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Abstract
Very late antigen-4 (VLA-4), a member of integrin superfamily, interacts with its major count-

er ligand vascular cell adhesion molecule-1 (VCAM-1) and plays an important role in leuko-

cyte adhesion to vascular endothelium and immunological synapse formation. However,

irregular expressions of these proteins may also lead to several autoimmune diseases and

metastasis cancer. Thus, quantifying the interaction affinity of the VCAM-1/VLA-4 interac-

tion is of fundamental importance in further understanding the nature of this interaction and

drug discovery. In this study, we report an ‘in solution’ steady state organic fluorophore

based quantitative fluorescence resonance energy transfer (FRET) assay to quantify this in-

teraction in terms of the dissociation constant (Kd). We have used, in our FRET assay, the

Alexa Fluor 488-VLA-4 conjugate as the donor, and Alexa Fluor 546-VCAM-1 as the accep-

tor. From the FRET signal analysis, Kd of this interaction was determined to be 41.82 ± 2.36

nM. To further confirm our estimation, we have employed surface plasmon resonance

(SPR) technique to obtain Kd = 39.60 ± 1.78 nM, which is in good agreement with the result

obtained by FRET. This is the first reported work which applies organic fluorophore based

‘in solution’ simple quantitative FRET assay to obtain the dissociation constant of the

VCAM-1/VLA-4 interaction, and is also the first quantification of this interaction. Moreover,

the value of Kd can serve as an indicator of abnormal protein-protein interactions; hence,

this assay can potentially be further developed into a drug screening platform of VLA-4/

VCAM-1 as well as other protein-ligand interactions.
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Introduction
Protein-protein interactions play a critical role in a wide variety of cellular processes. One such
interacting protein pair, Vascular Cell Adhesion Molecule-1 (VCAM-1/CD106) and Very Late
Antigen-4 (VLA-4), is essential in the interactions of leukocytes with cytokine-activated endo-
thelial cells during transendothelial migrations [1–3] as well as in the formation of immunolog-
ical synapse [4, 5]. VLA-4 (also known as CD49d/CD29 or α4β1), a member of integrin
superfamily of cell-surface receptors, is a transmembrane non-covalent heterodimer of α4 (155
kDa) and β1 (150 kDa) subunits, which is expressed on all leukocytes except neutrophils [6–8].
Two major natural ligands of VLA-4 are the alternatively spliced connecting segment (CS-1) of
fibronectin [9] and VCAM-1; the latter is a cytokine activated endothelial cell surface receptor
protein [10, 11]. VCAM-1 is also a transmembrane adhesion molecule of Ig supergene family
and comprising a short cytoplasmic domain, a transmembrane domain, and seven (predomi-
nant form) or six extracellular immunoglobulin like domains due to the alternative splicing of
mRNA from a single VCAM-1 gene to form two isoforms [12–14].

The affinity of VLA-4 towards VCAM-1 is generally governed by the presence of divalent
cations (Mg2+, Mn2+, and Ca2+ etc.) [15]. The I-like domain of the β-subunit forms the head
domain in VLA-4 and harbors a metal-ion-dependent-adhesion-site (MIDAS), which binds
the divalent cations, as mentioned before, necessary for binding to VCAM-1 [16]. VLA-4 binds
to regions within the first (D1) and fourth (D4) domains of the full-length seven domain form
of VCAM-1 [17]. A dominant acidic motif QIDSPL within D1 of VCAM-1 is critical for inter-
action with VLA-4. However, it is interesting to note that binding of VCAM-1 to D4 needs
VLA-4 activation (by either divalent cations or chemokines), whereas the binding to D1 does
not [18].

Although the interaction of VCAM-1 with VLA-4 is essential for immunity, over expression
of any of them or both may lead to several diseases pathologies such as multiple sclerosis [19],
rheumatoid arthritis [20], allogeneic graft rejection [21], delayed-type hypersensitivity reac-
tions [22], and tumor metastasis [23–25]. Thus, quantifying the affinity of VCAM-1/VLA-4 in-
teraction is of prime importance to better understand its role in diseases as well as in
developing the therapeutic drugs and strategies.

