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Abstract

Background: High-density SNP arrays are now available for a wide range of crop species. Despite the development
of many tools for generating genetic maps, the genome position of many SNPs from these arrays is unknown. Here
we propose a linkage disequilibrium (LD)-based algorithm to allocate unassigned SNPs to chromosome regions
from sparse genetic maps. This algorithm was tested on sugarcane, wheat, and barley data sets. We calculated the
algorithm’s efficiency by masking SNPs with known locations, then assigning their position to the map with the
algorithm, and finally comparing the assigned and true positions.

Results: In the 20-fold cross-validation, the mean proportion of masked mapped SNPs that were placed by the
algorithm to a chromosome was 89.53, 94.25, and 97.23% for sugarcane, wheat, and barley, respectively. Of the markers
that were placed in the genome, 98.73, 96.45 and 98.53% of the SNPs were positioned on the correct chromosome.
The mean correlations between known and new estimated SNP positions were 0.97, 0.98, and 0.97 for sugarcane,
wheat, and barley. The LD-based algorithm was used to assign 5920 out of 21,251 unpositioned markers to the current
Q208 sugarcane genetic map, representing the highest density genetic map for this species to date.

Conclusions: Our LD-based approach can be used to accurately assign unpositioned SNPs to existing genetic maps,
improving genome-wide association studies and genomic prediction in crop species with fragmented and incomplete
genome assemblies. This approach will facilitate genomic-assisted breeding for many orphan crops that lack genetic
and genomic resources.
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Background
The rate of genetic gains in crop breeding programs can
be accelerated using genomic information, either
through genomic selection (GS), the use of markers
linked to causal mutations of moderate to large effects
discovered through genome-wide association (GWAS) if
these exist, or a combination of both [1]. Ideally, the
position of the markers in the genome of the target spe-
cies would be known, particularly for GWAS and

implementing genomic prediction exploiting epistasis
[2]. Unfortunately, many current genome assemblies are
fragmented or incomplete, particularly for crop species
with highly complex genomes such as sugarcane [3].
Single-nucleotide polymorphisms (SNPs) are the most

common polymorphisms at the DNA level. SNPs are
cost-effective and easy to genotype in a high throughput
manner, making them increasingly relevant in crop/ani-
mal genetics studies such as association mapping,
marker-assisted, and genomic selection. With advance-
ments in high-throughput genotyping, high-density SNP
arrays are now available as an effective genetic tool for
many important crop species such as barley, sugarcane,
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and wheat [4–7]. This has culminated in the availability
of an increasing number of SNPs in these species.
Despite the development of many tools for generating

genetic maps, the exact genome location of many SNPs
from these SNP arrays is unknown. Sugarcane’s highly
heterozygous and primarily autopolyploid genetics have
all hampered the development of a comprehensive gen-
etic map. Modern sugarcane cultivars present a high (~
8–16) ploidy level with mainly random chromosome
pairing and significant inbreeding depression, making it
difficult to generate more traditional experimental map-
ping populations such as recombinant inbred lines or
double haploids [5, 8, 9]. Moreover, the presence of
single-dose and multi-dose alleles, as well as uneven
chromosome numbers in the various homo (eo) logy
classes due to aneuploidy, has restricted genetic mapping
[8, 10]. To date, for example, all of the sugarcane genetic
maps generated have had low genome coverage and lim-
ited information on the genomic organisation. One of
the key reasons for this is the small number of markers
that have been mapped [8].
Goddard and Meuwissen [11] proposed the idea that

the chromosomal position of a quantitative trait locus
(QTL) can be identified using linkage disequilibrium
(LD) information from other markers with known posi-
tions across the genome. LD quantifies the non-random
(statistical) association between alleles at distinct loci
and represents the fundamental basis for many methods
used in statistical genetics and breeding. Marker-assisted
selection and genomic selection both exploit LD be-
tween markers and QTL. In modern sugarcane breeding,
the use of a small number of parental clones in hybrid-
isation schemes has reinforced significant LD, although
to varying degrees depending on the populations studied
[12–14].
Inferring chromosomal positions using LD can be

