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In the wake of the COVID-19 pandemic many countries imple-
mented containment measures to reduce disease transmission.
Studies using digital data sources show that the mobility of indi-
viduals was effectively reduced in multiple countries. However,
it remains unclear whether these reductions caused deeper struc-
tural changes in mobility networks and how such changes may
affect dynamic processes on the network. Here we use movement
data of mobile phone users to show that mobility in Germany has
not only been reduced considerably: Lockdown measures caused
substantial and long-lasting structural changes in the mobility
network. We find that long-distance travel was reduced dis-
proportionately strongly. The trimming of long-range network
connectivity leads to a more local, clustered network and a mod-
eration of the “small-world” effect. We demonstrate that these
structural changes have a considerable effect on epidemic spread-
ing processes by “flattening” the epidemic curve and delaying the
spread to geographically distant regions.

COVID-19 | human mobility | mobile phones |

During the first phase of the coronavirus disease 2019
(COVID-19) pandemic, countries around the world imple-

mented a host of containment policies aimed at mitigating the
spread of the disease (1–4). Many policies restricted human
mobility, intending to reduce close-proximity contacts, the major
driver of the disease’s spread (5). In Germany, these policies
included border closures, travel bans, and restrictions of public
activity (school and business closures), paired with appeals by the
government to avoid trips voluntarily whenever possible (6). We
refer to these policies as “lockdown” measures for brevity.

Based on various digital data sources such as mobile phone
data or social media data, several studies show that mobility sig-
nificantly changed during lockdowns (7). Most studies focused
on general mobility trends and confirmed an overall reduction
in mobility in various countries (8–12). Other research focused
on the relation between mobility and disease transmission: For
instance, it has been argued that mobility reduction is likely
instrumental in reducing the effective reproduction number in
many countries (13–17), in agreement with theoretical mod-
els and simulations, which have shown that containment can
effectively slow down disease transmission (18–20).

However, it remains an open question whether the mobil-
ity restrictions promoted deeper structural changes in mobility
networks and how these changes impact epidemic spreading
mediated by these networks. Recently, Galeazzi et al. (21) found
increased geographical fragmentation of the mobility network.
A thorough understanding of how structural mobility network
changes impact epidemic spreading is needed to correctly assess
the consequences of mobility restrictions not only for the current
COVID-19 pandemic, but also for similar scenarios in the future.

Here, we analyze structural changes in mobility patterns in
Germany during the COVID-19 pandemic. We analyze move-
ments recorded from mobile phones of 43.6 million individuals
in Germany. Beyond a general reduction in mobility, we find
considerable structural changes in the mobility network. Due to

the reduction of long-distance travel, the network becomes more
local and lattice-like. Most importantly, we find a changed scaling
relation between path lengths and geographic distance: During
lockdown, the effective distance (and arrival time in spreading
processes) to a destination continually grows with geographic dis-
tance. This shows a marked reduction of the “small-world” char-
acteristic, where geographic distance is usually of lesser impor-
tance in determining path lengths (22, 23). Using simulations of
a commuter-based susceptible-infected-removed (SIR) model,
we demonstrate that these changes have considerable practical
implications as they suppress (or “flatten”) the curve of an epi-
demic remarkably and delay the disease’s arrival between distant
regions.

