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ABSTRACT

Objective: Minority oversampling is a standard approach used for adjusting the ratio between the classes on

imbalanced data. However, established methods often provide modest improvements in classification perfor-

mance when applied to data with extremely imbalanced class distribution and to mixed-type data. This is usual

for vital statistics data, in which the outcome incidence dictates the amount of positive observations. In this arti-

cle, we developed a novel neural network-based oversampling method called actGAN (activation-specific gen-

erative adversarial network) that can derive useful synthetic observations in terms of increasing prediction per-

formance in this context.

Materials and Methods: From vital statistics data, the outcome of early stillbirth was chosen to be predicted

based on demographics, pregnancy history, and infections. The data contained 363 560 live births and 139 early

stillbirths, resulting in class imbalance of 99.96% and 0.04%. The hyperparameters of actGAN and a baseline

method SMOTE-NC (Synthetic Minority Over-sampling Technique-Nominal Continuous) were tuned with

Bayesian optimization, and both were compared against a cost-sensitive learning-only approach.

Results: While SMOTE-NC provided mixed results, actGAN was able to improve true positive rate at a clinically sig-

nificant false positive rate and area under the curve from the receiver-operating characteristic curve consistently.

Discussion: Including an activation-specific output layer to a generator network of actGAN enables the addition

of information about the underlying data structure, which overperforms the nominal mechanism of SMOTE-NC.

Conclusions: actGAN provides an improvement to the prediction performance for our learning task. Our devel-

oped method could be applied to other mixed-type data prediction tasks that are known to be afflicted by class

imbalance and limited data availability.
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INTRODUCTION

Background and significance
Real-life vital statistics data commonly suffer from class imbalance,

in which 1 or more of the predicted classes are highly underrepre-

sented. This occurs naturally, as the amount of positive observations

is controlled by the prevalence of a disease. This has been shown to

have a negative effect on the learning process of probabilistic

models.1 Enough data to model from is a recurrent problem, and

several methods have been proposed over the years to address it,

ranging from method-specific2 to more universal.3 Simple methods

such as minority oversampling and majority undersampling are still

commonplace, as they provide straightforward and universal solu-

tion. Another common practice is to calculate class weights from the

learning data and apply them during model training. This is called
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cost-sensitive learning,4 in which the model is made aware of the

class unbalance in the training data by first assigning higher weight

value for the minority and lower for the majority, then incorporat-

ing those weights to the training process. For neural networks, one

could use for example a weighted loss function such as the weighted

cross-entropy with backpropagation.5

Cost-sensitive learning and sampling methods both try to solve the

class imbalance problem, but it is not yet clear which is better in general.

Weiss et al6 compared cost-sensitive learning with sampling methods

and found out that there was no clear winner when the testing was done

using multiple different datasets with differing percentage of minority

observations. Oversampling the minority class with duplicate observa-

tions was deemed useful with some datasets and useless with others.6

Synthetic data generation refers to a case of oversampling where

instead of duplicating existing observations, completely new ones

are created.7 This is achieved by successfully modelling the distribu-

tions of each variable of the training data and then sampling from

the created joint multivariate probability distribution. In the clinical

domain, established methods for data generation, such as Synthetic

Minority Over-sampling Technique (SMOTE),8 have been success-

fully implemented.9 Modern methods such as the generative adver-

sarial networks (GANs)10 have also made significant improvements

to medical image generation tasks.11 GAN methods for tabular data

have also been proposed,12 in which a long short-term memory re-

current neural network was used as the generator.

The success of a generator method is usually tied to the amount

of feasible data available.10 Proper domain expertise can also be uti-

lized in a limited data setting. Real-life data can have constrains that

are obvious to domain experts, but they can be missed by the model-

ing method if the used data does not represent this sufficiently. The

problem is amplified with data that has a substantial class imbal-

ance. To be able to generate valuable synthetic mixed-type observa-

tions in terms of improving prediction performance from highly

imbalanced vital statistics data is therefore not an elementary task.

