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Abstract: The reproduction of the brain ’sactivity and its functionality is the main goal of modern
neuroscience. To this aim, several models have been proposed to describe the activity of single
neurons at different levels of detail. Then, single neurons are linked together to build a network, in
order to reproduce complex behaviors. In the literature, different network-building rules and models
have been described, targeting realistic distributions and connections of the neurons. In particular,
the Granular layEr Simulator (GES) performs the granular layer network reconstruction considering
biologically realistic rules to connect the neurons. Moreover, it simulates the network considering
the Hodgkin–Huxley model. The work proposed in this paper adopts the network reconstruction
model of GES and proposes a simulation module based on Leaky Integrate and Fire (LIF) model.
This simulator targets the reproduction of the activity of large scale networks, exploiting the GPU
technology to reduce the processing times. Experimental results show that a multi-GPU system
reduces the simulation of a network with more than 1.8 million neurons from approximately 54 to
13 h.

Keywords: cerebellar network simulation; graphics processing units; brain modeling; high perfor-
mance computing

1. Introduction

The modern computational modeling in neuroscience requires to reproduce the activity
of large scale and realistic networks in the shortest time. The reproduction of meaningful
biological mechanisms requires to include a huge number of elements into the network.
Moreover, different models can describe the behavior of single neurons, targeting different
levels of details. Among the simplest and most adopted models, the Leaky Integrate and
Fire (LIF) features a low computational complexity and can reproduce basic neuronal
behaviors such as natural peacemaking and the response to single or multiple input
spikes [2]. Thanks to the low computational complexity, the LIF model is the most used to
build Spiking Neural Networks (SNNs). However, complex SNNs simulations do not scale
linearly when considering large scale problems (i.e., if the number of elements is greater
than 100,000) [3]. These limitations have been addressed adopting High Performance
Computing (HPC) solutions; in particular, Graphics Processing Units (GPUs) emerged as
the ideal solution to simulate large SNNs. In fact, these devices are capable of processing
in parallel the neuronal activity of a huge number of cells. One important aspect that can
make the GPUs useful in this research field is that they can be hosted in desktop systems as
well as in supercomputers.

Recently, Granular layEr Simulator (GES) was proposed [1], which targets multi-GPU
systems. This simulator has the advantage of placing the neurons in a three-dimensional
space and connecting the elements following biologically realistic rules. As a result, the
obtained network features a high level of realism since it reproduces the topology of a
real granular layer network. However, the work in [1] describes the single cells activity
only through the Hodgkin–Huxley (HH) model, which features a high computational
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complexity [4]. This is because the HH model describes the cellular activity in a very realistic
way and thus requires a set of differential equations and a high number of parameters.
Thus, this simulator does not allow to reproduce huge networks on desktop systems, since
the GPU memory is limited. In this work, we adopt the same network reconstruction
method described in [1] and simulate the cellular activity with LIF models, which are
characterized by a differential equation and feature less parameters compared to the HH
description. In this way, we extend the functionality of the original GES simulator, allowing
the user to choose the preferred model for network simulation. Moreover, since the adopted
network is the same as [1], the computational complexity of parallel performance can be
directly compared.

Summarizing, the main contributions of this paper are:

• the extension of the GES simulator in order to include the LIF models of the different
neurons of the cerebellar granular layer:

• the analysis of the impact of a realistic neuron placements and connections on a
multi-GPU simulation of LIF models;

• the direct comparison of the processing times of a network activity simulated in
parallel on GPUs adopting HH or LIF models.

Moreover, this work adopts a realistic and innovative approach for placing and con-
necting the network elements. It is worth noticing that the most of the literature focuses
on simulating a huge number of LIF neurons adopting fixed and simple rules to connect
the elements (i.e., simple equations or rules that do not represent the real world scenario).
On the other hand, most of the works targeting a high biological realism, focuses on the
adoption of very complex models such as Hodgkin–Huxley one. The proposed work closes
the gap of simulating large scale LIF network considering realistic connection rules. More-
over, the proposed framework extends the existing GES simulator, making possible the
simulation of large-scale networks even on desktop systems equipped with GPU boards.

The paper is organized as follows: Section 2 describes the structure of the granular
layer network and the LIF models of the different neurons. Section 3 describes the serial
algorithm which has been developed for two main purposes: to validate the single neurons
behaviors against the literature and to serve as a baseline to evaluate the performance of
the parallel algorithm. Moreover, Section 3 details the proposed parallel implementation
targeting GPU and multi-GPU systems. The performed experiments and the obtained
results are reported in Section 4, together with the discussion and the comparison with the
state of the art. Section 5 concludes the paper with some final remarks and hints at future
research lines.

