjugation of pLGM25 in E. coli
BW27783 donor cells to P. putida KT2440 recipient cells bearing pUCP22::ardC or pUCP22:: ardC_E229A. Conjugation was performed for 1 h at

37˚C with 0.1 mM IPTG added to the mating mixture (N = 9).

https://doi.org/10.1371/journal.pgen.1008750.g005
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was about 10−2 T/R (Fig 6A). Thus, RecA dependent SOS response in P. putida recipient cells

is not essential for conjugation. Moreover, the frequency of conjugation of pLGM25 to P.

putida KT2440ΔrecA was around 10−4 T/R, meaning that the absence of recA does not enhance

conjugation in the absence of ardC. In addition, pSU2007 and pLGM25 were conjugated from

E. coli to P. putida EM42, which carries deletions of several prophages and other accessory

genes (Δprophage1 Δprophage4 Δprophage3 Δprophage2 Δtn7 ΔendA-1 ΔendA-2 ΔhsdRMS
Δflagellum Δtn4652) that could harass the heterologous gene expression (because their associa-

tion to genetic instability or attributed to the unfruitful usage of metabolic resources). Any of

these genes removed from P. putida EM42 could affect the establishment of the plasmids

acquired by conjugation. The conjugation frequency towards EM42 strain was not affected by

the ardC deletion (Fig 6A) indicating that ArdC could be counteracting the action of the prod-

ucts of one or more of the deleted genes in the EM42 strain. To identify the gene(s) responsible

for the observed phenotype, pSU2007 and pLGM25 were conjugated from E. coli to P. putida
mutants with deletions in single or several genes. pLGM25 only reached pSU2007 conjugation

levels (around 0.1 T/R) in the P. putida KT2449ΔhsdRMS strain EM422 (Fig 6A). Similar

results were observed at 30˚C (S5 Fig). The hsdRMS operon was thus the main responsible for

the effect observed in EM42. pLGM25 was efficiently transferred between P. putida KT2440,

being its conjugation frequency around 0.1 T/R (Fig 6B). However, pLGM25 transfer drasti-

cally dropped from P. putida EM422 (ΔhsdRMS) to P. putida KT2440 unless pLGM36 was

present in the P. putida KT2440 recipient cell. Thus, ardC is counteracting the effect of the

HsdRMS R-M system in the incoming DNA.

The E. coli strain BW27783 used as donor and recipient in the mating experiments shown

in Fig 1B was a non-restricting and modifying strain (rK
-mK

+), and thus not suitable to check

for the ArdC effect in R388 conjugation between E. coli cells. So, to evaluate if the E. coli
HsdRMS R-M system was also targeted by ArdC, a non-restricting and non-modifying

(rB
-mB

-) E. coli strain, BL21(DE3), was used as a donor. When pLGM25 was transferred to E.

coliMG1655 (rK
+mK

+) its conjugation frequency significantly decreased in comparison to

pSU2007 transfer, but not to E. coli BW27783 (rK
-mK

+) (Fig 6C). Moreover, the conjugation

frequency was again rescued when ArdC was expressed in the recipient cell.

Discussion

Antibiotic resistance determinants and xenobiotic degradation genes are extensively dissemi-

nated in different ecological niches by conjugative BHR plasmids. BHR plasmids evolved dif-

ferent strategies to avoid obstacles to their entrance in new recipient cells. In this article, we

determined that ArdC protein, produced by the IncW BHR plasmid R388, is required for

interspecies conjugation from E. coli to P. putida. ArdC was first studied by [14], who showed

an in vitro antirestriction function towards Type I and II R-M systems. They observed that

ArdC showed a 38% identity with the N-terminal region (about 300 amino acids, DUF1738

domain (pfam08401)) of TraC1 primase from RP4 plasmid. Since TraC1 travels to the recipi-

ent cell during conjugation presumably bound to the ssDNA that is being transferred (T-

strand) [14], they proposed that ArdC could be also transferred during conjugation bound to

the plasmid T-strand. Besides, they proposed that ArdC protects the incoming DNA from host

endonucleases through restriction site occlusion. However, they failed to detect any significant

influence of ArdC on the efficiency of an IncW plasmid transfer between a non-restricting and

non-modifying donor E. coli and an EcoK-restricting recipient E. coli strain. We demonstrated

in this work that ArdC plays indeed an in vivo function in IncW plasmid conjugation. ArdC

role involves its expression in recipient cells. Consequently, complementation of pLGM25