Mobility Trends in Germany
General Mobility Changes. We base our analysis on mobility flows
collected from mobile phone data. The data counts the number
of trips, where a trip is defined as a single mobile phone switch-
ing cell towers at least once, between two resting phases of at
least 15 min (Fig. 1D). A resting phase is defined as a mobile
phone not switching its connected cell tower. These trips are
aggregated over the course of a day to build the daily flow matrix
F(t). The element Fji(t) quantifies the total number of trips
from location i to location j on a given day t . Locations are the
m = 401 counties of Germany. Note that flows within counties
Fii(t) are included. During times with normal mobility (e.g., dur-
ing March 2019, which we use as a baseline, see below) the total
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Fig. 1. Mobility changes in Germany during the COVID-19 pandemic. (A) The change in total movements ∆n(t) in 2020, relative to March 2019. Mobility
decreases drastically in mid-March, coincident with restricting measure implementations (red bars), followed by a gradual increase in mobility concurrent
with the lifting of restricting policies (teal bars). Bar width indicates the number of policies issued or lifted on that date, respectively. (B) The change
in mobility is spatially heterogeneous. Mobility is reduced more in large cities (shown here for the 20 largest cities) and states that implemented more
severe restrictions (such as Bavaria). (C) Mobility change in German counties for the 3 wk with most substantial global change. The mobility change ∆n(i)(t)
represents the number of trips that originate in county i (Materials and Methods). (D) Illustration of how mobility is recorded. A trip is counted when a
user switches to one or multiple new cell towers, until the user becomes stationary again (no further switch for approximately 15 min). Trips can be within
the same county (teal, solid line) or between different counties (red, dotted-dashed line). Movements without changing cell towers are not recorded (gray,
dotted line).

flow is 176 million trips per day on average, recorded among 43.6
million users (24), corresponding to an average of 3.8 trips per
user per day. The baseline average daily flow between all pairs
of locations is 〈Fji(t)〉= 1,103 (averaged over all days in March
2019) with a SD of SD[Fji(t)] = 26.413. Flows below a threshold
of Fji(t)< 5 were omitted from the data due to anonymization
requirements.

To analyze general changes in mobility during the COVID-
19 pandemic, we focus on the daily mobility change ∆n(t),
which is the relative difference in the total number of trips
N (t) =

∑m
i,j=1 Fji(t) compared to the baseline number of trips,

i.e., during a period of “normal” mobility. Here, we use March
2019 as this baseline period and compare the mobility on each
date t from 2020 to the average mobility on the corresponding
weekday in March 2019 (Materials and Methods).

We find that mobility in Germany was substantially reduced
during the COVID-19 pandemic (Fig. 1). The largest reduction
occurred in mid-March, when the vast majority of mobility-
reducing interventions took effect (information on government
policies is taken from the ACAPS dataset (6); SI Appendix). Over
the course of 3 wk, mobility dropped to −40% below baseline
on March 27 in the 7-d moving average. The total number of
daily recorded trips decreased from 176 million to 107 million
trips (from 3.8 to 2.3 daily trips per user). The decline was fol-

lowed by an immediate rebound at the beginning of April, even
though mobility-restricting regulations remained in effect during
this period. In the following months, mobility increased slowly,
reaching its prelockdown levels in early June. Interestingly, the
increase in mobility took place in small bursts followed by short
periods of stagnation. These bursts started at around the same
time that mobility-restricting policies were lifted, hinting at a
causal relationship.

Mobility did not decrease homogeneously in Germany: Some
areas witnessed a more substantial reduction than others. We
observed a greater mobility reduction in western and southern
states (such as Bavaria), which were more substantially affected
by the pandemic, compared to the eastern states of Germany
(for example, in Saxony-Anhalt) (25). This difference can par-
tially be explained by more severe mobility restrictions in some
western states. For instance, Bavaria passed stricter measures on
May 20, resulting in a higher reduction in mobility in calendar
week 13. Still, most policies were uniform across Germany and
were implemented in a similar manner on a federal level. There-
fore, differences in policies can deliver only a partial explanation
for regional heterogeneities. Furthermore, we found system-
atic dependencies on demographic factors. Mobility is reduced
more in large cities compared to less densely populated areas.
In addition, several border regions particularly associated with
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cross-border traffic exhibit a higher than average mobility reduc-
tion, although the border as a whole does not deviate markedly
from the average.

Distance Dependence of Mobility Reduction. The observed gen-
eral reduction in mobility begs the question of how mobility has
changed and what types of trips were reduced. We observe a dis-
tinct dependence of mobility change on trip length (Fig. 2). We
calculated the mobility change ∆nD(t) for all trips in a certain
distance range D . Because data are aggregated on a county level,
we use the distance between the county centroids as an estimate
of trip distance (Materials and Methods).