2. Background
2.1. Cerebellar Granular Layer

The cerebellar cortex is divided into three parts: the granular, the Purkinje and the
molecular layers. Each of these layers includes different types of neurons. The granular
layer hosts granule (GRC) and Golgi (GOC) cells. These neurons connect their dendrites
and axons in particular structures called glomeruli (GLOs) which are also reached by the
mossy fibers (MFs). The connection of these elements constitutes the feedforward and
feedback loops, typical of the granular layer [5]. In the feedforward loop, the MFs excite the
GRCs and, then, the parallel fibers (PFs) excite the GOCs that inhibit the GRCs. Otherwise,
in the feedback loop, the MFs excite the GRCs and GOCs dendrites and these latter inhibit
the GRCs. These loops are shown in Figure 1, where the yellow spheres represent the GRC
and the green ones the GOC. The excitatory signals are shown with red arrows, and the
inhibitory ones by blue arrows. The GRCs, GOCs and MFs are connected through excitatory
or inhibitory synapses, depending on the kind of signal exchanged by the neurons.
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Figure 1. Feedforward and feedback loops. In the first loop, the MF excites the GRCs (yellow spheres),
then the signals travel along the parallel fibers and excite the GOC (green sphere) that inhibits the
GRCs. In the second loop, the MF excites the GRCs and the GOC, which later inhibits the GRCs.
For both the loops, the excitatory signals are shown with red arrows, while the inhibitory ones are
represented with blue arrows.

The elements connectivity in the cerebellar granular layer has been widely studied
and, in the literature, a set of rules to connect the neurons has been described [6–10].
The connection rules reported in [1] are obtained by this wide literature review, therefore
achieving a very realistic description of the granular layer and also aligned to the state of
the art. The network connectivity can be summarized by the following rules:

1. the convergence rate between GLOs and GRCs is 4:1;
2. the GRCs dendrites cannot reach GLOs located at a distance greater than 40 µm;
3. a single GRC cannot send more than one dendrite into the same GLO;
4. each GRC must project its dendrites to four different GLOs;
5. the divergence rule between GLOs and GRCs dendrites is 1:53;
6. the convergence rate between GLOs and the GOCs is 50:1;
7. a GRC is not inhibited twice by the same GOC;
8. each GOC axon can reach and inhibit a maximum of 40 different GLOs;
9. each GOC receives excitatory inputs from about 40 MFs;
10. the convergence rate between the ascending axon and the GOCs is 400:1;
11. the convergence rate between the PFs and the GOCs is 1000:1.

2.2. Leaky Integrate and Fire Models

The LIF models are among the simplest to describe the neurons activity. They are
based on a simple electrical circuit which includes a capacitor Cm, a conductance gL in
series with a voltage generator EL and a current generator IE [11], connected in parallel as
shown by Figure 2.

In this circuit, the capacitor Cm represents the cellular membrane capacitance, the
terms gL and EL are the leakage conductance and voltage, respectively, and the current
generator IE denotes the current stimulus. This last term includes the contribution of a
constant current used to charge the Cm capacitor, the synaptic current generated by the
neurons connected to the considered cell and an optional injected current, which is used to
externally stimulate the cell in order to validate the model.
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Figure 2. The upper part of the figure shows the circuital model. The lower part represents the
voltage of the capacitor Cm (blue line) in response to a constant current IE. It also shows the voltage
reset mechanism: when the Vm reaches the threshold VTH (red dashed line), its value is instantly
changed to the initial one (Vinit) and it is maintained for a time equal to tre f .

The voltage of the capacitor Cm is given by Equation (1).

Cm
dVm

dt
= IE − gL(Vm − EL) (1)

By denoting the leakage current with IL and applying the implicit Euler method, Equation (1)
can be rewritten as:

Vm(t + h)− Vm(t)
h

=
−IL + IE

Cm
(2)

where h is the integration step. From Equation (2) it is easy to obtain the final expression
used to update the membrane voltage of the neuron (Equation (3)).

Vm(t + h) = Vm(t)− h
IL + IE

Cm
(3)

As written before, the term IE also includes the contribution of the synaptic currents, which
can be modeled as:

Isyn(t) = gsyn(t)(Vm(t)− Vgen_syn) (4)

where the term Vgen_syn is the equilibrium potential of the considered synapse. It is worth
noticing that the synaptic conductance gsyn is not constant since it is time dependent. It
follows the law expressed by Equation (5).

gsyn(t + h) = gsyn(t)e−
t
τ (5)

where τ is the synapse time constant. Notice that Equation (5) describes an exponential
decay from the initial value of gsyn to 0. Moreover, the value of gsyn is incremented by a
fixed quantity w every time a spike signal generated from a neuron reaches the considered
synapse. Thus, the incoming spikes to the synapses instantly change the value of gsyn,
triggering the exponential decay mechanism (Equation (5)).
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To reproduce the firing rate of a neuron, Equation (1) is extended with a threshold
mechanism, in order to reset the Vm potential to an initial value, denoted with Vinit. The
threshold mechanism is described by Equation (6).

Vm(t + h) =
{

Equation(3) if Vm(t) < VTH
Vinit ifVm(t) ≥ VTH

(6)

Finally, every time the voltage Vm reached the threshold value VTH , Vm is reset to the initial
value Vinit, the value is maintained constant for a time tre f which is called refractory period.