Quantifying the binding affinity of interacting protein pairs in vitro is fundamental in un-
derstanding these biochemical processes [26]. Among the several important parameters to
quantify the binding affinity of protein-protein interactions, the equilibrium dissociation con-
stant (Kd) has been studied extensively through different techniques including isothermal titra-
tion calorimetry (ITC) [27], surface plasmon resonance (SPR) [28], and radio-ligand binding
assay [29]. However, Förster/Fluorescence resonance energy transfer (FRET) [30] based pro-
tein-protein interaction assays provide many important advantages complementary to those of
the other techniques. FRET assays are, in general, applicable both in vitro and in vivo [31, 32].
Moreover, FRET based measurements require only a general-purpose fluorescence spectrome-
ter and/or microscope as compared to other methods which often require a much more com-
plicated/sophisticated experimental platform. Besides, FRET based protein interaction assays
do not require any special conjugation or orientation of the proteins on other surfaces, except
conjugating the proteins with fluorophores. Hence, several efforts have been made to establish
quantitative FRET based protein interaction assays [33, 34].

FRET is a distant-dependent process where, through dipole-dipole interactions, an excited
fluorophore molecule (donor) transfers energy non-radiatively to another molecule (acceptor)
[30, 31]. As the FRET efficiency is proportional to the inverse of the sixth power of the distance
between the donor and acceptor, the FRET emission signal provides a high degree of spatial
sensitivity (in the range of approximately 1 to 10 nm) as well as signal specificity; hence, FRET

Quantitative FRET to Study VCAM-1/VLA-4 Interaction

PLOS ONE | DOI:10.1371/journal.pone.0121399 March 20, 2015 2 / 15



has become one of the most important and popular tools in biomolecular analysis [31]. Howev-
er, using FRET efficiency to quantitatively interpret protein-protein interactions had encoun-
tered some major challenges as this parameter depends on several factors such as
concentrations of the donor and acceptor molecules, the dissociation constant (Kd) of the inter-
acting protein pairs, and the intrinsic FRET between the acceptor/donor pair [35]. Moreover,
another obstacle in the development of quantitative FRET to obtain Kd was to extract the
FRET emission signal at the maximum acceptor emission wavelength from the mixed FRET
emission spectrum which contains (i) the unquenched direct donor emission, (ii) the direct ac-
ceptor emission, and (iii) the actual FRET emission signal [36]. Song et al. [36–38] have recent-
ly reported the development of a theoretical and experimental protocol to obtain (Kd) of the
SUMO1/Ubc9 interaction. The major highlight of their work is the identification and the sub-
sequent elimination of donor and acceptor emissions at the acceptor emission wavelength to
extract the FRET emission signal from one single assay [36].

In this work, we present the development of an ‘in solution’ steady-state quantitative FRET
assay using the organic fluorophore FRET pair of Alexa Fluor 488 (AF488) and Alexa Fluor
546 (AF546) to obtain the Kd of the VCAM-1/VLA-4 interactions using standard fluorescence
spectroscopy technique; the conjugate Alexa Fluor 488-VLA-4 (AF488-VLA-4) was used as the
FRET donor, and the Alexa Fluor 546-VCAM-1 (AF546-VCAM-1) as the acceptor. All the ex-
periments were conducted in 96-well plate format. From our analysis of the FRET assay, the
dissociation constant (Kd) of the interaction between VCAM-1 and VLA-4 was determined to
be 41.82 ± 2.36 nM. To further validate this value obtained from our FRET assay, we also mea-
sured Kd via SPR experiment and analysis; the two results (Kd = 41.82 ± 2.36 nM from FRET
and 39.60 ± 1.78 nM from SPR) are in good agreement. To the best of our knowledge, no meth-
ods have been reported in literature to obtain Kd of the VCAM-1/VLA-4 interaction. This in-
formation and our method will be useful for drug screening/assessment based on the inhibition
efficiency of the drug candidates to VCAM-1/VLA-4 interaction. In general, our assay can be
adapted for applications in drugs development and screening associated with many other dis-
ease-related protein-protein interactions.