Discovering a robust and generalizable method for this problem

would be significant because deriving more value from this type of

data could have a positive impact on public health in general.

Stillbirth is a serious pregnancy-related condition defined as a

deadborn outcome of a delivery after 20 weeks of gestation.13 Still-

birth can be further categorized as early and late stillbirth according

to the gestational age thresholds. Maternal characteristics contribut-

ing to elevated risk for stillbirth have been identified as being high

body mass index, advanced maternal age, maternal smoking, parity,

ethnicity, education, and various preexisting conditions or comorbid-

ities.14–17 Currently, several screening and monitoring mechanisms

have been proposed18; however a common golden standard has not

been agreed upon, so most nations report, rather than screen. One of

these mechanisms is predicting risk from maternal characteristics.

Recently, we proposed a novel model that assesses the risk of

early stillbirth from maternal characteristics.19 Also, models predict-

ing risk of stillbirth in different gestational age intervals have been

developed.20–23 Performance of the models utilizing maternal char-

acteristics has been modest, achieving area under the curve (AUC)

from a receiver-operating characteristic (ROC) between 0.6 and 0.7,

while models that had biophysical measurements as added features

such as fetal presentation achieved an improved AUC of 0.8.20–23

OBJECTIVE
The aim of this research is to develop a novel GAN-based data genera-

tion method suitable for generating synthetic cases from vital statistics

data. Tabular mixed-type data with a significant class imbalance

problem pose challenges for modelling and limit the amount of appli-

cable methods. Our goal is to introduce a new method capable of gen-

erating more value in this context. Prediction performance is the key

optimizable parameter we want to focus on. The research question

was the following: can we derive more predictive power from the

existing data with generative methods while not changing the model

that is responsible for the outcome prediction? Our new method could

be applied to similar prediction tasks that involve highly imbalanced

data. For demonstrating performance over established methods such

as SMOTE, the prediction of early stillbirth pregnancies was chosen

for our use case, as it provided the desired restrictions data-wise.

MATERIALS AND METHODS

Study data
The dataset was provided by the New York City Department of

Health and Mental Hygiene and contained reported pregnancies in

the New York City area from 2014 to 2016. The source of the data

was collected birth and death certificates, and the data were deiden-

tified of any variables that could be linked to a specific person. Use

of the dataset for this research was granted an institutional review

board approval by the ethics committee of the Hospital District of

Southwest Finland.

The selected maternal characteristics feature variables were

based on literature14–17 and are listed in Table 1.

The dataset contains 364 124 pregnancies in total. In order to

predict early stillbirth from a representative population, sample se-

lection was conducted using the following exclusion criteria:

• Age of the mother was 18 years of age or older.
• Cases of maternal morbidity were excluded.
• All the feature variables and predicted class were present, and no

value imputation was required.
• Pregnancies that concluded in fetal death because of external

causes were excluded. These were identified with the Interna-

tional Classification of Diseases–Tenth Revision code values con-

taining U, V, W, X, or Y characters.13

• Reported gestational age in pregnancies that concluded in live

birth was 21 weeks or older. Because the earliest known preterm

baby is 21 weeks and 6 days,24 it is probable that these pregnan-

cies were erroneously inputted during data collection.
• Postnatal death cases were excluded.
• Multiple birth pregnancies were excluded.

This decreased the amount of pregnancies to 363 560 live births

and 139 early stillbirths. The prevalence for early stillbirth in this

dataset is therefore 0.04%, or 1 in 2500. Because of this, the data

are highly imbalanced. Data were randomly split into 2 equal-sized

sets, 1 for hyperparameter optimization and 1 for model evaluation.

This procedure was class-stratified so that the class imbalance would

be present in both datasets.

Feature variables were preprocessed based on their type. Nomi-

nal features were one-hot encoded in order to accommodate model-

ling with neural networks.25 Continuous variables were

standardized by zero-mean normalization and unit-variance normal-

ization, and the parameters were calculated using the training data-

set only and then applied to both datasets.