The lower part of Figure 2 shows the Vm voltage waveform after a constant current
injection (solid blue line). It is worth noticing that, after reaching the value VTH highlighted
by the dashed red line, the Vm is reset to the initial value and keep constant for the refractory
period (tre f ). After the refractory period, the model starts to evaluate again Equation (3).

2.3. Methods for Numerical Integration of Ordinary Differential Equations

The system shown by Equation (6) is based on the ordinary differential equation
(ODE) of Equation (1). Several methods have been proposed the solve ODEs. The choice
of the numerical integration method has a great influence on the computational time and
accuracy [12]. Among the different ODEs solvers proposed in the literature, the most
used are the forward Euler, Heun, Adams–Basforth, Runge–Kutta methods [13]. All these
methods perform interpolation at each integration step to approximate the derivative at a
discrete subset of time points.

It is worth noticing that the LIF model adopts first order differential equation and that
a large-scale network includes hundreds of thousands of neurons. Moreover, this work
targets the simulation of long periods of cellular activities. Thus, the differential equations
should be solved a huge number of times for each neuron. Therefore, the proposed work
adopts the Euler implicit method to solve the differential equations, being the one that
ensures a low computational complexity and an error which is negligible for the considered
application. Note that the Euler method is used in other applications adopting High
Performance Computing architecture to speed up the computation [14–16].

3. Integration of the LIF Models into the GES Simulator
3.1. Validation of the GRC and GOC Simulations

The LIF models described in the previous section can reproduce the behavior of
the GRC and GOC cells, which are the neurons included in the granular layer. It is
worth noticing that these neurons can be described by Equations (3) and (6), changing the
parameters gL, EL, IE, Cm, VTH , Vinit and tre f . The parameters used to describe the GRC and
GOC cells have been taken from the NeuroElectro Database [17]. The parameters values
used for each cell type are reported in Table 1.

Table 1. LIF models parameters for the GRC and GOC cells.

Parameter GRC GOC

gL 1.5 nS 3.6 nS
EL −74 mV −65 mV
IE 0 pA 36.75 pA

Cm 3 pF 76 pF
VTH −42 mV −55 mV
Vinit −84 mV −75 mV
tre f 1.5 ms 2 ms

Considering the synapses, the excitatory and inhibitory ones are characterized by the
parameters Vgen_syn, τ, w and the initial value of gsyn. Again, the parameters values have
been taken from the NeuroElectro Database [17] and reported in Table 2.
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Table 2. Parameters for the excitatory and inhibitory synapses.

Parameter Excitatory Synapse Inhibitory Synapse

Vgen_syn 0 mV −85 mV
τ 0.5 ms 10 ms
w 20 nS −10 nS

gsyn 0 nS 0 nS

The analysis of the values reported in Tables 1 and 2 allows to compare the behaviors
of the GRC and GOC. It is important to notice that the parameter IE is equal to zero only
for the GRC. This means that, in normal conditions, the GRC maintains its resting potential
Vinit. On the other hand, the GOC is characterized by a positive value of IE. This means that
this cell is characterized by a natural peacemaking, i.e., the potential varies as a periodical
signal which grows from Vinit to VTH and then is reset to Vinit. Moreover, the role of the
synapses is to instantly change the value of the potential when they receive a spike. In
particular, the excitatory synapse increases the potential, while the inhibitory one decreases
the value.

In order to integrate the LIF models of the GRC and GOC into the GES simulator,
authors developed a serial C code to solve Equation (6). The results obtained by these single
cells simulators have been compared with the one reported in the NeuroElectro Database,
in order to validate the developed serial C codes. Examples of the output produced by
these simulators are reported in Figure 3.

Figure 3. The results produced by the single cells C simulators.

The top part of Figure 3 shows the result produced by the GRC serial simulator. It
is worth noticing that, at the beginning, the potential is fixed to the Vinit value. When an
inhibitory synapse is activated by a spike (vertical green dashed line) the potential instantly
diminishes and then grows back to the Vinit value. On the other hand, when an excitatory
synapse is activated by a spike (vertical red dashed line) the potential is characterized by
the presence of spikes. When the excitatory effect ends, the potential comes back again to
the Vinit value. The bottom part of Figure 3 shows the GOC activity. At the beginning, the
GOC shows its natural peacemaking. When the inhibitory synapse is activated (vertical
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green dashed line), the potential is instantly decreased and, then, the cells continues with
its natural peacemaking. Considering the excitatory input (vertical red dashed line), it
instantly increments the potential. In the case shown in Figure 3, the excitatory input
increases the potential to a value greater then the threshold. The value is then reset to Vinit
and, after the refractory time, the cells restart with the natural peacemaking.