challenging, as LD between unlinked markers can result
from factors other than physical proximity on a chromo-
some (linkage), such as epistatic interactions, genetic
drift, selection, and mutation. In addition, admixing gen-
etically distinct populations result in the linkage between
two loci with different allele frequencies, even though
they are unlinked [15]. Population stratification and
cryptic relationship within a population can also cause
LD, resulting in correlated allele frequencies [15, 16].
Therefore, if LD estimates are used to investigate the
linkage-based association, multi-point LD is less likely to
be affected by the above than single point LD estimates.
Estimates of LD have been used to infer the position

of the unmapped markers in diploid species [11]. Miller
et al. [17] successfully demonstrated the use of an LD-
based approach to map a test set of SNPs onto an exist-
ing bovine map backbone. Later, Khatkar et al. [18] used
a test set of SNPs which they assigned to chromosomes

and positions within chromosomes, called Locus Order-
ing by Dis-Equilibrium (LODE). The method was then
used to allocate positions to 4688 (out of 5314) un-
assigned SNPs on an early bovine genome assembly
(Btau4.0). Finally, the order of mapped SNPs was vali-
dated across the genome to assess genome assembly
quality. The authors concluded that the LD-based ap-
proach was an accurate and efficient technique for posi-
tioning unassigned SNPs with minor allele frequency
(MAF) > 0.01.
The main aim of this study was to i) adopt an LD-

based algorithm to allocate unassigned SNPs in order to
develop a method for expanding established genetic
maps for several crops with complex genomes and to ii)
investigate the accuracy of this approach in sugarcane,
wheat and barley. To achieve this, a modified multi-
point LODE approach was implemented. The algo-
rithm’s efficiency was first investigated on a breeding
population of sugarcane clones using a 20-fold cross-
validation process. Test sets of 200 out of 4502 mapped
SNPs of the newly developed sugarcane Q208 genetic
map were positioned based on our modified LODE ap-
proach in every iteration. To validate the LD-based ap-
proach, the algorithm was also assessed in hexaploid
wheat diversity panel, including elite varieties with a
genome size estimated at 17 Gb and a structured nested
association mapping population for barley, a self-
pollinated and one of the largest diploid genomes (hap-
loid genome size 5.3 Gb). Finally, the algorithm was used
to assign 5920 out of 21,251 unassigned SNPs (MAF >
0.01) to the current Q208 sugarcane genetic map. This
updated Q208 sugarcane genetic map is available to the
sugarcane research community.

Results
The extent of LD and LD decay
Intra-chromosomal pair-wise LD decay between sugar-
cane, wheat, and barley was compared. The threshold r2

(= 0.1) is in the 75th percentile (of observed r2 value) for
sugarcane, whereas it is in the 90th and 95th percentiles
for wheat and barley. Sugarcane exhibited a high LD
level, and LD decay was relatively slow compared to
wheat and barley (Fig. 1). LD decay in wheat and barley
was highly similar (9–10 cM).

Algorithm’s accuracy
20-fold cross-validation of the LD-based algorithm was
performed by defining a test subset of SNPs as un-
mapped. A range of r2 thresholds was tested to get the
preferred threshold suitable for sugarcane, wheat and
barley (Fig. 2). After setting the threshold (r2 = 0.2), the
mean efficiency rate significantly decreased compared to
a cutoff of r2 = 0.1 for sugarcane and barley (Fig. 2A),
but the mean accuracy increased slightly (Fig. 2B). For
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Fig. 1 Intra-chromosomal Linkage Disequilibrium decay in elite sugarcane clones, wheat diversity panel, and structured barley lines. Estimates of
LD between marker pairs in terms of correlation (r2) (after giving numerical values to allele states). LD threshold (cutoff) of 0.1 is indicated with a
black dotted line. The genetic distances (cM) are from the respective genetic map, and markers having more than 100 cM are excluded from the
analysis. The cutoff is considered the minimum threshold for a significant association between pairs of loci