Generator methods
SMOTE-Nominal Continuous

SMOTE is a well-established oversampling method based on k-near-

est neighbors.8 Given minority class data, the method utilizes Eu-
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clidean distances between data points to generate new ones. It fea-

tures 2 hyperparameters: the number of closest neighbors to be in-

cluded in calculation is controlled with k and N, which determines

the number of generated observations. The impact of SMOTE and

its variants on prediction performance has been studied, Blagus et

al26 demonstrated that SMOTE had no significant effect on perfor-

mance when used with microarray data, and Van Hulse et al27

showed that random undersampling of the majority class overper-

formed SMOTE. However, a variant of SMOTE called SMOTE-

Nominal Continuous (SMOTE-NC) addresses an issue that is not

addressed by other conventional oversampling methods, generating

mixed-type data.8

Our study dataset contains nominal feature variables mixed with

continuous features. SMOTE-NC takes this into consideration by

having a separate logic for nominal features. First, the median of

standard deviations of all continuous features of the minority class

are calculated. When new data points are about to be created, if the

nominal features differ when compared with the nearest neighbors,

this median is added to the Euclidean distances. The mechanism

penalizes differences in nominal features more effectively, which

should in theory result in more accurate synthetic nominal features.

Activation-specific GAN

Generative adversarial networks use a competitive learning setting

for 2 networks: a generator G and a discriminator D:10 G is trained

to map random noise derived from a distribution to data points in

the training dataset, so its objective is to create synthetic observa-

tions that fool D. D is trained to classify the input as fake or real.

This means either from the target distribution or not. The 2-objec-

tive training loss can be formalized as

min
G

max
D

L D;Gð Þ ¼ Ex � Pr
½logðDðxÞÞ� þ E~x � Pg

½logð1�Dð~xÞÞ�

where Pr is the training data distribution and Pg is the model distri-

bution, defined by ~x ¼ G zð Þ; z � p zð Þ, when z is the random noise

input sampled from a distribution p:10 Training this type of network

has been shown to be fragile and unstable.28 Nonconvergence of the

2 models, mode collapse, and diminishing gradient of the generator

plagued the original GAN. In 2017, Wasserstein GAN (WGAN)

was proposed as a more stable method that also provided more

meaningful learning curves in terms of model fitting performance.29

In WGAN, the discriminator network is replaced by a critic network

that scores observations as being real or fake by learning a K-Lip-

schitz function to compute Wasserstein distance. In training, de-

creasing this distance is the objective loss function, so as it

decreases, the resemblance of the generator output and the training

data increases. The loss function used with the critic is now defined

as

W Pr;Pg

� �
¼ 1

K

sup

kfkL � K
Ex � Pr

f xð Þ½ � � E~x � Pg
f ~xð Þ½ �

where sup is supremum and K is the Lipschitz constant for function

f , and is made to satisfy ||f ||L � K, or K-Lipschitz continuity. The

method was a clear improvement over GAN, but in order to pre-

serve the K-Lipschitz continuity, the iterated weights of the model

were limited to a small value range so that the K-Lipschitz function’s

lower and upper bounds could be obtained in a feasible manner.

This was called weight clipping, which the model is highly sensitive

to.

Later in 2017, Gulrajani et al30 improved on this method and

proposed WGAN with gradient penalty (WGAN-GP). In WGAN-

GP, gradient penalty is used instead of weight clipping to impose the

K-Lipschitz continuity. A differentiable function f is 1-lipschitz if

and only if it has gradients with a norm of at most 1 everywhere.30

The loss function was reworked to penalize if the gradient norm

moved away from 1, so it was defined as

W Pr;Pg

� �
¼ 1

K

sup

kfkL � K
Ex � Pr

f xð Þ½ � � E~x � Pg
f ~xð Þ½ �

þ kEbx � Px
ðkDbx DðbxÞk2 � 1Þ2
h i

where bx is sampled from ~x and x with t uniformly sampled between

0 and 1 so that

bx ¼ t~x þ 1� tð Þx when 0 � t � 1;

and k is the penalty coefficient. This change in WGAN-GP stabilized

the model training even further because there was no more need to

parameterize weight clipping30; however, it introduced a new level

of complexity to the model. Another popular variation of GAN

called deep convolutional GAN31 has also been proposed. The bene-

fit of using convolution is data aggregation to a smaller space, which

is something we do not want to do with mixed-type data, so

WGAN-GP was chosen to be the starting point of our research.