Results and Discussion
In developing our quantitative “in solution” spectral FRET assay, we have used the dye-protein
conjugates of AF488-VLA-4 as the donor and AF546-VCAM-1 as the acceptor. A schematic il-
lustration of our FRET assay is shown in Fig. 1(a). The details of the FRET assay can be found
elsewhere [39] with slight modification. Briefly, when there is no binding between VLA-4 and
VCAM-1, only one emission peak at 520 nm (i.e., emission maximum of AF488) will appear
when the mixture of protein conjugates were excited at 470 nm (the excitation maximum of
AF488). In contrast, if the same FRET mixture is excited with 470 nm after addition of 2mM of
MgCl2, which induces high-affinity conformational changes of VLA-4 and facilitates the inter-
action between VLA-4 and VCAM-1, a second emission peak at 570 nm (emission maximum
of AF546) will also appear due to FRET between AF488-VLA-1 and AF546-VCAM-1. To con-
firm the fluorescence spectral characteristics of AF488 and AF546 in our experimental condi-
tions, absorbance and emission spectra of these dyes were also recorded [Fig. 1(b)].

Calculation of dye-to-protein (F/P) ratio in the conjugates
In our dye-protein conjugates, AF488 and AF546 are amine reactive dyes which bind with
non-protonated aliphatic amine groups, including the amine terminus of proteins and the
ε-amino groups of lysines. The dye-to-protein (F/P) ratio, defined as the ratio of moles of
fluorophores to moles of protein in the conjugate, specifies the degree of labelling of the
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proteins by the dyes. Here, the F/P ratios were obtained for both conjugates, AF488-VLA-4
and AF546-VCAM-1, from the UV-visible absorption spectra [Fig. 2], in conjunction with
Equation (1) given below.

F
P
¼ Amax � Dilution Factor

"dye � ½p� ð1Þ

where, Amax is the absorbance of the dye-protein conjugate at the dye absorption maxima, εdye
is molar extinction coefficient of the dye, and [p] denotes the molarity of the protein. The F/P
ratios of AF488-VLA-4 and AF546-VCAM-1 were determined to be 3.0 ± 0.8 and 0.60 ±
0.02, respectively.

The knowledge of F/P ratio is essential in developing FRET assays as this has significant im-
pact on FRET activity. Too high labelling of proteins will give rise to prominent background
signal whereas too low labelling poses the problem of isolating the FRET signal from back-
ground noise. Moreover, high F/P may result in concentration dependent quenching, which
compromises on the sensitivity. However, the resultant FRET signal is determined by the ac-
ceptor-to-donor fluorophore ratio in the FRET mixture. The acceptor-to-donor fluorophore
ratio is critical for fluorescence energy transfer [30, 40] which can be obtained from the F/P
ratio and the amount of conjugated proteins in the mixture. Due to these reasons, we optimized
our conjugation protocol to find an appropriate F/P ratio which provided significant FRET ac-
tivity for subsequent development of our quantitative FRET assay.

Fig 1. The FRET assay. (a) A schematic illustration of FRET with AF488-VLA-4 as the donor, and AF546-VCAM-1 as the acceptor conjugates. Upon
excitation at 470 nm, two emission peaks, one at 520 nm, and the other at 570 nm were observed; the former originates from the free (unbounded) AF488-
VLA-4, while the latter is due to FRET from the binding of the two protein conjugates. Proper amount of Mg2+ was added to the FRETmixture to induce
conformational change of VLA-4 to enhance the binding affinity of VLA-4 and VCAM-1. (b) Normalized absorbance and emission spectra of AF488 and
AF546 in PBS, pH 7.4.