Over the full range of observed distances, we find that long-
distance trips decreased more strongly than short-distance trips.
This resonates with the expectation that many social-distancing
policies targeted long-distance travel specifically: travel bans
across country and state borders, cancellations of major events,
and border closures by other countries affecting holiday
travel.

Furthermore, we find that the split between short- and long-
distance mobility reduction is a useful indicator for an unusual
state of the mobility network. While the total number of trips has
almost returned to its prepandemic state (Fig. 1A), which could
at first glance give the impression that normal mobility patterns
have been restored, the continued discrepancy between short-
and long-distance mobility reduction indicates a long-lasting

A

B

Fig. 2. Mobility reduction as a function of distance. (A) Relative mobility
changes ∆nD(t) for different distance ranges D (7-d moving averages). Long-
distance trips reduction is higher. The notable increase in long-distance trips
in February coincides with school holidays in several German states. Fluc-
tuations in April and May are often centered around public holidays. (B)
The difference between short-distance mobility change ∆nd≤10 km(t) and
long-distance change ∆nd>10 km(t) is a useful indicator for unusual mobility.

structural change in mobility patterns (Fig. 2). The discrep-
ancy, while declining slightly, remained stable over the course
of the pandemic, evidence for the prevalent impact of mobility
changes.

Structural Changes in the Mobility Network
Prelockdown and Lockdown Mobility Networks. To identify key
structural changes over time, we analyze the mobility networks
GT for each calendar week T , where the edge weights wji cor-
respond to the average daily flow along the edge during this
week (Materials and Methods). To highlight the changes occur-
ring during lockdown, we compare two specific time periods: The
prelockdown network G10 is constructed from the trips in cal-
endar week 10 (March 2 to 8), before policy interventions were
passed. The lockdown network G13 is constructed from all trips
in calendar week 13 (March 23 to 29, the week with the highest
reduction in mobility).

The lockdown network G13 is considerably less dense than the
prelockdown network G10 (Fig. 3). Many pairs of counties with
traffic under normal conditions lack traffic during the lockdown
week or the average daily flow fell below the anonymization
threshold wc = 5. In particular, the lockdown network has fewer
long-distance flows than the prelockdown network (Fig. 3C), in
line with our previous finding that mobility over long distances
was reduced most substantially (compare Fig. 2).

The loss of density during lockdown cannot be explained by a
global, uniform reduction of mobility alone, which causes trips
to fall below the observation threshold wc = 5. To illustrate this
point, we compare the lockdown network G13 to the rescaled
network G∗10(T = 13) where edge weights of the prelockdown
network G10 were rescaled such that it is structurally similar to
the prelockdown network G10 but has the same total number
of trips as the lockdown network G13 (Materials and Methods).
This rescaling can rule out effects that originate in a homo-
geneous, global mobility reduction. We find that the rescaled
prelockdown network is denser than the lockdown network.
Specifically, we find a greater probability of observing long-
distance travel (Fig. 3 B and C). We conclude that long-distance
travel has been reduced more substantially during lockdown than
can be explained by a mere global reduction of mobility and
thresholding effects.

Lockdown Effects on Path Lengths in the Networks. The structural
mobility changes during lockdown impact properties typically
associated with the so-called small-world characteristic of the
network (22), namely the shortest path lengths Lji between coun-
ties and the clustering coefficient of nodes Ci (definitions in
Materials and Methods). The shortest path length can be related
to time scales for search or spreading processes, i.e., the time
it takes to reach one location starting at another. The clus-
tering coefficient quantifies the magnitude of the average flow
between triplets of neighboring locations—a large value indi-
cates that two neighbors of a location are likely to have large
flows between them, too. Numerous systems are associated with
high clustering while having small shortest paths (typically mean
shortest paths scale logarithmically with systems size), which is
referred to as the small-world property. This property typically
facilitates the spread of epidemics (26, 27). In contrast, lattices
typically have shortest paths scaling polynomially with system
size and high clustering and thus comparatively slower spreading
speeds (28).