In order to integrate these two serial simulators into the GES software, authors de-
veloped a serial simulator of the cerebellar granular layer, exploiting the cells placing
and connection module of the GES simulator. This module produces as output a set of
connection matrices that are used to route the signals to the cells. For each GRC and GOC,
in each synapse, a suitable array is allocated. Thus, these arrays are used to store the spike
times related to a synapse and it is removed from the array when a spike is processed by
the synapse. Concerning the GRCs, the excitatory inputs are generated by the MF, while
for the GOCs they are generated from the MFs or from the GRCs. On the other hand, the
inhibition signals are generated by the GOCs for the GRCs. The MFs are initialized using
the spike train generator already described in [1]. The arrays storing the spikes queues
not generated by the MFs change their content during the simulation depending on which
neurons generate a spike.

The flowchart of the serial simulator is shown in Figure 4. After reading the connection
matrices and initializing the MFs, the simulator starts to evaluate the main for loop related
to the time. For each time step, the cellular activity of the GOCs is computed (i.e., Vm
evaluated). If the potential of each GOC reaches the value VTH , this means that this cell
has generated a spike. Therefore, the time stamp of the spike is computed by summing to
actual time t a pseudo-random value related to the propagation time from the i-th GOC to
the connected cells. This time stamp is then stored in the inhibitory spike queues of all the
GRCs connected to the i-th GOC.

Figure 4. The flowchart of the serial network simulator.
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At this point, the GRCs potentials have been updated; a spike evaluation mechanism
similar to the one previously described is implemented in order to store the time stamps
into the GOCs excitatory queues. The main loop is repeated until the actual simulated time
t is lower than the final time t f in.

3.2. Parallel Implementation of the Granular Layer Network

By analyzing the flowchart reported in Figure 4, the computational complexity of the
simulation is related to the main for loop iterating over the time steps. Moreover, inside this
loop, the evaluation of the GOCs and GRCs activities is the most time consuming operations
because the simulator should solve Equation (6) for each cell. Finally, the signal routing
to the suitable queues should be performed serially, since more than one cell can write to
the same queue at the same iteration t, but the stored time stamp must be in ascending
order to correctly evaluate the spikes. Thus, we developed a CUDA-based algorithm to
reproduce in parallel the activity of the GOCs and GRCs. The flowchart reported in Figure 5
highlights the tasks performed by the CPU in serial and the parallel elaboration carried out
by the GPU. Moreover, data transfers are represented by arrows passing through the blue
dashed line.

Figure 5. The flowchart of the GPU-based network simulator.

As for the serial network simulator, the first tasks are related to the acquisition of
the connection matrices and the generation of the spike queues related to the MFs. Then,
the main for loop can begin. The first task checks if each queue related to each GOC
contains a spike at the actual simulation time. If this condition is true, a flag is set into a
suitable array in the i-th position to indicate that the GOC connected to the i-th synapse
is receiving a stimulus. Thus, after evaluating each queue, an array of flags is transferred
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to the GPU memory. Then, a number of parallel threads equal to the number of GOC is
used by the GPU to carry out the cellular activity simulation. Thus, each GPU thread solves
Equation (6), considering the presence of a spike in each synapse by checking the flags
array portion related to the considered neuron. It is worth noticing that the parameters
and variables values needed to solve Equation (3) are stored in suitable arrays allocated
on the GPU memory before the main loop. On the other hand, the constant parameters
are defined as macro and then substituted with the corresponding value at compilation
time. If the i-th GOC has produced a spike at the current time (i.e., its potential is equal or
grater than VTH), a flag is set in the i-th position of an array, then is transferred back to the
CPU memory. The information stored in this array are used by the CPU to set flags into the
GRCs inhibitory queues. In particular, if the i-th GOC is connected to the j-th GRC and this
GOC produces a spike, the flag array related to the inhibitory queue of the j-th GRC is set
true. Moreover, the spike queues related to the MFs are checked in order to correctly set
the flag array related to the excitatory synapses. These flag arrays are then transferred to
the GPU memory, as for the flag array related to the GOC. On the GPU, a set of threads
equal to the number of GOCs is created to evaluate in parallel the activity of these neurons.
After updating the GRC potential value, each thread checks if the assigned cell produced
a spike at the current time. Again, the memory addresses of the flag array related to the
GRC that generated a spike are set to the true value. This array is transferred back to the
CPU memory, where it is used, together with the MFs queues to generate the signals for
the GOC of the next iteration of the main loop.

This simulation framework can be generalized to exploit multi-GPU systems by using
CUDA streams, which allow asynchronous data transfers and GPU kernel execution. In
particular, a stream is associated to each GPU of the system. Thus, each GPU elaborates
data independently from the other devices. This strategy can be applied only to the GOCs
and GRCs activity evaluation, since, as explained before, the queues should be serially
managed. Therefore, a synchronization barrier is placed before each serial code block.
Notice that all the other GPU related operations (memory transfers and kernels executions)
are managed through CUDA streams; therefore, the data transfers and kernel executions of
different devices are overlapped.