doi:10.1371/journal.pone.0121399.g001
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Observing the FRET emission
In the process of developing the quantitative FRET assay, we compared the fluorescence emis-
sion spectra of AF488-VLA-4 (100 nM), AF546-VCAM-1 (100 nM), the equimolar mixture of
AF488-VLA-4 (100 nM) and AF546-VCAM-1 (100 nM), as well as similar equimolar mixture
(corresponding to the dye concentrations in the dye-protein conjugates) of AF488 and AF546
dyes only to confirm the FRET activity in our assay under the excitation of 470 nm. The fluo-
rescence spectra (Fig. 3) corresponding to these conditions indicate that the donor emission
was quenched at 520 nm while the corresponding sensitized acceptor emission of the dye-
protein conjugate mixture appeared at 570 nm. For the dyes only mixture, no additional peak
around 570 nm appeared. These observations ascertained the FRET activity, and also indicated
that the perturbation due to random FRET was negligible in our assay. These data also confirm
the signal specificity of our FRET signal. Here, and in the rest of the article, the concentrations

Fig 2. UV-visible absorption spectra of the dye-protein conjugate to obtain the dye-to-protein (F/P) molar ratio. The F/P ratios of AF488-VLA-4 and
AF546-VCAM-1 were determined to be 3.0 ± 0.8 and 0.60 ± 0.02, respectively. These values were used to deduce the concentration of acceptors and donors
in the dye-protein conjugate solutions. Each experiment was repeated three times under identical condition and the results are shown as arithmetic mean ±
standard deviation.

doi:10.1371/journal.pone.0121399.g002

Quantitative FRET to Study VCAM-1/VLA-4 Interaction

PLOS ONE | DOI:10.1371/journal.pone.0121399 March 20, 2015 5 / 15



refer to the protein concentrations in the dye-protein conjugate, unless otherwise specified.
From Fig. 3, it is also observed that the relative intensity of direct emission of AF546-VCAM-1
at 470 nm is significantly lower than that of the other cases, and may have little impact on the
overall FRET emission signal. Rather than ignoring this weak signal, we did take it into account
in quantifying our FRET emission signal, as can be found in the next section.

Determination of the dissociation constant (Kd) through FRET
In our steady-state FRET based assay to obtain the equilibrium dissociation constant (Kd) of
the VLA-4/VCAM-1 interactions, several concentrations of the acceptor conjugate, AF546-
VCAM-1 (50–850 nM), were titrated to a fixed concentration of the donor conjugate AF488-
VLA-4 (350 nM) to obtain the maximum FRET emission (maxFRETemission) signal, which in
turn was used to obtain Kd. The series of FRET emission spectrum corresponding to each
AF546-VCAM-1 concentration, when excited at 470 nm, is shown in Fig. 4(a). From Fig. 4(a),
we observe that each spectrum consists of two peaks, one at 520 nm (due to the unquenched

Fig 3. Confirming the FRET emission. The fluorescence emission spectra of AF488-VLA-4 (100 nM), AF546-VCAM-1 (100 nM), the mixture of AF488-
VLA-4 (100 nM) and AF546 (100 nM), and the dyes only mixture of AF488 and AF 546 are compared. The excitation wavelength for the all the cases was 470
nm, the donor excitation maxima. The fluorescence spectrometer gain and integration time (20 μs) was kept constant while obtaining these spectra. For the
mixture of A488-VLA-4 + AF546-VCAM-1, an acceptor sensitized emission was observed at 570 nm as compared to the AF488 + AF546 spectrum, which
confirmed the FRET activity in our assay.

doi:10.1371/journal.pone.0121399.g003
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emission of AF488-VLA-4, Demission) and other at 570 nm (DAemission). As was briefly de-
scribed earlier in the “Materials and methods” section, the emission peak at 570 nm is com-
posed of several components due to the cross-talk in emission detection as well as bleed-
through in excitation. However, when the sample was excited at 520 nm, only one emission
peak, (Aemission), at 570 nm from AF546-VCAM-1, appeared. The absolute values of the donor
emissions (Demission) at 520 nm for each concentration of AF546-VCAM-1 were shown in
Fig. 4(b) when the FRET mixtures were excited at 470 nm which shows a steady quenching of
the donor as the acceptor concentration increases, endorsing high FRET activity in our FRET
assay. Moreover, the corresponding absolute acceptor emission values (Aemission), under same
conditions, when the FRET mixture was excited at 520 nm were also obtained as shown in
Fig. 4(c). The total emission signal at 570 nm (DAemission) when the FRET mixture was excited
at 470 nm is shown in Fig. 4(d) which also shows an increasing trend with increasing acceptor