(R388ΔardC) with ardC in donor cells neither recovered wt plasmid conjugation frequencies
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Fig 6. Effect of HsdRMS systems on R388 plasmid conjugation. A) Effect of ArdC on plasmid conjugative transfer from E. coli to P. putida KT2440

mutants. The conjugation frequencies (T/R) to P. putida KT2440 wt strain or different mutants were obtained after conjugation for 1h at 37˚C. The

deleted gene(s) in each strain is shown. EM42 is Δprophage1, Δprophage4, Δprophage3, Δprophage2, Δtn7, ΔendA-1, ΔendA-2, ΔhsdRMS, Δflagellum, and
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from E. coli to P. putida nor between E. coli strains, while ArdC expression in the recipient

cells did. Thus, although our experiments do not rule out ArdC export during conjugation in

the wild type system, it is not a requirement for its activity, contrary to what was proposed

[14]. TraC1 of RP4 and Sog primases of IncI1 plasmids are transferred to the recipient cell dur-

ing conjugation[24]. They have in common a topoisomerase-primase (TOPRIM) domain

located either in the C-terminal part of TraC1 or the N-terminal part of Sog. Both primases

differ in that TraC1 contains the DUF1738 domain, which is also present in ArdC. TOPRIM is

not present in ArdC. The antirestriction activity of the TraC1 primase has not been investi-

gated but, in the light of our results is a reasonable hypothesis. In any case, a putative TraC1

antirestriction activity seems redundant, since antirestriction against the Type I R-M system

was demonstrated both in vivo [25] and in vitro [26] for KlcA, another RP4 protein.

DUF1738 and TOPRIM domain accretion in a single protein seems to be a specific adapta-

tion. Inspection of the RefSeq plasmid database (version 90) using Hidden Markov Model

searches for TOPRIM (PF13362) and DUF1738 (PF08401) domains revealed the presence of

1,334 TOPRIM-containing proteins and 877 DUF1738-containing proteins. Only 84 plasmid

proteins contained both domains and they were encoded in 83 plasmids. Additionally, 203

plasmids encoded both domains, but each in a separate protein thus totalling 286 plasmids

encoding both DUF1738 and TOPRIM domains, either fused or independent (S6 Fig). An

overwhelming proportion of plasmids encoding either DUF1738 or TOPRIM domains also

encoded a MOB relaxase and can thus be considered transmissible by conjugation [27]: 939

out of 1242 TOPRIM-encoding plasmids, 667 out of 831 DUF1738-encoding plasmids, 252

out of 286 DUF1738+TOPRIM-encoding plasmids, and 82 out of 83 plasmids encoding both

domains in the same protein. While transmissible plasmids encoding TOPRIM and DUF1738

domains in separate proteins were distributed in seven different MOB classes, all but one of

those encoding both domains in the same polypeptide belonged to the MOBP class (roughly

half of them IncP1 plasmids).

Further information about ArdC activity was obtained by solving its crystal structure. Inter-

estingly, ArdC contains an N-terminal ssDNA binding domain and a C-terminal metallopro-

tease domain. ArdC is structurally similar to DNA-binding dependent metalloproteases

involved in the maintenance of genetic stability such as Spartan or IrrE. Human Spartan pro-

tein cleaves DNA-protein crosslinks [18], while IrrE plays a central regulatory role in DNA

protection and repair pathways in response to radiation [19]. ArdC structure differs from

other known plasmid-encoded antirestriction proteins. ArdA from the conjugative transposon

Tn916 (2W82) is structurally similar to the B-form DNA, this way binding Type I R-M systems

to avoid DNA degradation [28]. KlcA (PDB:2KMG) from the IncP-1β plasmid pBP136 and

ArdB (PDB:2WJ9) are composed of a single α/β domain inhibiting the endonuclease activity

of Type I R-M systems by an indirect mechanism not related to the mimic of DNA structure

[29]. According to our solved structure, we expect ArdC to provide a new antirestriction

mechanism.

