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Abstract: Insulin-like growth factor-1 (IGF-1) and its binding proteins and receptors are widely
expressed in the central nervous system (CNS), proposing IGF-1-induced neurotrophic actions in
normal growth, development, and maintenance. However, while there is convincing evidence that
the IGF-1 system has specific endocrine roles in the CNS, the concept is emerging that IGF-I might
be also important in disorders such as ischemic stroke, brain trauma, Alzheimer’s disease, epilepsy,
etc., by inducing neuroprotective effects towards glutamate-mediated excitotoxic signaling pathways.
Research in rodent models has demonstrated rescue of pathophysiological and behavioral abnor-
malities when IGF-1 was administered by different routes, and several clinical studies have shown
safety and promise of efficacy in neurological disorders of the CNS. Focusing on the relationship
between IGF-1-induced neuroprotection and glutamate-induced excitatory neurotoxicity, this review
addresses the research progress in the field, intending to provide a rationale for using IGF-I clinically
to confer neuroprotective therapy towards neurological diseases with glutamate excitotoxicity as a
common pathological pathway.

Keywords: glutamate-mediated excitotoxicity; signaling pathways; insulin-like growth factor-1;
neuroprotection; animal models; clinical trials

1. Introduction

Insulin-like growth factor 1 (IGF-1) is considered an attractive therapeutic alternative
for diverse neurological pathologies since it plays a key trophic role in the developing
nervous system and maintenance and regulation of neurological functions in the adult
brain [1]. It is also recognized to date that IGF-1, together with other neurotrophic growth
factors, plays the first line of defense in the adult brain exposed to neurotoxic insults. Ab-
normalities in IGF-1 levels have been implicated in a variety of neurological and psychiatric
disorders. We review here selected literature suggesting that IGF-1 plays a unique role in
neuroprotection towards glutamate-induced excitotoxicity in in vitro and in vivo models.
Specifically, we focus on the relationship between IGF-1-induced neuroprotection and
glutamate-induced excitatory neurotoxicity, present the reciprocal cross-talk between IGF-1
and glutamate receptors, and briefly address preclinical and clinical studies providing
pieces of evidence that IGF-I confers neuroprotection in animal models and neurological
diseases [2]. Excitotoxicity is a phenomenon that describes the toxic actions of excitatory
neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation
of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to neuronal
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cell death and the loss of neuronal function. In this process, the shift between normal
physiological function and excitotoxicity is largely controlled by astrocytes since they
regulate the levels of synaptic glutamate. The molecular mechanism that triggers exci-
totoxicity involves alterations in glutamate and calcium metabolism and dysfunction of
glutamate receptors. Excitotoxicity is the cause but also the consequence of other cellular
pathophysiological processes, such as mitochondrial dysfunction, neuronal damage, and
oxidative stress. It is known that the excessive activation of glutamate receptors results in
the sustained influx of calcium into neurons that leads to several deleterious consequences,
including mitochondrial dysfunction, overproduction of reactive oxygen species (ROS), the
impairment of calcium buffering, and the release of pro-apoptotic factors, among others,
that cumulatively contribute to neuronal loss. Recent studies implicate glutamate-induced
excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative
diseases, including amyotrophic lateral sclerosis, Alzheimer’s disease, traumatic brain
injury, and epilepsy, suggesting that neurodegenerative diseases may share excitotoxicity
as a common pathological mechanism [3]. Thus, IGF-1 signaling involved in neuroprotec-
tion towards glutamate-induced excitotoxicity is also of critical significance for the future
clinical treatment of many neurodegenerative diseases [4]. Considering that alterations
of IGF-1 levels have been implicated in human ischemic stroke [5] and brain trauma [6],
and exogenous administration of IGF-1 has neuroprotective effects in animal models of
ischemia [5], the investigations of the relationship between IGF-1 levels and activity and
neuronal injury is of great value. They may clarify the neuroprotective role of IGF-1 [7]
in glutamate-induced excitatory toxicity and allow the implementation of the findings
towards novel neuroprotective therapeutic strategies, with the understanding that the
targets are not specific symptoms, but the underlying molecular signaling pathways and
cellular phenomena of excitotoxicity.