Fig 4. Determining the FRET signal at the acceptor emission maximumwavelength 570 nm. (a) Fluorescence emission spectra of the FRETmixtures
(AF488-VLA-4 + AF546-VCAM-1). The FRETmixtures were excited at 470 nm. The concentration of AF488-VLA-4 was kept constant at 350 nM while that of
AF546-VCAM-1 was varied from 50 nM to 850 nM. The various emission contributions at 570 nm of the FRET emission spectrum were obtained from these
spectra at each AF546-VCAM-1 concentration. (b) The fluorescence emission signals of AF488-VLA-4 (Demission) at 520 nm in the FRETmixture upon 470
nm excitation. (c) Fluorescence emission signal of AF546-VCAM-1 (Aemission) in the FRETmixture at 530 nm excitation. (d) The plot of total fluorescence
emission of the FRETmixture (DAemission) at 570 nm with 470 nm excitation. Each measurement was repeated three times under identical condition to obtain
the mean value and the standard deviation (indicated by the error bar).

doi:10.1371/journal.pone.0121399.g004
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concentrations. The values of Demission, Aemission, and DAemission were used to calculate the
FRET emission signal (FRETemission) for each acceptor concentration.

For any accurate and reproducible development of quantitative FRET assay, we need to take
into account both the bleed-through in excitation and the cross-talk in emission detection, i.e.
when the direct emissions of donor as well as acceptors also contribute to the FRET signal.
Thus to obtain FRETemission for each spectrum at 570 nm as shown in Fig. 3(a), the quantifica-
tion of direct donor and acceptor emission contribution is required.

Due to these facts, we assumed that the direct emission signal at 570 nm of AF488-VLA-4 is
proportional to its maximum emission at 520 nm upon excitation at 470 nm. This proportion-
ality constant, representing the ratio of the emission intensity of AF488-VLA-4 alone at 570
nm to that at 520 nm [Fig. 5(a)], denoted as “μ”, was determined to be 0.128 ± 0.031. Likewise,
the ratio of the emission intensity of AF546-VCAM-1alone at 570 nm when excited at 470 nm
to that at 570 nm when excited at 520 nm [Fig. 5(b)], denoted as “η”, was determined to be
0.143 ± 0.058. Now, multiplying “μ” with Demission and “η” with Aemission give the direct emis-
sion contributions of the donors and acceptors respectively at 570 nm when the FRET mixture
is excited at 470 nm; these results enable us to minimize the cross-talk effect in our FRET signal
estimation. The resultant FRETemission signal was obtained from the following relation involv-
ing the ratio constants as defined above,

FRETemission ¼ DAemission � mðDemissionÞ � ZðAemissionÞ ð2Þ

The absolute FRETemission values, obtained from Equation (2), were further utilized to de-
duce the maxFRETemission signal and subsequently Kd of the VLA-4/VCAM-1 interactions.
Song et al. [37] have developed a systematic algorithm relating this FRETemission and Kd. Fol-
lowing this development and considering one-to-one interaction between the donors and ac-
ceptor conjugates, we obtained the value of Kd of our interaction of interest using the following
relation [37],

FRETemission ¼ maxFRETemission

A� D� Kd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� D� KdÞ2 þ 4KdA

q

A� Dþ Kd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� D� KdÞ2 þ 4KdA

q

2
64

3
75 ð3Þ

where “A” and “D” denote the concentrations of AF546-VCAM-1 and AF488-VLA-4, respec-
tively. The values of maxFRETemission and Kd were obtained by fitting Equation (3), derived
from non-linear regression analysis, with the datasets FRETemission vs. AF546-VCAM-1 con-
centrations [Fig. 6(a)]. From our calculations, the estimated value of maxFRETemission was
3184 RFU and the equilibrium dissociation constant, Kd, was 41.82 ± 2.36 nM.