We observed SOS response activation in P. putida recipient cells during ardC+-mediated

conjugation from E. coli. ArdC could trigger SOS response in recipient cells similarly than IrrE

triggers SOS response upon radiation damage (by proteolysis of DdrO, a transcriptional regu-

lator involved in SOS response) [30]. However, it has also been described that conjugative

ssDNA activates SOS response when the plasmid cannot replicate in the recipient [31]. As

Δtn4652. ΔP1-P4 stands for Δprophage1 Δprophage4 Δprophage3 Δprophage2 strain. Horizontal bars represent the mean ± SD obtained for each dataset

of N = 8–12 (Student’s t-test: � p< 0.1,�� p< 0.01, ��� p< 0.001, ���� p<0.0001). The effect of ardC in the transfer of T-DNA methylated or not to

restricting or non-restricting P. putida B) or E. coli recipients C) is evaluated in mating experiments performed as in A with N = 6.

https://doi.org/10.1371/journal.pgen.1008750.g006
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ArdC_E229A mutant is still able to promote R388 conjugation to P. putida, we think that acti-

vation of the SOS response in the recipient is the consequence of the ongoing conjugative pro-

cess and not a direct effect of the presumed proteolytic activity of ArdC. We hypothesize that

the high affinity of ArdC by ssDNA could delay the complementary strand replication result-

ing in a transient higher amount of ssDNA and thus triggering the SOS response. This is sup-

ported by the fact that pLGM25 transfer to P. putida did not result in SOS activation.

Since ArdC is not required for R388 conjugation either to P. putida KT2440ΔhsdRMS or to

E. coli ΔhsdR, it is expected to play a role as counteracting Type I R-M system, probably pre-

venting degradation of the transferred DNA. Moreover, ArdC is not required for R388 conju-

gation between P. putida KT2440 strains. Consequently, once R388 is modified by the

HsdRMS system, it can be properly transferred to another cell also containing the same

HsdRMS system. Type I R-M systems attack dsDNA and thus are not expected to degrade

ssDNA during bacterial conjugation. However, it has been reported that the EcoKI R-M sys-

tem affects the uptake of DNA by conjugation [32] and, ArdC is not expressed until plasmid

DNA is in dsDNA shape. Thus, Type I R-M system could be attacking late, once ArdC is gen-

erated from the dsDNA plasmid after DNA entrance and establishment in recipient cells. In

this respect, the observation that mutation of the ArdC metalloprotease active center does not

reduce interspecies conjugation suggests that the metalloprotease activity is not required dur-

ing conjugative transfer to P. putida. The presumed metalloprotease activity is not expected to

play a role in HsdRMS activity. Thus, it is tempting to propose that, just by ArdC binding to

DNA, the protein interferes with HsdRMS binding and thereby hindering the degradation of

its target DNA.

In summary, our results indicate a new mechanism of DNA antirestriction played by pro-

tein ArdC, by which plasmids increase their conjugation host range. Interfering with ArdC

activity could thus provide a new tool to hinder the transmission of antibiotic resistance.

Materials and methods

Conjugation assays

Conjugation assays were performed by mixing E. coli or P. putida cells (Table 2) containing

the plasmid of interest (Table 3) with recipient cells grown overnight at their optimal growing

temperature. E. coli cells were grown at 37 ºC and P. putida at 30 ºC. Cells at OD600 = 0.6 were

mixed in a 1: 1 donor: recipient ratio, washed on LB medium, resuspended in 30 μL of LB and

deposited on a 0.22 μm pore size cellulose acetate filters (Sartorius Stedim) in LB-agar plates

previously incubated at 37ºC unless otherwise indicated. After 1 h, filters were removed with

sterile tweezers and introduced in 1 mL LB, where cells were resuspended by vortexing for a

few seconds. 1/10 serial dilutions were done and 10 μL drops were plated in LB agar plates

with the appropriate selecting antibiotics for donors, recipients and transconjugants. Conjuga-

tion frequencies were obtained by dividing transconjugants per recipients (T/R). For conjuga-

tions in the presence of pUCP22-derived plasmids, isopropyl β-D-thiogalactoside (IPTG) was

added to the conjugation mixture to a 0.1 mM IPTG final concentration. Means and standard

deviations, as well as statistical tests, were calculated with GraphPad Prism1 (v 7.04) biostatis-

tics software.