In order to create synthetic positives that follow the variable-

specific constrains of tabular mixed-type data, WGAN-GP needed

to be altered to accommodate this. On the one hand, image data, the

most common application of GANs, contains pixels that are repre-

sented as continuous values with no pixel-specific constraints.11 On

Table 1. Feature variables

Demographics

Age discrete

Race (white, black, American Indian, Alaskan native,

Asian, or Pacific Islander)

nominal

Marital status binary

Education (8th grade or less to doctorate) nominal

Number of previous terminations nominal

Special supplemental nutrition program binary

Smoking before pregnancy nominal

BMI continuous

Height continuous

Parity nominal

Pregnancy history

Prepregnancy diabetes binary

Gestational diabetes binary

Prepregnancy hypertension binary

Gestational hypertension binary

Hypertension eclampsia binary

Previous preterm births binary

Infertility treatment binary

Infertility drugs binary

Assisted reproductive technology binary

Previous cesarean sections binary

Infections

Gonorrhea binary

Syphilis binary

Chlamydia binary

Hepatitis B binary

Hepatitis C binary

BMI: body mass index.
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the other hand, mixed-type data can contain nominal and ordinal

variables that are affected by rules, such as non-negative integer val-

ues only. One-hot encoding also produces multidimensional repre-

sentations of these integer values that have conditional properties

like a stochastic vector; the representation should add up to 1. All

these rules are learned by the generator model of a GAN when given

enough data, but in a minority oversampling situation in which

training data can be limited, this can become unfeasible. To solve

this problem, we propose an output layer activation-specific GAN

(actGAN).

Based on WGAN-GP architecture with Wasserstein loss and gra-

dient penalty, actGAN was developed to specifically handle mixed-

type data in a minority learning setting. Output layer neurons’ acti-

vation functions of the generator model were selected based on the

variable type they were generating. Continuous and discrete varia-

bles were generated using ReLU function32

ReLU xð Þ ¼
x if x > 0;

0 otherwise;

(

which demands that only non-negative values are created for them.

Binary variables were created with a logistic function

f xð Þ ¼ 1

1þ e�x

which is suitable for creating a binary result. One-hot encoding rep-

resentations of nominal features were generated with softmax5

r zð Þi ¼
eziPK
j¼1 ezj

for i ¼ 1; . . . ;K and z ¼ z1; . . . ; zKð Þ 2 R
K. The internal normaliza-

tion procedure of softmax ensures that the sum of the elements of

the output vector r zð Þ is 1. This customized output layer enabled us

to provide prior knowledge of the generated variables, which en-

abled actGAN to learn more sufficiently from a smaller number of

observations. The hidden layer activations were chosen to be scaled

exponential linear unit (SELU) functions accompanied with LeCun

normal weight initialization.33 The design of the generator is

depicted in Figure 1.

The critic network architecture was kept simple on purpose, be-

cause discrimination as a task is simpler compared with generation.

Two hidden layers of width 128 and 64 were used with Leaky ReLU

activations34 that were parameterized with 0.2 slope coefficient, and

He normal initialization of weights.35 The output would be linear

activation of 1 node that was required by WGAN functionality. Af-

ter training, the critic network would be discarded, and the finalized

generator network would be used with random noise input to gener-

ate synthetic observations. The designs of the generator and critic

models are depicted in Figure 1.

Classifiers
In order to compare data generation methods in terms of added pre-

diction performance, 2 classifier algorithms were chosen that would

utilize the generated data for prediction. They were the frequently

used logistic regression (LR) and the neural network with a SELU

network,33 which represents state of the art of feed-forward net-

works. Hyperparameters for them were also tuned during hyper-

parameter optimization, with the aim of maximizing prediction

performance.