In general, considering a system equipped with N GPUs, each device performs the
activity simulation of an equal number of neurons. If N_GOCs denotes the total number
of GOCs and N_GRCs is the total number of GRCs, each GPU elaborates N_GOCs

N and
N_GRCs

N neurons.

4. Experimental Results and Discussion
4.1. Performed Experiments

The granular layer network based on LIF models has been validated exploiting the
GES neuron placement and connection module. We used this module to generate three
networks configurations with different sizes, in order to characterize the computational
complexity and the scalability of these models. The main features of these networks are
reported in Table 3.

Table 3. Features of the simulated granular layer networks.

Network ID Physical Size [µm3] # of GOCs # of GRCs # of GLOs

Network1 300 × 75 × 1200 243 108,000 8099
Network2 600 × 150 × 1200 972 432,000 32,399
Network3 1200 × 300 × 1200 3888 1,728,000 129,599

The physical size of the networks is chosen in order to consider large scale prob-
lems. In these specific cases, Network1, Network2 and Network3 include about 116,000,
465,000 and 1,850,000 elements. These networks dimensions were selected with a group of
neuroscientists belonging to the same university.
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As explained in Section 2.1, the MFs provide the input to the network. Therefore,
the simulation of the MFs activity following suitable protocols is mandatory to carry out
a realistic simulation of the cerebellar granular layer. In [1] four different protocols are
used both to simulate the network and to characterize the system performance. The four
protocols are summarized in Table 4.

Table 4. Features of the simulated granular layer networks.

Protocol ID Stimulus Type Description

Prot1 Background All the MFs receive a background signal of 1 Hz

Prot2 Burst 10% of the MFs receive a 100 Hz burst for 50 ms

Prot3 Background + Burst All the MFs receive both the 1Hz background and the 100 Hz burst

Prot4 Background + Burst All the MFs receive the 1Hz background and 1% of the MFs receive the 100 Hz burst

Prot1 is a typical protocol used in neuroscience, since it reproduces the normal back-
ground activity. In this case, the MFs receives a 1 Hz signal, i.e., the MFs are stimulated
with a spike every second. It is worth noticing that the spike times are different for each MF,
even if their frequency is the same. Prot2 represents another realistic neuroscience stimulus
which is called burst. In this case, the MF is stimulated with a 100 Hz signal for a very short
time. In this protocol, only 10% of the MFs are stimulated. The third protocol (Prot3) is a
combination of the previous two stimuli. In fact, all the MFs receive both the background
and the burst. From the neuroscience point of view, this protocol is realistic and it is used
only to perform a stress test on the network and to characterize the performance of the
system. Finally, Prot4 is a realistic stimulus in which all the MFs receive a 1 Hz background
and 1% of the MFs also receives a 100 Hz burst.

Another important aspect to consider is the physical time to simulate. In order to
compare our results with the work in [1], the simulations consider 1, 3 and 10 s of activity.
Moreover, simulations of 30 and 60 s have also been carried out to best characterize the
performance of the proposed parallel simulator.

The simulations have been performed on a system equipped with an Intel i9 9900X
processor with 128 GB of RAM. This CPU is connected to two NVIDIA RTX 2080 GPU
featuring 4608 CUDA cores working at 1.35 GHz and 16 GB of RAM.

4.2. Processing Times

All the protocols shown in Table 4 have been used to stimulate the three networks to
simulate 1, 3, 10, 30 and 60 s of activity. The processing time of the serial simulations are
reported in Table 5. As expected, for each stimulation protocol, the processing times scale
up with the network sizes and the duration of the simulated cellular activity. To evaluate
how the different protocols impact on processing times, considerations about the synaptic
activities should be carried out. Prot1 stimulates the synapses with a background signal at
the frequency of 1 Hz. This means that all the synapses linked to a specific MF receive a
spike signal every second. Thus, for the considered simulated times, each MF receives a
number of spikes ranging from approximately 1 to 60. It should be noticed that the number
of spikes is not fixed since the spikes queues are generated adopting a Poisson distribution.
This protocol serves as base for the other stimulations; therefore, the other protocols require
to evaluate the synapses activities more time than in Prot1. In particular, Prot3 is the one
generating the greatest number of spikes since it includes the background activities of Prot1
and a burst of 100 Hz for 50 ms used for the stimulation of all the MFs. This burst results in
about five to seven additional spikes that are evaluated by the MFs. Prot2 and Prot4 require
to evaluate a number of spikes which is lower than Prot3, resulting in lower processing
times. Summarizing, for each network, Prot3 requires the longest processing times. This is
because it evaluates the synapses contributions more times than the other protocols, since
all the MFs are stimulated both by a background and a burst. Notice that there is a 4×
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factor between the number of elements included in each network. Considering the same
protocol and the same simulated time, this factor can also be identified in the processing
times. Taking a single network, for each protocol, the simulation times linearly scales up
with the duration of the simulated cellular activity. Therefore, the processing times linearly
grows up both with the network size (i.e., the number of elements to simulate) and the
duration of the simulated cellular activity.