Transcriptomic analysis

Mixtures of E. coli BW27783-NxR (bearing pSU2007, pLGM25 or no plasmid) with P. putida
KT2440 were carried out by the already described conjugation assay in a 5:1 donor: recipient

ratio for 30 minutes. Harvested cells from the conjugation filter were treated with RNApro-

tect1 Bacteria Reagent (Qiagen) and snap-frozen. Cells were lysed with lysozyme (Sigma) and
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Table 2. Strains used in this study.

Strain Phenotype Reference

Escherichia coli
DH5α F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG, F80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK- mK+),

λ–
[33]

BL21 (DE3) F– ompT gal dcm lon hsdSB(rB–mB–) λ(DE3[lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS) [34]

BL21(DE3)-SmR Streptomycin resistant spontaneous mutant of BL21(DE3) This work

C41 (DE3) F- ompT hsdSB (rB- mB-) gal dcm (DE3) [35]

β834(DE3) F- ompT hsdSB(rB- mB-) gal dcm met (DE3) [36]

TB10 TB10 is the result of a P1 transduction from DY329 into MG1655. It has a large amount of the λ prophage genome

inserted into a biotin operon. The λ red genes α, β and γ are under the control of cI857, making it temperature

inducible.

[37] and

[38]

DY380 SmR λ Cl857 (cro-bioA) tet (DH10B) [39]

BW27783 F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 Δ(araH-araF)570(::FRT),

ΔaraEp-532::FRT, φPcp8araE535

[40]

BW27783-NxR Nalidixic resistant spontaneous mutant of BW27783 [41]

BW27783-RifR Rifampicin resistant spontaneous mutant of BW27783 [41]

MG1655 K-12 F–λ–ilvG–rfb-50 rph-1 [42]

MG1655-RifR Rifampicin resistant spontaneous mutant of MG1655 This work

EcMR2ΔmutS MG1655, lacI- bla, bio-, lambda-Red1, mutS–, cmR [43]

Pseudomonas putida
KT2440 Wild-type P. putida strain; mt-2 derivative cured of its plasmid (pWW0-) [44]

EM178 KT2440 derivative; Δprophage1 Δprophage4 Δprophage3 Δprophage2 [45]

EM42 KT2440 derivative; Δprophage1 Δprophage4 Δprophage3 Δprophage2 Δtn7 ΔendA-1 ΔendA-2 ΔhsdRMS
Δflagellum Δtn4652

[45]

EM422 KT2440 derivative; ΔhsdRMS From De Lorenzo

group

KT2440 ΔrecA KT2440 derivative; ΔrecA From De Lorenzo

group

KT2440 Δflagellum KT2440 derivative; Δflagellum From De Lorenzo

group

KT2440 ΔendA1 KT2440 derivative; ΔendA-1 From De Lorenzo

group

KT2440 ΔendA2 KT2440 derivative; ΔendA-2 From De Lorenzo

group

KT2440 Δtn7 KT2440 derivative; Δtn7 From De Lorenzo

group

KT2440 Δtn4652 pSW KT2440 derivative; Δtn4652 bearing pSW plasmid From De Lorenzo

group

KT2440 Δtn4652 KT2440 Δtn4652 derivative cured of pSW plasmid This work

Other bacteria
Salmonella
typhimurium LT2

Salmonella enterica subsp. enterica serovar

typhimurium str. LT2
ATCC 700720

Klebsiella
pneumoniae K6

K. pneumoniae subsp. pneumoniae. Clinical isolate from the Medical College of Virginia, 1994. ApR KmR, CmR ATCC 700603

Acinetobacter
baumannii

SmR ApR ATCC 19606

Vibrio cholerae
CIP106855

N16961 RifR. Biovar Eltor, serovar O:1 CIP106855

Agrobacterium tumefaciens
GMI9023

Agrobacterium tumefaciens C58 derivative cured of its plasmids (pTi-, pAT-) [46]

https://doi.org/10.1371/journal.pgen.1008750.t002
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proteinase K (Roche). Total RNA was extracted with RNeasy Mini Kit (Qiagen) and treated

with RNase-free DNase (Qiagen) in column for DNA removal. Ambion TURBO DNA-free™
DNase Treatment was also applied for better DNA removal. RNA integrity and quality were

validated by the Agilent RNA ScreenTape assay. The RNA integrity number equivalent (RINe)

was assured to be above 8 to use the isolated RNA in the RNA-seq experiment.