We observe substantial changes in the structural properties
of the mobility networks during lockdown, as illustrated by
the shortest path trees for the weekly mobility networks GT

(Fig. 4A). In the prelockdown network G10, long-distance con-
nections enable a quick traversal of the network followed by
few local steps. In the lockdown network G13, the shortest
paths are generally longer and include more local steps between
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Fig. 3. Comparison of the prelockdown mobility network G10 and the lockdown network G13 corresponding to calendar weeks 10 and 13, respectively. (A)
Depiction of the networks. Line widths indicate the average number of daily trips along each connection. During lockdown, there are fewer trips in total,
fewer unique edges, and fewer long-distance connections. (B) Distribution of node degrees k. The average node degree 〈k〉 and network density ρ are
lower during lockdown (〈k〉= 148, ρ= 32.6%) than in the prelockdown network (〈k〉= 219, ρ= 49.8%). These differences are only partially explained by
a uniform, global reduction of trips (which causes trips to fall below the anonymization threshold wc = 5), as demonstrated by comparison to the rescaled
prelockdown network G10* (T = 13) which is structurally similar to network G10 but has the same number of total trips as G13 (Materials and Methods). (C)
The probability P(dji ≥ d) that a randomly chosen edge wji is of a distance dji ≥ d. The lockdown network contains considerably fewer long-distance trips
than the prelockdown network, an effect that cannot be explained by a uniform, global reduction of flows (rescaled prelockdown network).

neighboring counties. As a consequence of these structural
changes, both the average shortest path length L(T ) and aver-
age clustering coefficient C (T ) increase substantially (Fig. 4B).
Moreover, we observe a striking difference in expected path
length as a function of geographic distance (Fig. 4C). In the pre-
lockdown network, the expected shortest path length Ld initially
increases with geographical distance d , but eventually levels out
at an almost constant level for d & 550 km, i.e., is independent of
geographic distance. This is a well-known phenomenon of spa-
tial small-world networks, where it has been shown that shortest
path lengths typically scale as L∝ r with Euclidian distance r up
to a critical distance rc, followed by an independence regime,
L≈ const. for r > rc (29). A similar relation has been found in
empirical human mobility networks such as air traffic networks
(23). In such networks, geographic distance is an unreliable pre-
dictor for the effective arrival time because larger geographical
distances can quickly be overcome by traveling along links con-
necting distant places. However, in the lockdown network, we
observe a continued, almost linear dependence of the shortest
path length on geographical distance, which is a typical property
of lattices (28). Because long-distance links are missing or weak,
and travel predominantly occurs along short-distance connec-
tions, geographical distance dominates effective travel distance
or travel duration.

We therefore conclude that the lockdown network is more
lattice-like, with predominantly local connections and fewer con-
nections between remote locations, reflecting a reduction of
the system’s small-world property. As indicated above, this has
important implications for dynamical processes such as epidemic
spreading, which we discuss in the next section.

The unexpected scaling relation between path lengths and geo-
graphic distance during lockdown cannot merely be explained by
the fact that the total flow is reduced in the lockdown network,
and neither is it due to thresholding effects. To demonstrate this,
we use the rescaled prelockdown network G∗10(T = 13) as a com-

parison. As we see in Fig. 4C, the reduced flow accounts for the
changes at small distances, but it does not explain the different
dependence of the shortest path length on geographical distance
at large distances. This confirms that the observed effect is due
to structural differences between the prelockdown and lockdown
networks. In SI Appendix, section 3, we present further evidence
to support this conclusion by evaluating how several spread-
ing time scales change over time in both the measured mobility
networks and rescaled networks.

Effect of Lockdown on Spreading Processes
SIR Model with Containment. Finally, we address the question of
to what extent the lockdown-induced changes in mobility impact
epidemic spreading processes mediated by the mobility network.
We simulate an SIR epidemic metapopulation model (30, 31).
In SIR models, individuals are assumed to be in one of three dis-
tinct states: susceptible (S), infected (I), or removed (R) from
the transmission process. Contacts between susceptibles and
infecteds may lead to the infection of the susceptible individ-
ual and infected individuals can spontaneously be removed from
the transmission process by medical/nonmedical interventions,
death, or immunization. In metapopulation models, infecteds
based in one location can cause infections in other locations with
a rate proportional to the daily flow between locations. Implicitly
it is assumed that individuals travel back and forth and transport
the infection between areas.