Finally, the serial processing times range from 4 h (Network1) to 60 h and 40 min
(Network3), which clearly demonstrates the need of parallel processing to efficiently simulate
large scale networks for long time periods.

The processing times of the parallel code are summarized in Tables 6–8. As a general
comment, the parallel algorithm achieves a speed-up ranging from about 1.50× to about
7.00×. The lowest speed-up is related to the Network1 when stimulated with Prot3 to
simulate 1 s of cellular activity. This is due to two main factors. The former is the low
number to elements to simulate (less than 110,000), while the latter is the high number of
spikes generated by the stimulation protocol. In fact, all the MFs generate a burst during
1 s of simulated cellular activity. This means that the probability that the bursts of different
MFs are generated at similar time steps is high. Thus, all the cells reach a high number of
stimuli that are evaluated at the same time. Notice that the evaluation of a spike to calculate
the synaptic current is based on if statements, which cause branches divergence degrading
the GPU performance.

This limit is overcome if the number of elements included in the network augments.
In fact, the speed-ups for Network2 and Network3 when considering Prot3 are not negligible.

All the networks show speed-ups ranging from about 3.50× to about 7.00× when
considering Prot1, Prot2 and Prot4. These three protocols represent situations that are of
interest for neuroscientists. Thus, the proposed parallel algorithm integrated into the GES
simulator offers an interesting solution to simulate large scale networks even on a desktop
PC. These considerations are confirmed by Figure 6, which shows the performance of the
systems considering Network3 when stimulated with Prot4, which is a typical protocol
considered by neuroscientists.

Table 5. Processing time for the serial simulations.

Protocol ID Simulated Time Network1 [s] Network2 [s] Network3 [s]

Prot1

1 s 236.56 987.64 4125.66
3 s 709.50 2614.12 9708.80

10 s 2337.08 9896.63 41,761.12
30 s 7133.05 25,676.48 92,690.36
60 s 14,386.50 51,586.48 188,804.76

Prot2

1 s 226.03 973.94 4164.44
3 s 694.90 2853.13 11,754.36

10 s 2298.36 9391.82 39,060.12
30 s 6909.95 28,040.60 94,235.90
60 s 14,508.90 55,835.09 192,035.60

Prot3

1 s 274.91 1012.14 4244.40
3 s 751.48 3260.60 11,514.90

10 s 2404.31 10,201.35 47,243.92
30 s 7198.80 29,248.08 111,297.12
60 s 14,365.90 59,023.66 218,487.75

Prot4

1 s 238.82 959.92 3674.35
3 s 711.92 3031.86 10,924.85

10 s 2366.03 9926.13 41,630.17
30 s 7093.74 28,980.29 93,543.60
60 s 14,017.80 57,575.27 189,987.45



Bioengineering 2022, 9, 543 12 of 17

Table 6. Processing time for the network Network1. The speed-up is indicated between brackets.

Protocol ID Simulated Time Single GPU [s] Dual GPU [s]

Prot1

1 s 47.56 (4.97×) 43.22 (5.47×)
3 s 148.38 (4.78×) 136.57 (5.19×)

10 s 520.62 (4.49×) 460.42 (5.07×)
30 s 1541.12 (4.63×) 1397.52 (5.10×)
60 s 3104.64 (4.63×) 2968.01 (4.85×)

Prot2

1 s 54.62 (4.14x×) 53.04 (4.26×)
3 s 153.66 (4.52×) 141.18 (4.92×)

10 s 480.15 (4.79×) 442.61 (5.19×)
30 s 1419.04 (4.87×) 1321.09 (5.23×)
60 s 2834.40 (5.12×) 2790.60 (5.19×)

Prot3

1 s 179.46 (1.53×) 186.89 (1.47×)
3 s 288.97 (2.60×) 272.44 (2.76×)

10 s 645.57 (3.72×) 593.48 (4.05×)
30 s 1680.93 (4.28×) 1520.23 (4.74×)
60 s 3328.86 (4.32×) 3255.98 (4.41×)

Prot4

1 s 50.84 (4.70×) 46.11 (5.18×)
3 s 152.96 (4.65×) 139.16 (5.12×)

10 s 512.87 (4.61×) 464.15 (5.10×)
30 s 1557.26 (4.55×) 1422.61 (4.99×)
60 s 3085.59 (4.54×) 2942.33 (4.76×)

Table 7. Processing time for the network Network2. The speed-up is indicated between brackets.