For fitting the LR, limited-memory version of Broyden-Fletcher-

Goldfarb-Shanno algorithm36 was used with the L2 norm penalty.

For SELU network, mini-batch adaptive moment estimation (Adam)

gradient descent37 with 0.001 learning rate, 0.9 b1 decay rate, and

0.999 b2 decay rate were used for updating weights with backpropa-

gation.38 Weight initialization was anchored with a random seed,

and was used in all the experiments. The SELU network requires the

use of LeCun normal weight initialization and alpha node drop-

out33; the amount of dropout after every hidden layer was set to

15%, which was deemed appropriate for preventing overfitting.

Cost-sensitive learning with class weights was deemed necessary

for any feasible classifier model fit because of the magnitude of class

imbalance in the data. Class weights w were calculated from the

training dataset using the following equation:

w ¼ s=ðc�f ðyÞÞ;

where s is the number of observations, c is the number of different

classes, and f ðyÞ is the frequency of classes in data labels y.

Figure 1. Schematic view of the training cycle of the actGAN (activation-specific generative adversarial network) generator and critic models. Random noise z is

given to the generator model as input, and the model produces vector representation of an observation based on the architecture defined in the output layer. The

output layer of the generator is comprised of nominal (N), continuous (C), binary (B), and discrete (D) nodes. The critic is given real positive observations and fake

generated observations as input, and it outputs a score of realness by approximating the Wasserstein distance. These 2 models are trained in adversarial manner.

After training, the critic is discarded, and the generator is used to create fake positive observations.
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Experimental overview
The study experiments were divided into 2 phases: hyperparameter

optimization and model evaluation. Each of them had their own

subset dataset. The model’s hyperparameters were optimized in a 2-

fold cross-validation procedure with the training dataset, and then

finalized models were trained with the same data. After this, they

were evaluated with the separate evaluation dataset. This guaran-

teed that there was no chance to overfit the model to the evaluation

data, as both model fitting and hyperparameter selection were done

on the separate training dataset. The data flow of our experiments is

depicted in Figure 2. The performance of a generator or a classifier

model is highly affected by used hyperparameters, so the hyperpara-

meter spaces of LR, SELU network, SMOTE-NC, and actGAN were

investigated iteratively. Hyperparameters for classifiers were first in-

vestigated independently, and the best found sets were used while

optimizing hyperparameters for generator models. Bayesian optimi-

zation39 was used to calculate optimal hyperparameters, and the

process can be represented as a formula:

y� ¼ arg max
x 2 x

f ðxÞ;

where f xð Þ is the AUC score from an ROC curve to be maximized,

and y� are the optimal hyperparameters calculated from training

dataset. Twofold class-stratified cross-validation was used for the

optimization process, and the reported AUC was averaged over the

folds. For measuring the effect of hyperparameters in terms of AUC,

Pearson’s correlation coefficient was used with the effect interpreta-

tion table40 to determine linear correlation and its significance. The

number of optimization iterations after 10 initial random iterations

was chosen to be 500 because it was estimated that it would be

enough for Bayesian optimization.

Tunable hyperparameters of LR were regularization parameter

C and the number of iterations. For the SELU network, tunable

hyperparameters were the number of hidden layers, nodes in hidden

layers, number of epochs, and batch size. Number of synthetic

observations and k were iterated for SMOTE-NC. For actGAN, the

length of latent dimension, number of epochs, batch size, number of

synthetic observations, hidden layers, and nodes in the generator

network were iterated over. actGAN’ s penalty coefficient k was set

to 10 and Adam optimizer parameters of learning rate and decay

rates b1 and b2 for both networks were set to 0.0001, 0, and 0.9, re-

spectively, according to the original publication of WGAN-GP.30

Our method is WGAN-based, which is stated to be not sensitive to

generator model architecture or chosen hyperparameters.29 We

wanted to verify this by including the network architecture parame-

ters in our optimization experiment. Hyperparameters and their se-

lected ranges for the optimization process are listed in

Supplementary Table 1.