Note that in the following, we use epidemiological parameters
similar to those of COVID-19 (Materials and Methods). How-
ever, we do not aim to replicate the actual spread of COVID-
19 in Germany, but rather intend to demonstrate qualitative
effects of the lockdown on epidemic spreading in general.

We implement a well-known commuter-dynamics SIR meta-
population model (32) with minor modifications. Specifically, the
original model does not account for changes in the total amount
of mobility (i.e., total number of trips). The modified model
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Fig. 4. Lockdown effects on structural network metrics. (A) The shortest path tree originating at Berlin for the weekly mobility networks GT . In the
prelockdown network G10 (week T0 = 10, blue frame), long-distance connections facilitate quick traversals. In the lockdown network G13 (week T = 13, red
frame), shortest paths are generally longer and include more local steps between neighboring counties. Radial distance is scaled in multiples of the average
shortest path length L(T0) in week T0 = 10. Gray circles mark the largest shortest path length in week 10. Further plots for Berlin and for other sources (which
we find to exhibit qualitatively similar changes) are provided in SI Appendix, section 3D. (B) The average shortest path length L(T) and the average clustering
coefficient C(T) for weekly mobility networks GT over time, relative to their values in week T0 = 10 (blue bar). Both metrics increase substantially in the
following weeks and peak for the lockdown network G13 (red bar), indicating a more clustered and sparser network. (C) The expected shortest path length
Ld(T) at distance d, i.e., Ld(T) = 〈Lji(T)|dji ∈ [d− ε, d + ε]〉. In the prelockdown network G10, the shortest path length Ld is independent of geographical
distances d at large distances, a known phenomenon of spatial small-world networks. In contrast, we observe a continued, roughly linear, scaling relation
for Ld in that distance range for the lockdown network G13, a known property of lattices. The rescaled, prelockdown network G10* (T = 13) does not replicate
the changed scaling behavior, demonstrating that the effect is not solely explained by a global, uniform reduction of mobility and thresholding effects.

accounts for the drastic reduction in total mobility, a substan-
tial part of the changed mobility patterns due to containment
measures.

To include changes in the total amount of mobility in the
model, we assume that a reduction in mobility reduces the rate
with which contacts between infecteds and susceptibles cause
infections. We implement this in two variants, to capture dif-
ferent methodological approaches: In the “distancing” scenario,
mobility reduction leads to a proportional reduction in the aver-
age number of contacts. The “isolation” scenario instead implies
that the equivalent percentage of the population isolates at home
while the remaining individuals do not change their behavior
(see Fig. 5A for an illustration and Materials and Methods and
SI Appendix for details on the SIR model). Note that while many
other nonpharmaceutical interventions may mitigate the spread
of an infectious disease, we purely aim to discuss the effect of
reduced and restructured mobility here.

Mobility Reduction Flattens the Curve. An analysis of the SIR
model indicates that lockdown measures have a distinct impact
on epidemic spreading (Fig. 5). Most prominently, a reduction
of mobility reduces the overall incidence of the epidemic and
delays its spread, shifting the peak to later times: The lockdown
measures “flatten the curve” of the epidemic (Fig. 5B). This
applies to both lockdown scenarios implemented here, where the
stricter isolation scenario shows a lower overall incidence. The

rescaled prelockdown network shows an almost identical inci-
dence curve to the lockdown network (not shown here), which
indicates that the flattening is mostly caused by the reduction in
overall traffic.

In addition, lockdown measures increase the epidemic thresh-
old R∗0 of the disease, that is, the minimal force of infec-
tion required to infect a substantial amount of the population
(Fig. 5C). We compare the simulations to results of the canonical
well-mixed model (Materials and Methods). We find little differ-
ence between the results of the metapopulation simulation and
the well-mixed model, which suggests that stochasticity plays only
as small role in the metapopulation system.