Determination of Kd via Surface Plasmon Resonance (SPR)
To further confirm our estimation of Kd of the VLA-4/VCAM-1 interaction, we employed sur-
face plasmon resonance (SPR) based technique, another commonly used methodology to study
protein-protein interactions, to determine the value of Kd. In the SPR approach, the VCAM-
1Fc was first immobilized on the sensor chip and several different concentrations of VLA-4
(100, 150, 400, 450, and 500 nM) were flowed in sequentially, one at a time, into the chamber
to obtain corresponding binding response sensorgrams (details in “Materials and methods”
section) as shown in Fig. 6(b). The value of Kd, obtained via BIAcore analysis software using
Langmuir model fitting [41], was 39.60 ± 1.78 nM. The consistency of the value of Kd obtained
by these two different approaches (i.e., 41.82 ± 2.36 nM by FRET, and 39.60 ± 1.78 nM by SPR)
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Fig 5. Determining the “μ” and “η”. (a) Fluorescence emission spectrum of AF488-VLA-4 (350 nM) alone
when excited at 470 nm. The ratio constant “μ”, defined as the ratio of the emission signal at 570 nm to that at
520 nm of the AF488-VLA-4 emission spectrum was determined to be 0.128 ± 0.031. (b) Fluorescence
emission spectra of AF546-VCAM-1 (850 nM) alone when excited at 470 and 520 nm. The ratio constant “η”,
defined as the ratio of emission signal at 570 nm upon excitation at 470 nm to that at 570 nm when excited at
520 nm, was determined to be 0.143 ± 0.058. All the experiments were done in triplicate. The results are
shown as arithmetic mean ± standard deviation.

doi:10.1371/journal.pone.0121399.g005
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Fig 6. Determination of Kd through quantitative FRET and SPR. (a) Curve fitting of the experimental data
representing the absolute FRET emission signals (FRETemission) with Equation (3). Each experiment was
repeated three times under identical condition, and the error bar indicates the standard deviation; the results
are shown as arithmetic mean ± standard deviation. The maximum FRET emission signal (maxFRETemission)
and the corresponding equilibrium dissociation constant (Kd) of the VLA-4/VCAM-1 interaction were
determined to be 3184 RFU and 41.82 ± 2.36 nM, respectively. (b) Sensorgrams from the SPR sensor chip in
BIAcore indicating the interaction of VCAM-1 (immobilized on the surface of the chip; details can be found in
the text) with different concentrations (100, 150, 400, 450, to 500 nM) of VLA-4. The equilibrium dissociation
constant (Kd) of the VLA-4/VCAM-1 interaction was determined to be 39.60 ± 1.78 nM.

doi:10.1371/journal.pone.0121399.g006
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serves to cross-check and validate each other, despite the fact that in the case of SPR, the pro-
tein interaction was measured without any fluorophore-conjugation.

Conclusions
In this article, we report the successful application of “in solution” FRET based quantitative
assay to obtain the equilibrium dissociation constant, Kd, of the interaction between VLA-4
and VCAM-1. The assay is simple, robust, and easy to reproduce. The feasibility of the “in solu-
tion” quantitative FRET assay has often been challenged based on the argument that the in-
solution tests may bear an inherent background signal due to contact between free-floating re-
ceptors as a result of unavoidable perturbations such as the Brownian motion and the micro-
thermal currents in the sample holder. Hence, we applied another method, namely the surface
plasmon resonance (SPR), where one of the proteins (in our case, VCAM-1Fc) is immobilized
on a solid substrate and the other (VLA-4) is flowed into the chamber to monitor their dynam-
ic interaction in real-time via the SPR signal. The values of Kd deduced from both techniques
(41.82 ± 2.36 nM by FRET, and 39.60 ± 1.78 nM by SPR) are in excellent agreement. Our re-
sults confirm that the interaction between VLA-4 and VCAM-1 has a high affinity which
forms the basis of a firm adhesion in leukocyte trafficking. To the best of our knowledge, this is
the first to report the value of Kd of the VCAM-1/VLA-4 interaction, as well as the consistency
in the values (of Kd) determined by two different approaches, in-solution with dye-conjugate
in the case of FRET vs. without dye-conjugate and with one of the proteins immobilized on a
solid substrate in the case of SPR. This information may serve as a reference point for drug
screening based on the inhibition efficiency to VCAM-1/VLA-4 interaction of the drug candi-
dates. In general, our assay can be adapted for applications in drugs development and assess-
ment associated with many other disease-related protein-protein interactions.