Transcriptome libraries were prepared by Macrogen (Seoul, Korea) with Ribo-Zero rRNA

Removal Kit and TruSeq Stranded mRNA sample preparation kit (Illumina). Libraries were

sequenced by Macrogen on the Illumina HiSeq 4000 platform. The transcriptome libraries

were paired-end sequenced with 100-bp reads. Raw reads in FASTQ format were quality ana-

lyzed with FastQC [52]. Reads were mapped against R388 (NCBI Accession number NC_

028464.1), E. coli str. K-12 substr. MG1655 (U00096.3) and P. putida KT2440 (AE015451.2)

sequences. The alignment of reads was done with Bowtie2 software [53]. Artemis program

[54] was used to visualize the alignment and do the RPKM (reads per kilobase and million

mapped reads) calculations. Genes with less than 10 RPKMs in all experimental conditions

were removed from the analysis. DAVID online tool v6.8 [55] was used to test for gene

ontology enrichment among the list of differentially expressed genes to do a functional

classification.

Protein expression and purification

Plasmids pLGM21 (pET29c::ardC) or pLGM28 (pET29c::ardC_E229A) were transformed into

electrocompetent Escherichia coli BL21 (DE3) cells (Table 2). Transformed cells were grown in

1L LB medium, in the presence of kanamycin, at 37˚C, with shaking, to an optical density of

0.5–0.6. The temperature was then reduced to 18˚C and protein expression was induced with

IPTG to a final concentration of 0.5 mM. Cells were allowed to grow for 16 h. The cultures

were then centrifuged at 5,000 rpm and 4˚C for 15 min and the resulting pellets were stored at

−20˚C. For protein purification, pellets were resuspended in buffer A (500 mM NaCl, 20 mM

imidazole, 100 mM Tris-HCl pH 7.5) supplemented with protease inhibitor phenylmethylsul-

fonyl fluoride (PMSF) 1% (v/v). The slurry was sonicated in a Labsonic 2000 (B. Braun) equip-

ment at 50% of potency for 3 cycles of 1.5 min at intervals of 1 min on ice. The lysed cells were

Table 3. Plasmids used in this study.

Plasmid Description Phenotype Size (Kb) Reference

R388 R388 wild type plasmid SuR TpR; (IncW) 33.9 [47]

pSU2007 R388 derivative; KnR cassette insertion SuR TpR KnR; (IncW) 32.9 [48]

pET29c Expression vector KnR; Rep (pMB1);

Overexpression controlled by T7 promoter with a

6-HisTag.

5.4 Addgene

pUA66 GFP reporter plasmid KnR pSC101 replicon 4.5 [49]

pUCP22 Shuttle Vector; Escherichia-Pseudomonas broad-host-range expression

vector

ApR GmR; Plac promoter. 4.7 [50]

pHERD20T Shuttle Vector; Escherichia-Pseudomonas broad-host-range expression

vector

CbR; PBAD promoter and araC regulator. 5.1 [51]

pLGM21 pET29c::ardC KnR T7 promoter 6.1 This work

pIC10 R388ΔkfrA-orf14 TpR KnR 26.2 This work

pLGM25 R388ΔardC TpR KnR 33.9 This work

pLGM28 pET29c::ardC_E229A KnR T7 promoter 6.1 This work

pLGM33 pSU2007 (ardC_E229A) TpR KnR 32.9 This work

pLGM36 pUCP22::ardC ApR GmR Plac promoter 5.6 This work

pLGM37 pUCP22::ardC_E229A ApR GmR Plac promoter 5.6 This work

https://doi.org/10.1371/journal.pgen.1008750.t003
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then ultra-centrifuged at 100,000 g for 15 min at 4˚C. Supernatants were loaded onto a 5 mL

HisTrap HP column (GE Healthcare) previously equilibrated with buffer A. Proteins were

eluted by an imidazole concentration gradient between buffer A and buffer B (300 mM NaCl,

500 mM imidazole, 100 mM Tris-HCl pH 7.5). ArdC containing fractions were pooled and

diluted to a final NaCl concentration of 200 mM. The resulting protein was then loaded onto a

5 mL HiTrap Heparin HP (GE Healthcare) equilibrated with buffer C (100 mM Tris-HCl pH

7.5, 200 mM NaCl). Proteins were eluted by a linear gradient between buffer C and D (100

mM Tris-HCl pH 7.5, 1 M NaCl). ArdC containing fractions were concentrated using Amicon

Ultra 30k Centrifugal filters (Millipore, Ireland) and loaded onto a Superdex 75 GL10_30 col-

umn (GE Healthcare) previously equilibrated with buffer E (100mM Tris-HCl pH 7.5, 1 mM

EDTA, 300 mM NaCl).