SIR Model Replicates Geographic Dependence of Arrival Times. An
important observation is that the spread of the epidemic shows
a similar functional dependence on geographic distances as the
shortest paths. This implies that the observed structural changes
have considerable practical implications. To clarify this point we
measured the arrival times of the epidemic in counties (Fig. 5D).
During lockdown, the epidemic takes longer to spread spatially,
which is caused by the reduced contact numbers due to reduced
mobility. More importantly, a stronger and continued increase
of the arrival time with geographic distance from the outbreak
origin during lockdown is observed: The farther away a county
is from the outbreak origin, the longer it will take for the county
to be affected by the epidemic. In contrast, with prelockdown

Schlosser et al. PNAS | December 29, 2020 | vol. 117 | no. 52 | 32887

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2012326117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2012326117/-/DCSupplemental


A B

C D

Fig. 5. Simulations of an SIR epidemic on prelockdown and lockdown mobility networks. (A) We incorporate changes in total mobility in two scenarios in
the model: In the “distancing” scenario, reduced mobility removes contacts between individuals, uniformly distributed over all individuals. In the “isolation”
scenario, reduced mobility implies that an equivalent fraction of individuals isolate at home and are effectively removed from the system (see main text
and SI Appendix for details). (B) In both model scenarios, the epidemic curve (infecteds over time) is flattened and its peak shifted to later times during
lockdown. Note that we omit simulations on the rescaled network that yield similar results, indicating that the observed flattening effect is dominated by
a decreasing basic reproduction number rather than structural changes. Results are shown for R0 = 3 and recovery rate µ= 1/(8 d), with a single random
outbreak origin of I0 = 100, averaged over 1,000 simulations for each scenario. (C) The epidemic threshold is shifted to higher values ofR0 during lockdown
in both lockdown scenarios. Arrows indicate the well-mixed epidemic thresholds atR0* = 1 (prelockdown) andR0* = 1.67 (lockdown). (D) The average arrival
times t* in counties as a function of geographic distance di* from the outbreak origin i*. The arrival time t* is defined as the first time when infecteds
pass the threshold of 0.1% in a county. In the lockdown network, arrival times increase due to lower mobility. More importantly, however, we observe a
similar scaling relationship as shown for the shortest path lengths: During lockdown, the arrival time shows a continued increase as a function of geographic
distance from the outbreak origin, even in the long-distance regime. The changed scaling behavior cannot be explained by the lower total amount of trips
(rescaled network).

mobility, the arrival times exhibit only a slow increase with geo-
graphic distance. Furthermore, the rescaled network does not
replicate the changed scaling relation of arrival times during
lockdown, which demonstrates that it is not caused by a reduction
in the total amount of trips.

The dependence of arrival times on geographic distance in
Fig. 5D matches the corresponding relationships for the shortest
path lengths depicted in Fig. 4C. Therefore, structural changes—
i.e., a reduced connectivity across long distances—have direct
consequences for the dynamics of an epidemic, mitigating the
spatial spread over long distances.

Discussion
In this study, we report and analyze various lockdown-induced
changes in mobility in Germany during the initial phase of
the COVID-19 pandemic. We found a considerable reduction
of mobility during the pandemic, similar to what was previ-
ously reported for other countries that passed and implemented
comparable policies (8–11). The reduction in mobility can be
divided into a swift decrease, early in the lockdown phase, fol-
lowed by a slow recovery. The initial rebound occurred in late
March although official policies remained unchanged. This could
be indicative of individuals taking up nonessential trips again

despite lockdown policies. We think that further research is nec-
essary to illuminate what part of the mobility reduction was a
direct consequence of policies and which part was caused by
voluntary behavioral changes within these official regulations.

We found evidence for profound structural changes in the
mobility network. These changes are primarily caused by a reduc-
tion of long-distance mobility, resulting in a more clustered
and local network, and hence a more lattice-like system. Most
importantly, we found that path lengths continually increase with
geographic distance, which is a qualitative change compared to
prelockdown mobility. These changes indicate a reduction of the
small-world characteristic of the network.