Fig. 2 Comparison of efficiency (A) and accuracy (B) of the linkage disequilibrium- approach for placing SNPs with known position using a range
(from 0.01 to 0.5) of r2 thresholds. Efficiency was defined as the proportion of SNPs placed, and accuracy was defined as the proportion of SNP
markers placed on the correct chromosome
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an r2 threshold of 0.1, at least 86% of the 200 test SNPs
with MAF ≥ 0.01 were assigned to a linkage group in
sugarcane, while 92% of the overall SNPs could be
assigned to the linkage group in some particular cross-
validation scenarios, with a mean efficiency of 89.53%
(Fig. 2A).
For sugarcane, in most cross-validation sets, the mean

accuracy in placing SNP on the right linkage group was
98.73% (Fig. 2B). The mean efficiency rate was greater in
wheat (~ 94.3%) and barley (~ 97.2%) than in sugarcane
(89.5%) (Fig. 2). The accuracy was comparable for all
three crops. For r2 ≥ 0.4, sugarcane had a near-perfect
accuracy of 100% with only a 54% efficiency. Finally,
r2 ≥ 0.1 was fixed as a threshold to allocate the un-
assigned SNPs to the cultivar Q208 genetic map (Fig. 4).
The mean distance between the original SNP position
and the newly assigned position was calculated across
the 20 fold cross-validation. The mean (± standard devi-
ation) of the distance between the true and new position
of the SNPs was 15.6 ± 22.6 cM, 1.1 ± 3.9 cM, and 2.7 ±
5.9 cM for sugarcane, wheat, and barley. Figure 3 depicts
the relationship between the known and newly estimated
positions for one random cross-validation set for the
three crop species. The mean Pearson’s correlation be-
tween established and estimated SNP positions for the
20-fold cross-validation sets was found to be high, with
values of 0.97, 0.98, and 0.97 for sugarcane, wheat, and
barley, respectively.

Application of LD-based approach to unpositioned SNPs
in sugarcane
As a result of high throughput genotyping, approxi-
mately 25,753 high polymorphic markers with MAF (≥
0.01) are available in a large population of approximately
3006 elite clones from the Australian sugarcane breeding
program run by Sugar Research Australia. However, only
4502 markers were mapped on the newly developed
Q208 genetic map (CSIRO unpublished data). Therefore,
the LD-based approach (with r2 ≥ 0.1) was used to at-
tempt to assign the remaining 21,251 unpositioned SNPs
with MAF > 0.01 to the Q208 genetic map. As a result,
5920 unpositioned markers on the Q208 genetic map
were successfully allocated to the existing linkage
groups, resulting in a total of 10,387 SNPs with MAF >
0.01 on the extended genetic map produced with our
LD-based approach.

Discussion
This study validated an LD-based approach for effi-
ciently and accurately mapping unassigned SNPs on
genetic maps of crop species with complex genomes. An
elite sugarcane population with high ploidy, a structured
NAM population of diploid barley and, an allohexaploid
wheat diversity panel with strictly diploid-like meiotic
behaviour were used to evaluate the algorithm. Using
20-fold cross-validation, the mean proportion of mapped
SNPs that were assigned to a chromosome was 89.53,

Fig. 3 The correlation between the original and newly assigned position of one random cross-validation set for barley (A), sugarcane (B), and
wheat (C). The LD based approach was used to position a known set of markers on each of the reference genomes. The assigned position was
compared with the original position on the genetic map
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94.25, and 97.23%, whereas of the markers that were
placed in the genome, 98.73, 96.45 and 98.53% of the
SNPs were positioned on the correct chromosome for
sugarcane, wheat, and barley, respectively.
Although LD refers to a correlation between alleles,