For designing an experiment that would test the data generator

model’s generalizability and prediction performance, the final mod-

els were selected based on 2-fold cross-validation on the training

dataset. These models were then evaluated on the independent

model evaluation dataset. The used metric was the AUC from an

ROC curve, and true positive rate (TPR) at a clinically significant

false positive rate (FPR), which would be TPR at 1%, 3%, and 5%

FPR for early stillbirth, based on the real-world incidence. After

hyperparameter optimization, LR and SELU network classifiers

would serve as benchmarks, and all the possible combinations of

classifier and generator models were experimented with in model

evaluation. The full list of used software libraries and hardware are

described in the Supplementary Appendix.

RESULTS

Model evaluation
After Bayesian hyperparameter optimization, the best sets of hyper-

parameters for the model and training datasets were used to train

the final models. The optimization results of the classifiers and gen-

erators are listed in the Supplementary Appendix. The material also

contains the learning curves of both final actGAN models, the first

optimized with LR and the second with the SELU network. Six dif-

ferent prediction configurations were used to predict the evaluation

dataset, and the results are presented in Table 2.

When comparing benchmark models, LR was able to achieve

better AUC and improve TPR at 1% FPR by 2% over the SELU net-

work. The usage of SMOTE-NC was minimized during SMOTE-

NC and LR optimization, so its performance is identical to LR.

SMOTE-NC and SELU was able to improve TPR at 3% and 5%

FPR over the SELU network; however, AUC and TPR at 1% FPR

decreased. actGAN and LR retained TPR at 1% and 3% FPR while

improving TPR at 5% FPR but producing the worst AUC. This was

caused by a drop in performance in higher FPRs, shown in Figure 3.

actGAN and SELU improved every metric over the SELU network

and achieved the best performance of the experiment. Variable

Figure 2. Data flow diagram of the experiments. Study data would be ran-

domly divided in half, in a class-stratified way. Training data would be used

to tune hyperparameters and train the final models, while evaluation data

would be used to test their performance. CV: cross-validation.
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importance results of the tested classifiers are listed in Supplemen-

tary Table 2.

DISCUSSION

Applying minority oversampling to vital statistics data can be chal-

lenging due to the limited amount of available positive case data,

and mixed-type predictor variables. It limits the amount of feasible

oversampling methods, and even when applied, the increase in pre-

dictive performance might not be substantial enough to justify the

usage.

The best AUC of the 6 tested methods was achieved by actGAN

and SELU, but confidence intervals in Table 2 reveal a notable over-

lap between all methods, so the statistical significance of the AUC

Table 2. Model evaluation results

Name TPR at 1% FPR TPR at 3% FPR TPR at 5% FPR AUC (95% CI)

LR 9% 16% 20% 0.688 (0.620-0.756)

SELU network 7% 16% 20% 0.659 (0.590-0.728)

SMOTE-NC and LR 9% 16% 20% 0.688 (0.620-0.756)

SMOTE-NC and SELU 6% 17% 23% 0.663 (0.594-0.733)

actGAN and LR 9% 16% 24% 0.637 (0.562-0.712)

actGAN and SELU 9% 23% 27% 0.704 (0.635-0.772)

actGAN: activation-specific generative adversarial network; AUC: area under the curve; CI: confidence interval; FPR: false positive rate; LR: logistic regression;

SELU: scaled exponential linear unit; SMOTE-NC: Synthetic Minority Over-sampling Technique-Nominal Continuous; TPR: true positive rate.