In the context of human mobility, the structural network
changes can be interpreted in different ways. Fewer individu-
als travel along connections of growing distance. One possible
reason for this is that the individual “cost” of traversing long-
distance connections has increased, more so than that for short-
distance links, for example due to legal restrictions on travel,
missing transportation options (such as flights), or slower and
reduced transportation overall. As a result, people might avoid
such travel or break up their travel in smaller trip segments.

The practical consequences of our findings are highlighted in
the epidemic simulations analysis. We found that reduced global
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mobility during lockdown likely slowed down the spatial spread
of the disease. Regarding structural changes, we found that the
arrival times in counties increase continuously with the distance
to the outbreak origin during lockdown, matching results of the
topological analyses of the shortest path lengths. This result
emphasizes our argument that the changes in the mobility net-
work shown in this study have direct and nontrivial consequences
on dynamic processes such as epidemic spreading. Our findings
also suggest that targeted mobility restrictions may be used to
effectively mitigate the spread of epidemics. In particular, mea-
sures that reduce long-distance travel mitigate a diseases’ spread
during the first phase of an outbreak while a reduction in general
mobility may be associated with a flattened prevalence curve.

In conclusion, we hope that future research will further illu-
minate the complex effects of restrictive policies on human
mobility. Deeper and more complex aspects of mobility changes
may occur during lockdowns, ranging from topological proper-
ties of the mobility network to its relation to sociodemographic
and epidemiological conditions of the affected regions. We
hope that a clearer understanding of complex effects of
mobility-restricting policies will enable policymakers to use these
tools more effectively and purposefully and thus help to mitigate
the ongoing COVID-19 pandemic and to better prepare us for
future epidemics.

Materials and Methods
Daily Mobility Change. To investigate national mobility trends, we focus on
the total number of trips N(t) =

∑m
i,j=1 Fji(t) on the date t. To judge whether

mobility has changed during the pandemic, we compare the mobility during
the pandemic T to a baseline period with normal mobility T0. Different
comparison time frames T0 can be chosen and no clear, optimal choice that
exhaustively accounts for seasonal effects, holidays, and general changes in
mobility patterns exists. Here, we use March 2019 as a comparison, which we
assume to be structurally closest to the period of March 2020 where most
interventions took place.

For a given date t within the time frame of the pandemic T , we calculate
the mobility change ∆n(t) by comparing the number of trips N(t) to the
expected number of trips N0(t) during the baseline mobility period T0 as

∆n(t) =

(
N(t)

N0(t)

)
− 1.

Because mobility differs strongly depending on the weekday, we calculate
the expected number of trips N0(t) as the average number of trips on all
those dates Dτ in the base period T0 that have the same weekday τ as the
date t,

N0(t) = |Dτ |−1
∑

t′∈Dτ

N(t′).

To analyze the mobility change for a single county, ∆n(i)(t), we use the same
procedure but count only the number of trips that originate in the county i;
i.e., N(i)(t) =

∑m
j=1 Fji(t).

Mobility Change for Distances. When we calculate the distance-dependent
mobility change ∆nD(t), we proceed similarly to the previous section, but
we consider only trips whose distance falls into a certain distance range
D = {d : dmin < d≤ dmax}. As a proxy for the distance of flows Fji(t), we use
the geographical distance dji between the centroids of counties i and j. The
number of trips in the distance range D is

ND(t) =
∑

(i,j)∈ΦD

Fji(t),

where ΦD is the set of all pairs of counties (i, j) whose distance falls into the
range D,

ΦD =
{

(i, j) : dji ∈D
}
.

Using ND(t), we calculate ∆nD(t) as outlined in the previous section.

Calculation of Weekly Mobility Networks. We create weekly mobility net-
works GT from trips measured during calendar week T . Let DT denote the

set of days in calendar week T . The edge weights wji(T) are then calculated
as the average daily number of trips between counties during this week,

wji(T) = |DT |−1
∑

t′∈DT

Fji(t
′).

We omit edges whose average weight is below the threshold wji(T)< 5 to
ensure consistency and comparability with the daily data.