Materials and Methods

Materials
The proteins, human recombinant VCAM-1, human recombinant VCAM-1 Fc chimera and
human recombinant VLA-4, were purchased from R&D systems (Minneapolis, USA). These
soluble forms of proteins have already been extensively used in several studies [42–45], which
demonstrate the feasibility of using them to develop in-solution assays. The conformational
state of the soluble form of the recombinant VLA-4 from R&D systems has not been well de-
fined; however, consistent observation of the biological activity of the purified protein indicates
that the protein is properly folded to bind with VCAM-1 with consistent affinity [42, 43]. The
dyes, Alexa Fluor 488 carboxylic acid, succinimidyl ester and Alexa Fluor 546 carboxylic acid,
succinimidyl ester, were procured fromMolecular Probes (Eugene, Oregon, USA). The organic
solvent, dimethyl sulfoxide (DMSO) dried, was obtained fromMerck (Darmstadt, Germany).
The dye-protein conjugates were purified through Slide-A-Lyzer dialysis cassette (0.5 ml, 10K
MWCO) from Thermo Scientific (Rockford, USA). The FRET experiments were performed in
low autofluorescence transparent flat 96 well plates (BD Biosciences, Bedford, MA, USA). The
chemicals, N-(3-Dimethylaminopropyl)-N0-ethylcarbodiimide (EDC), n-hydroxysuccinimide
(NHS), and ethylene glycol-bis (2-aminoethylether)-N, N, N0, N0-tetraacetic acid (EGTA),
were from Sigma-Aldrich, Saint-Louis, USA. For the surface plasmon resonance (SPR) experi-
ments, Sensor chip CM5 (BR-1000–12) and human antibody capture kit for VCAM-1 immobi-
lization (BR-1008–39) were obtained from GE Healthcare, Little Chalfont, UK.
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Methods
Conjugation of dyes to proteins and purification. The FRET dye pair of AF488 and

AF546 was conjugated to VLA-4 and VCAM-1, respectively, following the protocol modified
fromMolecular probes labelling kits. In short, for each case the protein was dissolved in 50 μl
sodium bicarbonate buffer, pH 9.0, at a concentration of 1mg/ml. The dye solution was pre-
pared in DMSO at 1mg/ml and used immediately. 2 μl of dye solution was added to the 50 μl
protein solution and was kept for 2 hours in the dark at room temperature. The free dyes, after
the completion of the conjugation reaction, were removed by exhaustive dialysis using Slide-
A-lyzer dialysis cassette G2 against phosphate saline buffer (PBS), pH 7.4, for 18 hours at 4°C.
Subsequently, the protein concentrations as well as dye to protein (F/P) molar ratios were ob-
tained for each case, i.e., AF488-VLA-4 and AF546-VCAM-1, by UV-visible absorbance mea-
surements via a commercial spectrophotometer (DU-800, Beckman Coulter, Fullerton,
Germany).

FRET spectrum analysis for dissociation constant (Kd) determination. For the FRET
mixture, AF488-VLA-4 and AF546-VCAM-1 conjugates were diluted in PBS buffer containing
1mM EGTA, 2 mMmagnesium chloride (MgCl2), pH 7.4 to a total volume of 50 μl and was in-
cubated for 30 minutes. The final concentration of AF488-VLA-4 was maintained at 350 nM
while that of AF546-VCAM-1 was varied from 0 to 850 nM. The concentration values, here
and in the rest of the article, correspond to the protein concentration in the dye-protein conju-
gate solutions and not to the dye concentration unless otherwise stated. The FRET mixtures
were transferred into 96-well plates and FRET emission spectrum for each well was recorded
by a fluorescence multi-well plate reader, Infinite M200 pro (Tecan, Grödig, Austria). The
emission at 520 and 570 nm were measured at the donor excitation wavelength of 470 nm;
moreover the emission at 570 nm was also measured at the acceptor excitation maximum of
520 nm. The background corrected fluorescence emission signals were obtained by averaging
over three experiments with each sample at each specific condition (such that each datum
point represents the mean value of 9 measurements with 3 samples).