research on LD has been confined to diploid species.
There has, however, been no comprehensive investiga-
tion of LD in polyploids [19]. All current strategies for
measuring LD in polyploids account for exact ploidy
level (for example, 4 for tetraploid and 6 for hexaploid
species), and these approaches do not indicate the level
of uncertainty in their LD estimates [19–21], which is
inappropriate for sugarcane owing to its varying ploidy
(aneuploidy). Unlike previous sugarcane studies that
used categorical association tests, such as Fisher’s exact
test, to create two-way tables based on known genotypes
using AFLP and RFLP markers [13, 14], we called SNP
genotypes using a pseudo-diploid model due to its sim-
plicity of implementation. This parameterisation does
not consider the allele dosages, and all heterozygotes are
assigned to the same genotypic class. In high polyploid
species, the diploid model may result in an underestima-
tion of heterozygosity, which is linked with advantages
such as heterosis [2].
Yang et al. [12] used high-quality genome-wide SNPs

identified from deep sequenced targeted regions to con-
duct LD analysis on three subpopulations, S.officinarum,
S.spontaneum, and modern sugarcane hybrids. The cor-
relation coefficients (r2) were estimated as a measure of
LD while allelic dosage was taken into account. In popu-
lation genetic studies of the highbush blueberry popula-
tion, the effects of diploid and tetraploid marker
genotyping calling approaches were examined. LD and
population structure were found to be consistent inde-
pendent of the ploidy model [22]. The same results were
reported for sweet potato, a hexaploidy species [23]. This
supports our choice of the diploid model and suggests
that estimated LD values for sugarcane approximate real
estimates. It is further backed by the fact that we accur-
ately positioned unmapped (masked) SNPs using this
method, as demonstrated by 20 fold cross-validations.
The effectiveness of the LD-based procedure for pla-

cing unassigned SNPs is determined by the magnitude
of LD in the population. The extent of LD and its decay
with genetic distance determines the mapping resolution
with this approach and further helps determine the ap-
propriate number of SNP markers required in associ-
ation mapping studies. Moreover, both genomic and
marker-assisted selection also exploits LD between
markers and QTL [24, 25]. Sugarcane exhibits higher LD
than many other crop species [12], which is consistent
with our findings, reflecting that an elite breeding popu-
lation was used in this study. In outcrossing crop spe-
cies, LD is reported to decay over a short distance;

however, in sugarcane, which is a perennial or vegeta-
tively propagated crop with a long breeding cycle and a
small number of historical recombination events, LD de-
cays relatively slowly, despite the outcrossing nature of
the crop [26]. The degree of LD in sugarcane may be ex-
aggerated due to its complex ploidy, and such a high LD
extent suggests that high marker density is not required
for genetic studies such as GWAS and genomic selec-
tion, but it would make gene fine mapping or even map-
based cloning studies difficult due to linkage drag [12,
13]. As a result, a large number of markers that can
cover the entire genome are still needed to detect gen-
omic regions within the sugarcane genome containing
genes linked to desired traits [8].
Miller et al. [17] used LD estimates and a genetic algo-

rithm approach with a minimal threshold (r2 > 0.4) to
position the mapped bovine SNPs. Applying such a
threshold in our study would have reduced efficiency to
63.14% in sugarcane (MAF > 0.01) and 87.9 and 79.7% in
wheat and barley (MAF > 0.1), respectively. In compari-
son to using threshold (r2 > 0.1), Khatkar et al. [18] also
recorded a decline in efficiency (71% for SNPs with
MAF > 0.05) as well as a marginal drop in algorithm’s
accuracy. However, our results show a slightly higher ac-
curacy when the threshold is set (r2 > 0.4). In addition, a
higher efficiency rate was observed in wheat and barley
than in sugarcane, which might be because we only used
SNPs with MAF > 0.1 in both species and because fewer
markers had known positions in our sugarcane data set
compared to the wheat and barley data sets.
Finally, we used the LD-based algorithm on sugarcane