Protocol ID Simulated Time Single GPU [s] Dual GPU [s]

Prot1

1 s 189.82 (5.20×) 174.01 (5.68×)
3 s 603.00 (4.34×) 560.75 (4.66×)

10 s 2142.19 (4.62×) 1966.22 (5.03×)
30 s 6470.93 (3.97×) 6000.40 (4.28×)
60 s 12,850.37 (4.01×) 11,745.08 (4.39×)

Prot2

1 s 276.86 (3.52×) 272.24 (3.58×)
3 s 637.19 (4.48×) 596.66 (4.78×)

10 s 1910.17 (4.92×) 1766.67 (5.32×)
30 s 5509.73 (5.09×) 5089.96 (5.51×)
60 s 10,960.07 (5.90×) 10,072.78 (5.54×)

Prot3

1 s 284.75 (3.55×) 277.40 (3.65×)
3 s 645.32 (5.05×) 599.73 (5.44×)

10 s 2438.64 (4.18×) 1985.40 (5.14×)
30 s 6436.90 (4.54×) 6132.07 (4.77×)
60 s 12,904.21 (4.57×) 12,649.72 (4.67×)

Prot4

1 s 208.02 (4.61×) 191.69 (5.01×)
3 s 613.90 (4.94×) 564.34 (5.37×)

10 s 2117.95 (4.69×) 2249.99 (4.41×)
30 s 6375.53 (4.55×) 5933.43 (4.88×)
60 s 12,755.98 (4.51×) 12,077.51 (4.77×)
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Table 8. Processing time for the network Network3. The speed-up is indicated between brackets.

Protocol ID Simulated Time Single GPU [s] Dual GPU [s]

Prot1

1 s 759.61 (5.43×) 700.59 (5.89×)
3 s 2450.53 (3.96×) 2299.41 (4.22×)

10 s 8832.45 (4.73×) 8396.73 (4.97×)
30 s 27,154.46 (3.41×) 25,636.35 (3.61×)
60 s 51,168.78 (3.69×) 46,177.91 (4.09×)

Prot2

1 s 703.36 (5.92×) 597.33 (6.97×)
3 s 2642.27 (4.45×) 2421.63 (4.85×)

10 s 7499.19 (5.21×) 7051.63 (5.54×)
30 s 21,229.72 (4.44×) 18,810.85 (5.01×)
60 s 42,380.45 (4.53×) 34,897.29 (5.50×)

Prot3

1 s 997.43 (4.25×) 889.35 (4.77×)
3 s 2933.45 (3.92×) 2644.90 (4.35×)

10 s 9131.19 (5.17×) 8835.59 (5.35×)
30 s 29,297.30 (3.80×) 28,547.15 (3.90×)
60 s 53,235.23 (4.10×) 51,783.19 (4.22×)

Prot4

1 s 851.15 (4.32×) 775.90 (4.74×)
3 s 2434.87 (4.49×) 2187.59 (4.99×)

10 s 8746.29 (4.76×) 7906.94 (5.26×)
30 s 26,101.86 (3.58×) 24,347.18 (3.84×)
60 s 52,433.85 (3.62×) 49,575.08 (3.83×)

Figure 6. Chart of the processing time of the Network3 when stimulated with Prot4. The processing
time is represented in logarithmic scale.

4.3. Memory Occupancy Analysis

As described in Section 3.2, the parallel algorithm describes the GOCs and the GRCs
adopting LIF models with the parameters shown in Tables 1 and 2. Thus, each element
features seven parameters for the cellular activity and four for each synaptic receptor.
The model of the granular layer of the GES simulator considers four excitatory and four
inhibitory receptors for the GRC, and two excitatory and one inhibitory receptors for the
GOC. Therefore, considering the IEEE754 single precision floating point format, each GRC
requires 156 B while each GOC needs 76 B. The GPU memory should also store the flag
arrays related to the synapse, as described in Section 3.2. Thus, there is an additional
memory space required of 32 B and 12 B for each GRC and GOC, respectively.

Summarizing, the amount of GPU memory to simulate a generic network is given by
Equation (7):

RAMGPU = 88 × N_GOC + 188 × N_GRC (7)
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where N_GOC and N_GRC indicate the number of GOC and of GRC, respectively.
Applying Equation (7) to the networks described in Table 3, it is possible to compute

the memory occupancy of Network1, Network2 and Network3. Thus, Network1 requires
19.77 MB, Network2 takes 77.53 MB and Network3 occupies 310.14 MB. These results clearly
demonstrate that the proposed parallel algorithm can simulate large scale networks even on
mid-range GPUs, since it does not requires an excessive amount of memory. It is important
to highlight that a mid-range device typically features a lower number of cores than the
GPU considered in this study. This will cause an increase in the simulation times, but the
processing will be completed even on mid-range boards. On the other hand, if the algorithm
is ported on a system with multiple GPUs, the size of the network can be further increased.

4.4. Comparison with the State of the Art

In the literature, the parallel simulation of the cerebellar granular layer has been
explored by several researchers. In [18,19], Naveros et al. described a hybrid CPU-GPU
simulator which integrates time-driven and event-driven techniques. The system was
capable to simulate 50000 neurons in real-time. However, the authors did not adopt a
realistic placing and connection method, since the neurons links are randomly generated.
Moreover, the cellular activity was simulated adopting look up tables rather than directly
solving differential equations.