2. IGF-1 and IGF-1R

IGF-1 and IGF-2 were discovered in 1957 by Salmon and Daughaday [8] and named
“sulphation factors” by their property to stimulate sulphate incorporation into the rat
cartilage. Froesch et al. characterized the non-suppressible insulin-like activity (NSILA)
of two soluble serum components [9]. In 1972, the definitions “sulphation factor” and
“NSILA” were replaced by the term “somatomedin”, defining a hormone under the control,
and mediating the effects, of growth hormone (GH) [10]. In 1976, Rinderknecht and
Humbel [11] isolated two active substances from human serum, with the N-terminal amino
acid sequences of Gly-Pro-Glu- in NSILA I, and Ala-Tyr-Arg- and Tyr-Arg- in NSILA II,
that, due to their structural resemblance to proinsulin, were coined “insulin-like growth
factor 1 and 2” (IGF-1 and 2). Insulin-like growth factors (IGFs) not only promote cell
differentiation and proliferation but also have insulin-like effects. As hormones they exert
systemic influence and as autocrine/paracrine factors they exert local effects [12]. The
IGF hormonal system includes IGF-1, IGF-2, and their corresponding receptors (IGF-1R,
IGF-2R), as well as six insulin growth factor binding proteins (IGFBPs) [13,14]. IGF-1 is a
single-chain polypeptide composed of 70 amino acids, connected by three pairs of disulfide
bonds, and a molecular weight of 7.6 kDa, and are composed of three helical segments
which are connected by a 12-residue linker, known as the C-region [15] (Figure 1). To date,
human recombinant IGF-1 (rhIGF-1; Mecasermin, Increlex) for clinical use [16] is efficiently
produced and formulated in Escherichia coli [17]. IGF-1, IGF-2, and insulin exert their
activities by binding to different, but highly homologous (~75%), ~450 kDa (αβ)2 dimeric,
tyrosine-kinase IGF-1 receptors (IGF-1R; IGF-2R), and insulin receptors (IR-A; IR-B). An
IGF1 receptor is characterized by a high affinity for IGF-1 (IC50 of 0.2–0.8 nM) and IGF-2
(IC50 of 0.5–4.4 nM), but it can also bind insulin with 50- to 100-fold lower affinity (IC50
over 30 nM). Insulin/IGF signaling cross-talk is also amplified by the heterodimerization
of IGF-1R and IR-A, and the presence of hybrid receptors that can be effectively activated
by IGF-1, but not insulin [18]. It is important to stress that the availability of free IGF-1
and IGF-2 for receptor signaling is modulated by IGFBPs. Under normal physiological
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conditions, less than 1% of IGF-1s exist in a free form, and the vast majority of IGF-1 is
bound to IGFBPs [19]. This results in prolongation of the half-life of IGF-1 in serum and
the ability of IGF-1 to cross the blood-brain barrier by a transport system that functions in
synchrony with IGFBP, in the periphery of the nervous system, to regulate the availability
of IGF-1 in the CNS [20].

Figure 1. Scheme of IGF-1 Structure. IGF-1 is a single peptide chain, composed of 70 amino acids;
three pairs of disulfide bonds connect A- and B-chains, in which the A-chain of 35 amino acids (blue)
contains the carboxyl-terminal and the B-chain of 25 amino acids (red) contains the amino-terminal.
The 12-residue linker, known as the C-linker (yellow), connects A- and B- chains.

The vast majority of IGF-1 is produced in the liver and is regulated by growth hormone
(GH), secreted into the blood by the pituitary glands, responsible for a negative feedback
transcription regulation of GH, via POU1F1/CREB binding protein interactions [21]. The
CNS receives both endocrine and paracrine inputs from IGF-1. All major CNS cell types,
particularly in the cortex, hippocampus, cerebellum, hypothalamus, subventricular zone,
and dentate gyrus, produce IGF-1 [22–24]. IGF-1, as an important neurotrophic factor,
is involved in regulating neuronal growth, development, metabolism, regeneration, and
neuroplasticity, a term describing the adaptive changes made by the CNS in the face of
changing functional demands in processes such as learning and memory [22,25].

IGF-1R is a receptor-type tyrosine kinase, composed of α and β membrane-spanning
glycoproteins [26] that bind the IGF-1 ligand. After ligand occupancy, the receptor under-
goes dimerization, which in turn activates the tyrosine kinase’s phosphorylation activity of
the downstream substrates involved in the intracellular transmission of IGF-1 signals [27].
Activated IGF-1R phosphorylates several substrates that lead to the binding and activa-
tion of downstream signaling pathways, PI3K/Akt/mTOR pathway, and Ras/Raf/MAPK
pathway [28], required for the induction of various bioactivities of IGFs, including cell
proliferation, cell differentiation, and cell survival (Figure 2).
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Figure 2. Schematic diagram of commonly accepted IGF-signaling. The half-life and other biological
activities of Insulin-like growth factor-1 (IGF-1) is regulated by binding to insulin growth factor
binding protein (IGFBP), while free IGF-1 can bind specifically to the IGF1 receptor. Ligand binding
to the α-subunit of the receptor leads to a conformational change in the β subunit, resulting in
the activation of the receptor’s tyrosine kinase activity. Activated receptor phosphorylates several
substrates, including insulin receptor substrates (IRSs) and Src homology and collagen family protein
(SHC). Phospho-tyrosine residues in these substrates are recognized by certain Src homology 2
(SH2) domain-containing signaling molecules. These include phosphatidylinositol 3-kinase (PI 3-
kinase), growth factor receptor-bound 2 (GRB2), and others. These bindings lead to the activation
of downstream signaling pathways, PI3K/AKT/mTOR and Ras-mitogen-activated protein kinase
(MAP kinase) pathway. Activation of these signaling pathways is required for the induction of
various activities of IGF-1, including neuroprotection.