unpositioned SNPs (MAF > 0.01) by setting a threshold
(r2 > 0.1) because of the high efficiency and comparable
accuracy rate. However, despite the high efficiency rate,
only 5920 unpositioned markers were assigned to the
genetic map. This might be because only 17% of mapped
single-dosage markers were used as an anchor to assign
the remaining 83% of unmapped markers. The low-
density anchoring to the sugarcane genome can occur
due to uneven marker coverage across the genetic map,
as demonstrated in all previously reported maps,
whether generated via selfing or biparental crosses [5, 8,
27]. Furthermore, we used a very conservative approach
considering the complex genetic inheritance, and highly
heterozygous outbred parents lead to the complex segre-
gation patterns of genotypes, which might be another
reason for reduced efficiency in practical use. The algo-
rithm described here complements other commonly
used map generation methods, such as physical, radi-
ation hybrid, and linkage mapping [27–29]. Our ap-
proach is straightforward to implement, and there have
some benefits over other strategies, which are typically
time-consuming, require highly specialised resources,
and yield a limited resolution. It should be noted,
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however, that although the LD-based algorithm offers a
high degree of accuracy in our data sets, it only provides
an approximation of the exact position of SNPs within a
chromosome because the algorithm relies on the accur-
acy of the genetic map that is used as a reference.

Conclusions
The LD-based method proposed in this study might be a
useful tool for placing unassigned SNPs onto current
genetic maps prior to the release of the completed refer-
ence genome of crop species with complex genomes. In
addition, this approach would facilitate genomic-assisted
breeding for many orphan crops that lack genetic and
genomic resources, which hamper the further utilisation
of modern crop improvement tools such as genomic se-
lection and genome-wide association studies.

Methods
Genotypic data and position of SNPs
This study employed pre-existing genotypic data from
three distinct species: sugarcane [2], wheat [30], and bar-
ley [31], which were genotyped using three different
platforms: Affymetrix, Illumina, and Diversity array tech-
nologies, respectively. We opted for a diverse set of spe-
cies to evaluate the LD-based approach for assigning
unmapped SNPs, with barley being a diploid species and
wheat and sugarcane are complex allo- and auto-
polyploid species.

Sugarcane data
For sugarcane, a 70 K SC-Affymetrix Axiom cane SNP
array includes 58,028 SNP markers (primarily single or
low-dosage markers) [32], was used to call genotypes for
3006 elite sugarcane clones. All heterozygous genotypes
were regarded as one genotypic class in a pseudo-diploid
genotyping calling model, similar to genotype calling
techniques employed in prior genomic studies in sugar-
cane [2, 33, 34]. SNP data were classified as 0 and 2 for
homozygous for the reference and alternate alleles, re-
spectively, and 1 for the heterozygous genotype. Aitken
et al. [4] provide detailed information on the cane array
and genotyping calling. SNPs with a higher call rate (>
90%) were chosen for inclusion in the final dataset,
yielding a total of 25,573 high-quality SNPs with MAF >
0.01 in 2909 clones. The position of 4502 (out of 25,573)
SNPs has been assigned to a new Australian cultivar
Q208 genetic map (CSIRO, unpublished data), and the
rest of the SNPs were categorised as “unassigned”
markers in the genome.

Wheat data
An international diversity set of 460 hexaploid wheat ac-
cession, including elite varieties, landraces, and experi-
mental lines from different geographic backgrounds, was

genotyped using a 90 K SNP wheat genotyping array
(Illumina Inc.) [30]. For this study, markers with more
than two alleles, MAF (< 0.1) and missing data (> 0.1),
were excluded from the raw marker data. Finally, the
450 genotypes yielded 18,475 high-quality polymorphic
SNPs with known map positions on the consensus map
described by Wang et al. [6].

Barley data
The multi-parent nested association mapping (NAM)
lines utilised in the validation study were derived from
crossing the three Australian reference varieties Com-
mander, Compass, and La Trobe to donor parents,
which are elite breeding lines from the Northern Region
Barley Breeding Program [31]. The NAM population
comprises families of 50–60 lines derived from each ref-
erence variety × donor line cross. A total of 1345 F4:F6
NAM lines were genotyped with DArT-Seq markers
using Barley PstI (BstNI) v1.7 array. The centimorgan
(cM) positions of individual markers were projected for
the Bowan DArT-Seq genetic map. Only markers that
have mapped positions in the consensus map [31, 35]
were used in our study, culminated in 2631 high-quality
polymorphic DArT markers with MAF > 0.1.