VLA-4 shows several affinity states depending on the presence of single specific divalent cat-
ions or combinations of several divalent cations [46]. In our study, we followed the experimen-
tal protocol suggested by Masumoto et al. [47] which showed that individual divalent cations
(Mg2+, Mn2+, or Ca2+) suffice to induce affinity state changes of VLA-4 in interacting with
VCAM-1. Specifically, we used only Mg2+ (by adding MgCl2 in the FRET mixture) as the pri-
mary agent to induce affinity changes in VLA-4. Under such condition, the interaction affinity
of VLA-4 and VCAM-1 in solution is mainly regulated by the amount of divalent cations
[42, 45, 48], in contrast to the complex environment in case of cell-cell contacts.

When the FRET mixture of AF488-VLA-4 and AF546-VCAM-1 was excited at 470 nm, two
emission peaks, one at 520nm, and the other at 570 nm, appeared in the emission spectrum.
The emission peak at 520 nm was due to the unquenched emission of AF488-VLA-4 (Demission-
). However, the emission peak at 570 nm (DAemission) was consisted of (1) unquenched emis-
sion of AF488-VLA-4; (2) direct emission of AF546-VCAM-1; and (3) the emission of AF546-
VCAM-1 due to the non-radiative energy transfer from AF488-VLA-4 (FRETemission). When
the same FRET mixture was excited at 520 nm, only one emission peak at 570 nm (Aemission),
due to the direct emission of AF546-VCAM-1, was observed. By subtracting the unquenched
donor and acceptor emission contributions from the total emission at 570 nm (at 470 nm exci-
tation), the FRET emission signal was obtained and further utilized to obtain the dissociation
constant (Kd) of the interaction between VCAM-1/VLA-4; more detail is given in Section 3.2.

Surface plasmon resonance (SPR) to obtain the Kd. To further validate the FRET based
estimation of Kd, the VCAM-1/VLA-4 interaction was also studied by SPR. The experiments
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were conducted via BIAcore 3000 CM5 sensor chips (BIAcore International SA, Neuchâtel,
Switzerland) with carboxymethylated dextran covalently attached on the gold surface. The flow
rate was fixed at 5 μl/min. The carboxyl acid functional groups on the sensor chip surface were
activated by 400 mM EDC/100 mMNHS for 7 minutes, and 25 μg/ml anti-human IgG (Fc)
was immobilized on the sensor surface by flowing into the chamber channel. This step was nec-
essary to maintain the orientation of the VCAM-1Fc on the sensor surface as the anti-human
IgG (Fc) binds only with the Fc region of the VCAM-1Fc. Subsequently, 40 μg/ml of VCAM-
1Fc in PBS, containing 1mM EGTA and 2mMMg2+, was flowed into the channel for immobili-
zation on the sensor surface; VLA-4 with a concentration 100 nm was then flowed into the
channel and the SPR response curve was recorded. To obtain the Kd of VCAM-1/VLA-1 inter-
action, the experiment was repeated with different concentrations of VLA-4 (150, 400, 450,
and 500 nM). After the completion of each experiment corresponding to one specific concen-
tration of VLA-4, the sensor surface was regenerated by the regeneration buffer (from the
human antibody capture kit; 3 M magnesium chloride) for subsequent usages with other con-
centrations of VLA-4. The dissociation constant, Kd, was then obtained via BIAcore analysis
software (BIAevaluation 3.2 RC1) by averaging over 3 experimental curves (i.e., repeating the
same experiment three times) for each concentration.
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