To crystallize ArdC with a metal cofactor, cell lysis and the two first purification steps were

done as described but with 1 mM MnCl2 in all buffers. Preparation of selenomethionine

(SeMet)-labelled ArdC was also carried out as described above but using strain E. coli β834

(DE3) and minimal medium (SelenoMet Medium Base + SelenoMet Nutrient Mix) supple-

mented with SelenoMethionine Solution (Molecular Dimensions) as indicated by the

manufacturer.

Protein crystallization and structure determination

Crystals of ArdC and ArdC-SeMet were obtained using the sitting-drop vapor-diffusion

method at 22˚C by mixing 1.5 μL protein at 20 mg/mL concentration in 20 mM Tris-HCl, 50

mM NaCl, 1 mM EDTA buffer with an equal volume of the reservoir solution containing 0.1

M HEPES pH 7.5; 10% w/v polyethylene glycol 6,000 and 5% v/v (+/-)-2-methyl-2,4-pentane-

diol. 2-methyl-2 4-pentanediol (10–20% v/v) was added as cryoprotectant before diffraction

experiments. ArdC-Mn crystallized at 12 mg/mL in 25% v/v ethylene glycol and crystals were

cryoprotected with additional 15% glycerol.

For data collection, the crystals were flash-frozen in liquid nitrogen at 105 K. For single

ArdC-SeMet crystals data was collected at 0.9793Å, the wavelength corresponding to the Sele-

nium absorption maximum according to the fluorescence scan. Datasets were obtained at

beamline XALOC at the ALBA Synchrotron Radiation Facility (Barcelona, Spain) with a Dec-

tris PILATUS3 6M Pixel detector. Diffraction images were processed using iMosflm [56] and

Scala [57] as part of the CCP4 package [58]. The structure was solved by single anomalous dis-

persion (SAD) phasing using the program AutoSol of the PHENIX package [59]. The refine-

ment of the initial model was performed through several cycles by Phenix refine [59] until

appropriate R factors were reached. Final manual modeling was done in COOT [60]. The

ArdC-Mn structure was solved by MR using the ArdC structure as a template.

Electrophoretic mobility shift assay (EMSA)

The binding ability of the ArdC protein to ssDNA, dsDNA, and dsDNA with ssDNA over-

hangs was tested by electrophoresis mobility shift assay (EMSA). 6FAM-labeled oligonucleo-

tide Fluor-T87I2 (45 bases) was incubated alone or with T87I1 oligonucleotide (45

complementary bases), Mid1 oligonucleotide (13 5’ terminal complementary bases) or Mid2

oligonucleotide (27 3’ terminal complementary bases) (see S9 Table) in buffer containing

50mM Tris-HCl (pH 7.5) and 1mM EDTA for 5 min at 95˚C and the mixtures were cooled

down slowly to room temperature. 50 nM DNA was incubated with various concentrations of

ArdC (0, 125 nM, 250 nM, 500 nM and 1 μM) in a reaction buffer [50 mM NaCl, 25 mM Tris-

HCl (pH 7.5), 0.5 mM EDTA] at room temperature for 30 min. DNA-protein complexes were

analyzed using non-denaturing polyacrylamide gel electrophoresis 10% (29:1) in cold Tris
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Borate EDTA (TBE) buffer 1x. Gels were run at 100 V for 75 min and analyzed using a Fujifilm

fluorescent image analyzer Fla-5100. Experiments were repeated three times.

Extended Materials and Methods are included in S1 Text.

Supporting information

S1 Text. Supplementary Materials and Methods.

(DOCX)

S1 Fig. Genetic map of R388 plasmid. Genetic organization of the plasmid divided into func-

tional modules and three different sectors: conjugation shadowed in orange, general mainte-

nance in light blue and AbR and integration in grey. Region deleted in pLGM25 (shown in

maroon) and pIC10 (shown in purple) are also shown. Adapted from [12].

(TIF)

S2 Fig. Retardation and protection of ssDNA (M13mp18) by ArdC from degradation by

HhaI. A) Agarose gel showing ssDNA retardation by ArdC under non-denaturing conditions.