Estimation of linkage disequilibrium
Estimates of LD were obtained as r2 statistics (square of
the correlation coefficient) for all pair-wise combinations
of SNPs in each of the crop species mentioned above
using a function st.calc.ld (ld.measure = “r2”) imple-
mented in the R package “SelectionTools” version 19.3
(population-genetics.uni-giessen.de/ ~ software /). The
option “ld.measure = “r2” assume that the input data is
in the correct (known) gametic phase and estimates the
correlation between two variables, coded as 0, 1, and 2,
which indicate the number of alternative alleles at each
SNP, based on genotype allele count (without phasing).
For a large number of genotypes, however, the squared
correlation based on genotypic allele counts is equivalent
to the r2 calculated from haplotype frequencies [36, 37].
Another limitation is that the phasing approaches for
heterozygous polyploids usually need access to a refer-
ence genome, which is not available for sugarcane [3,
12].
Unlike plant species with simpler genomes like barley

and wheat, segregation occurs in sugarcane within the
first generation of a progeny generated through biparen-
tal crosses. As a result, genetic mapping has been re-
stricted to single-dose markers. In this approach, a copy
(dose) of a particular marker is present in either one or
both parents, resulting in a 1:1 or 3:1 (presence: absence)
ratio in the mapping population [5, 8, 9, 38, 39]. The
challenge was assessing LD estimates in sugarcane since
lower dosage markers only reflect a locus’s partial
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genetic information; nevertheless, the LD values assessed
in this work are just a proxy for actual calculations.
The decay of LD over genetic distance was investigated by

plotting pair-wise intra-chromosomal r2 values against the
genetic distance (cM) between markers. The R package
ggplot2 was used to visualise the results, including a locally
estimated scatterplot smoothing (LOESS) line [40]. After
analysing the distribution of the observed r2 values, the crit-
ical r2 value for all crop species in this study was set to 0.1,
which refers to the minimum threshold for a significant asso-
ciation between two loci. The LD decay over genetic distance
was determined as the mean distance associated with an em-
pirical threshold of r2 = 0.1. The analysis was run with a
range of different r2 thresholds.

Algorithm
There are two main steps in the algorithm (Fig. 4) used
in this study: i) Assigning an unmapped SNP to a
chromosome; ii) estimating the SNP’s location within
the assigned chromosome. For each unassigned SNP
with MAF > 0.01, r2 between the unmapped and all
mapped SNPs was estimated.

Testing algorithm performance
For each unassigned SNP, the previously mapped SNPs
with the first and second highest r2 (> 0.1) estimates
were identified, and if both mapped SNPs were on the
same chromosome, the unassigned SNP was allocated to
the same linkage group (or chromosome). To test the

Fig. 4 Linkage Disequilibrium based algorithm to position unassigned SNPs on the existing genetic map
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algorithm accuracy, groups of SNPs with an actual map
position in each species had their position masked and
were considered unassigned. Then, each “unassigned”
SNP that could be allocated to a chromosome was posi-
tioned within a chromosome using a weighted average
of mapped markers’ position, where the weight was de-
termined by the LD estimates of the unpositioned SNP
with mapped markers. The algorithm’s performance was
assessed in terms of “Efficiency,” defined as the percent-
age of “masked” SNPs assigned to a chromosome, “Ac-
curacy” as the percentage of SNPs allocated to the
correct chromosome, and “Precision” as the difference in
the distance between the known and assigned positions.
The algorithm was evaluated on various sizes of test

sets of masked SNPs in sugarcane (~ 200), wheat (~
900), and barley (~ 130) using random 20-fold cross-
validation in which 20 random non-overlapping sets of
masked SNPs were selected. All mapped SNPs were di-
vided into 20 groups at random, with each unique group
of SNPs masked (“unmapped”) and the remaining
groups of SNPs classified as “mapped”.
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