Figure 3. Receiver-operating characteristic curves of predicting the evaluation dataset with all the experimented configurations of models. The clinically signifi-

cant false positive range of 1%, 3%, and 5% is presented in the magnified section, which illustrates the noteworthy performance of activation-specific generative

adversarial network (actGAN) and scaled exponential linear units (SELU) in 3% and 5% false positive rate. The best area under the curve (AUC) of 0.704 was

achieved by actGAN and SELU network. The usage of Synthetic Minority Over-sampling Technique-Nominal Continuous (SMOTE-NC) was minimized in SMOTE-

NC and logistic regression (LR), resulting in overlapping receiver-operating characteristic curves with LR and same AUC of 0.688. The third-best AUC of 0.663

was achieved by SMOTE-NC and the SELU network. The worst AUCs of 0.659 and 0.637 were obtained by the SELU network and actGAN, and LR.

actGAN: activation-specific generative adversarial network; AUC:; CI: confidence interval; FPR: false positive rate; LR: logistic regression; SELU: scaled exponen-

tial linear unit; SMOTE-NC:; TPR: true positive rate.
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cannot be stated. However, while AUC measures performance

across the whole curve, the clinically significant performance in

screening for rare disorders is achieved by either increasing TPR

within the feasible FPR range of 1% to 5% or decreasing FPR while

maintaining the same TPR.

SMOTE-NC provided mixed results in model evaluation, imply-

ing that the method could improve performance in specific FPRs

while decreasing it at others. However, actGAN and SELU was able

to derive observations from this data that provided consistent im-

provement to TPR at FPRs of 3% and 5%. The method was able to

produce similar TPR with 3% FPR when compared with competing

methods that used 5% FPR. This improvement of 2% to the FPR

has a substantial clinical impact in a screening environment. For ex-

ample, in our study data of 363 560 live births, the improvement

from 5% FPR to 3% FPR would mean 7271 less false positive cases

over 3 years of screening.

The total amount of hidden nodes in actGAN was optimized to

700 with LR and 944 with the SELU network, which would indicate

that a more complex classifier paired with a more complex genera-

tor can create additional value from the same data in terms of pre-

diction performance. An activation-specific output layer of the

generator network enabled us to provide additional information

about the underlying data structure of the task, which overper-

formed the nominal mechanism of SMOTE-NC.

While actGAN performed better when compared with base clas-

sifiers and SMOTE-NC, the generalizability of our proposed

method should be investigated further. The method is not restricted

to stillbirth prediction or even the clinical domain, and any predic-

tion task that utilizes mixed-type data could in theory benefit from

actGAN. External validation of stillbirth prediction and experimen-

tation of several datasets from various domains would be the topic

for future work.

Predicting an outcome of low incidence is bound to produce high

FPRs.41 In clinical risk modeling of a particular outcome, instead of

maximizing AUC, the TPR at a clinically significant FPR indicates

the performance a model would have in routine use. Developing act-

GAN further to take this performance metric into consideration dur-

ing training would be the secondary topic for future work.

This work provides evidence that proposed synthetic data generation

tools can significantly improve maternal characteristics–based risk pre-

diction in rare conditions. Baseline performance received with the multi-

variate LR model in our experiment is in line with current published

tools,23 in which predicting stillbirth from maternal characteristics

resulted in an AUC of 0.658 and 21.1% TPR at 5% FPR. However, syn-

thetic data generation improved on this result in our experiments.

We believe that synthetic data generation of rare conditions com-

bined with screening variables that are targeted toward detecting

those conditions would be essential for improving clinical risk pre-

diction in the future. Our study data did not contain first-trimester

biophysical and biochemical measurements for stillbirth screening,

prediction variables that have been suggested to improve detec-

tion.42 Properly generating synthetic data of these continuous varia-

bles could be the key of improving stillbirth screening in general. At

the population level, the improvement in prediction could change

management of pregnancy in a number of women, resulting in fewer

stillbirth outcomes.

CONCLUSION

Our demonstrated actGAN improved the clinically significant per-

formance of the early stillbirth risk modelling. Activation-specific

architecture could be designed to fit other clinical risk modelling

tasks predicting outcomes from mixed-type data. This would im-

prove development and validation of such clinical prediction tools.

The benefits would be evident in models that rely on class-

imbalanced population-level data, in which synthetic data genera-

tion of rare conditions would be valuable.
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