Rescaled Networks. To investigate how the global reduction of mobility
affects our observations in comparison to structural changes, we con-
struct rescaled networks G10* (T) by scaling the weights of the prelockdown
network of calendar week 10 by the flow lost during week T ; i.e., we set

wji* (T) = wji(T)×
∑m

i,j=1 wji(T)∑m
i,j=1 wji(T = 10)

.

Subsequently, we apply the same thresholding procedure as was done in the
original data to the resulting network and discard all links with wij* (T)< 5.
We therefore obtain a network that is structurally similar to the prelock-
down system of calendar week 10 but has the same total amount of trips
as the corresponding system of calendar week T , which allows us to isolate
the effects that come purely from a uniform, global mobility reduction and
subsequent thresholding.

Path Lengths and Clustering Coefficient. To measure path lengths in the net-
work, we consider two counties to be “close” to each other when they are
connected by a large flow value and define the distance of each link as the
inverse weight along the edge `ji = 1/wji . Using this distance metric we cal-
culate the shortest path length Lji between each pair of source node i and
target node j using Dijkstra’s algorithm (33). We calculate the weekly aver-
age path length L(T) = (m(m− 1))−1∑m

i,j=1 Lji(T) and the average weighted

and directed clustering coefficient C(T) = m−1∑m
i=1 Ci(T) over all nodes for

the weekly networks GT (as defined in ref. 34). Because the above definition
of distance is sensitive to changes in the total flow of the network, we dis-
cuss a variety of other distance scales in SI Appendix, yielding similar results
(SI Appendix, sections 3B and 3C). Additionally, we show that increasing the
observation threshold wc does not substantially change the results, indicat-
ing that the original threshold of the data was chosen small enough to not
have an impact on our conclusions.

SIR Metapopulation Model. We use a modified version of the model pro-
posed in ref. 32 where susceptible S, infected I, and recovered individuals
R are associated to be part of commuter compartments Xji (with X ∈
{S, I, R}) when they live in location i and work in location j. The compart-
ments are coupled by shared work and home locations, respectively, and
commuter-compartment population sizes Npop

ji = Sji + Iji + Rji are assumed

to be proportional to the edge-specific outflux ratio of location i as Npop
ji =

Npop
i Fji/

∑
k Fki . Full details are given in SI Appendix, section 4.

As stated in the main text, we incorporate two different variations of
lockdown mechanisms into the model, to account for different interpre-
tations of the influence of mobility reduction on the average number of
contacts. In the distancing scenario, we assume that a mobility reduction by
a factor κi in a location i leads to a linear reduction in the transmission rate
βi throughout the epidemic; i.e., β′i =κi × β. The assumption here is that
the reduced mobility uniformly translates into reduced contacts between
individuals. In the other, stricter scenario of isolation, we instead assume
that the reduced mobility means that individuals stop their commuting and
are effectively removed from the system. We implement this by assuming
that initially, a fraction 1−κi is removed from the transmission process such
that S′ji(t = 0) =κiSji(t = 0) and R′ji(t = 0) = (1−κi)Sji(t = 0). Both scenarios
lead to a reduction of the basic reproduction number that is proportional
to a reduction of mobility. In SI Appendix, section 5, we argue that such a lin-
ear relationship corresponds to an upper bound of transmissibility reduction
induced by mobility reduction.

Recent metareviews estimate the basic reproduction number R0 for
COVID-19 in the range of 2 to 3 and the infectious period as roughly 7 d (35–
37). Accordingly, we use R0 = 3 and a recovery rate of µ= 1/(8 d), close to
values previously used for the analysis of the disease’s spread in Germany (14).

Data Availability. The mobile phone dataset is deposited in the Open Sci-
ence Framework (OSF) repository for the COVID-19 mobility project (38)
in an anonymized form, which will enable readers to replicate the main
results of this paper (see SI Appendix for a description of the anonymiza-
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tion process). All other datasets used are publicly available: the ACAPS
dataset on government policies (6), population data (39), and county-level
geodata for Germany (40). Their sources and details are also listed in SI
Appendix. The Python code used for the SIR simulation is available at https://
github.com/franksh/EpiCommute and included in the OSF repository (38).
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