Lane 1: ssDNA (5.5 nM) in the presence of MgCl2. The vast majority of the molecules of

M13mp18 ssDNA are circular (upper band), although some of them are present in the linear

form (lower band). Lane 2: ssDNA and HhaI (7 U) in the presence of MgCl2. Lane 3–7: ssDNA

and HhaI at increasing concentrations of ArdC (0.95 μM (3), 1.9 μM (4), 3.8 μM (5), 5.7 μM

(6) and 7.8 μM (7)) in the presence of MgCl2. B) Agarose gel showing ssDNA protection by

ArdC from HhaI digestion. Proteinase K and SDS were added to the samples before loading

the gel to remove HhaI and ArdC proteins. Lane content as in A). C) SDS-PAGE gel showing

the proteolytic activity of ArdC preincubated with ssDNA (M13mp18) to HhaI. Lane 1: ArdC

(8 μM) in the presence of MgCl2. Lane 2: HhaI (70 U) in the presence of MgCl2. Lane 3: ArdC

and HhaI in the presence of MgCl2. Lane 4–5: ArdC and HhaI in the presence of ssDNA (M13,

27.5 nM) with MgCl2 (4) or EDTA (5).

(TIF)

S3 Fig. Mass spectrometry analysis for protein identification. A) Protein from a pull-down

experiment cleaved from the gel and sent for mass spectrometry analysis is indicated by an

arrow. B) MASCOT search result for the peptides obtained after digestion with trypsin (that

cuts the C-term side of KR unless next residue is P) in SwissProt database for P. putida
KT2440. Matched peptides with pp_0941 protein are shown in purple (sequence coverage of

45%). pp_0941 has 173 amino acids and a molecular weight of 20238 Da.

(TIF)

S4 Fig. Differential expression of genes in experiment ardC + vs. ardC—to test the influ-

ence of ArdC in the three reference sequences. A) Differential expression of R388 genes. B)

Differential expression of E. coli genes. C) Differential expression of P. putida genes. Upregu-

lated genes with an RPKM fold change >2 are in the green zone, and downregulated genes

with RPKM fold change <2 are in the orange zone.

(TIF)

S5 Fig. Effect of ArdC on plasmid conjugative transfer from E. coli to P. putida wt and

mutants at 30˚C. The conjugation frequencies per recipient (T/R) into P. putida KT2440 WT

strain or different mutants of P. putida KT2440 are shown. Conjugation was done for 1 h at

30˚C. Horizontal bars represent the mean ± SD obtained for each dataset of N = 9 (t-test: ��

p< 0.01).

(TIF)
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S6 Fig. Plasmids encoding TOPRIM and DUF1738 domains. Venn diagrams showing A)

the proteins containing either DUF1738, TOPRIM or DUF1738+TOPRIM domains and B)

plasmids encoding proteins containing DUF1738 and/or TOPRIM domains either in separate

or multidomain proteins. Below, a panel indicates the fraction of plasmids potentially trans-

missible by conjugation (MOB+) for each condition. Proteins contained in RefSeq plasmid

database version 90 were screened with the HMM profiles PF13362 for TOPRIM and PF08401

for DUF1378, using the hmmsearch function of HMMER 3.1b2 with the default parameters

[61]. The presence of MOB relaxases was detected by using MOBscan [27]. Venn diagrams

were built using the online tool http://bioinformatics.psb.ugent.be/webtools/Venn/.

(TIF)

S1 Table. TM value of ArdC in different solutions.

(DOCX)

S2 Table. Conjugation frequencies from E. coli to P. putida.

(DOCX)

S3 Table. TruSeq Stranded mRNA Illumina sequencing results and coverage for each con-

dition.

(DOCX)

S4 Table. Percentage of reads aligned to the three reference sequences by Bowtie2.

(DOCX)

S5 Table. Distribution of the differentially upregulated or downregulated genes for the

three reference sequences and conditions.

(DOCX)

S6 Table. Expression profile of R388 genes.

(DOCX)

S7 Table. Expression profile of upregulated E. coli genome-encoded genes in the absence of

ardC in the plasmid.

(DOCX)

S8 Table. Expression profile of differentially upregulated P. putida genes in the presence/

absence of ardC.

(DOCX)

S9 Table. Oligonucleotides used in this study.

(DOCX)
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