Yamazaki et al. [20] reproduced the cat cerebellum network containing more than
a billion spiking neurons. They simulated 1 s of cellular activity in real time exploiting
1280 PEZY-SC processors and adopting LIF models. It is worth noticing that this real time
compliant simulation is performed by the Shobun supercomputer and not by a desktop
system. This is a crucial difference with the work proposed in this paper, since it aims at
providing a parallel large scale networks simulator which can run on desktop PCs. Finally,
the reconstruction of the cerebellum is based on the PEZY-SC architecture and not on the
physiological structure of the brain.

NeuroConstruct [21] is a tool to build and visualize neuronal networks in a 3D space.
The network design reproduces very realistic and complex neuron morphologies exploiting
the Hodgkin and Huxley model. The system was validated with simulations up to only
5000 neurons on a single-processor machine that takes 1–2 h for 4 s of activity. Even if the
morphology is very detailed, the tool does not allow to build large scale networks with
sizes comparable to the one adopter in this paper. Concerning the computational time,
a direct comparison would not be fair since NeuroConstruct adopts a model featuring a
higher computational complexity than the LIF one.

In [22] the LIF neurons were implemented on the same GPU considered by the pro-
posed work. Authors simulated 1 million neurons taking 70 s of processing time per second
of biological activity. However, this work considers a highly connected and balanced
cortical microcircuit model, which is very different from the cerebellar granular layer. Thus,
a direct comparison would not be fair.

CARLsim 4 [23] is an open source library to build and simulate large scale network
on heterogeneous clusters. This library has been validated on a random spiking network
with 80% excitatory neurons and 20% inhibitory cells. Again, this work does not consider a
network with realistic physiological constraints.

Realistic simulation of large scale networks have been addressed also in [24] where a
network with 1,000,000 neurons is considered. The work claims to reach a quasi real time
simulation adopting the LIF or the Izhikevich models. However, the connections between
neurons have been managed only considering a synapse to neuron ratio of 100. Again, a
direct comparison would not be fair since the connection rules are very simple with respect
to the GES ones.

To the best of authors’ knowledge, the works adopting neurons displacement and connec-
tions with a realism nearly comparable with the GES approach are [25,26]. Both these works
focused on the reconstruction and simulation of a network with size 400 × 400 × 900 µm3

with less than 100,000 neurons. The first work did not report details about the system and
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the processing times, while the latter is focused on the communication profiling of the simu-
lation on the SpiNNaker neuromorphic hardware. Moreover, it is important to notice once
more that these two works were implemented on highly parallel HPC systems rather than
desktop-based solution.

The SpiNNaker system is also adopted in [27,28] to achieve real-time simulation of
LIF neurons-based networks including 80,000 neurons. It is worth noticing that this result
has been achieved employing a system equipped with 1 million of ARM cores as main
processing units working at 200 MHz. Thus, the architecture of the SpiNNaker system
is very different compared to the GPU structure. One more time, a direct performance
comparison would not be fair.

An interesting work addressing the importance of realistic modelling of neurons
placement is [29]. This work considers the hippocampus. The network simulations were
carried out in parallel on 5 nodes and 36 processors of the Piz-Daint supercomputer
available at the Swiss National Supercomputer Center. The cellular activity simulated time
is 35 ms. No other information is given about the time taken by the supercomputer to
simulate the network. Again, this work is not directly comparable with our research, but
highlights the importance of realistic rules to connect and place the neurons.

Authors of [30] reproduced the activity of 32 mm2 of a macaque cortex on 32 Tesla
V100 GPUs. The parallel implementation achieved a speed-up of about 3 compared to the
NEST simulator baseline. It is important to highlight that the speed-up is lower compared
to the one achieved by our parallel algorithm. However, the paper focuses only on the
spike delivery algorithm, while the neurons simulation is automatically managed by NEST.

5. Conclusions

In this paper, the development of a single and multi-GPU simulation module adopting
LIF neurons is presented. These simulators adopt a realistic neurons placements and
connections approach and target large scale networks.

A parallel approach targeting multi-GPU desktop system has been described. The
simulator has been validated on three networks of different sizes, considering four protocols
and several durations of cellular activity to reproduce. The considered protocols have
been designed for two main purposes. The first is to realistically reproduce the inputs
given to a neuronal network, while the latter is to perform a stress test to evaluate the
processing performance.

Experimental results demonstrate the effectiveness of the single and multi-GPU ap-
proach, making possible the simulation on large scale networks on desktop PCs in accept-
able times without the need of expensive HPC systems. In particular, the dual-GPU system
achieves a maximum speed-up of about 7 compared to serial processing.

Future works will consider the inclusion of the molecular and Purkinje layers in order
to reproduce the activity of the whole cerebellum. Finally, the proposed work paves the
way to the inclusion of large-scale networks in neurorobotic platforms. Indeed, neurorobots
platforms simulations such as the one described in [31] adopt LIF models. We proposed
a parallel implementation which is not machine dependent, but it is compatible with any
CUDA-enabled devices. Thus, the proposed parallel implementation can be used also in
low power and portable GPUs.
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