3. Glutamate Excitotoxicity

Glutamate is the main excitatory neurotransmitter in the brain, with several types of
receptors found throughout the central nervous system having important roles in mem-
ory, cognition, mood regulation, and motor activity [29]. This crucial excitatory amino
acid is extensively recycled between neurons and astrocytes in a process known as the
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glutamate-glutamine cycle. This cycle is an open cycle, meaning that intermediates are lost,
particularly due to a substantial oxidative metabolism of glutamate in both neurons and
astrocytes [30]. Under normal physiological conditions, glutamate synaptic concentration
is a necessary factor for maintaining excitatory basal and stimulated neurotransmission.
In many polysynaptic neuronal pathways, the electrical impulses are depolarizing the
glutamatergic neurons, resulting in the release to the synaptic cleft of the glutamate stored
in the vesicles [31]. Thereafter, glutamate binds and activates postsynaptic membrane
receptors followed by signal termination due to glutamate uptake by astroglia. Glutamate
in astrocytes is converted to glutamine by glutamine-synthetase. The generated glutamine
is transferred from astrocytes to neurons through a glutamine transporter. Once glutamine
enters the neuron, it is converted to glutamate by glutaminase in the mitochondria. Fi-
nally, cytosolic glutamate is concentrated in synaptic vesicles through vesicular glutamate
transporters, thus completing the glutamate-glutamine cycle [32]. Astrocytes maintain
the glutamate homeostasis in the CNS by controlling the fine balance between glutamate
uptake and release [33] (Figure 3).

Figure 3. A scheme of the glutamate-glutamine shuttle, focusing on the exchange of glutamate (Glu)
and glutamine (Gln) between neurons and astrocytes. 1© Glutamate is transported from vesicles to
presynaptic membrane and released to synaptic cleft by exocytosis; 2© Glutamate in synaptic cleft
binds to glutamate receptor (GLU-R); 3© Glutamate undergoes reuptake into astrocytes and neurons;
4© Glutamate in astrocytes is converted to glutamine by the enzyme glutamine synthetase (GS);
5© The generated glutamine is transported from astrocytes to neurons by the glutamine transporter;
6© Once glutamine enters the neuron, it is converted to glutamate by the mitochondrial enzyme

glutaminase; 7© Finally, glutamate synthesized from glutamine is concentrated in synaptic vesicles
by the vesicular glutamate transporters, thus completing the glutamate-glutamine cycle.
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Under physiological conditions, glutamate produces an excitatory, electrophysiological
response by differential binding of the different presynaptic and postsynaptic receptors.
Excessive, persistent activation of glutamate receptors results in neuronal dysfunction and
cell death, a process called excitotoxicity, which involves calcium overload, mitochondrial
damage, and oxidative stress [34]. Although the mechanism of excitotoxic injury is not
fully understood, it has been proposed that one mechanism involves chronic dysregulation
of the glutamate-glutamine shuttle, which plays a key role in excitotoxicity-induced cell
death [35]. The excitatory effects of glutamate are induced by the activation of three major
types of ionotropic receptors and several classes of metabotropic receptors linked to G-
proteins [36]. In addition, it was further proposed that glutamate-induced excitotoxicity is
mainly caused by excessive Ca2+ influx mediated by NMDARs, which are thought to be
more permeable to Ca2+ than other ionotropic glutamate receptors [37].

3.1. NMDAR Mediated Excitotoxicity

N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, which is
a tetramer composed of a NR1 subunit, a NR3 subunit bound to glycine, and a NR2 bound
to glutamate [38]. NR1 is the basic subunit of ion channels, NR2 is the regulatory subunit,
and the NMDA receptors composed of different NR2 exhibit different brain distribution
and physiological characteristics. This receptor is a calcium channel, which is located
in synaptic and extra-synaptic sites, triggering different signaling cascades. The degree
of excitotoxicity depends on the magnitude and duration of synaptic and extra-synaptic
NMDAR co-activation [39]. Under resting conditions, the channel pores of NMDARs are
blocked by Mg2+. Upon glutamate release from presynaptic sites, activated receptors cause
a partial depolarization in the postsynaptic membrane that is sufficient to remove the Mg2+

block from NMDARs, enabling an influx of Na+ and Ca2+ into the neuron. The Ca2+ influx
through NMDARs is not only critical for the normal physiological processes in neurons
but also plays a major role in initiating neurotoxicity [40]. In excitotoxicity, excess gluta-
mate release results in the over-activation of NMDARs that leads to the calcium overload
inside the neurons. Calcium overload triggers, in turn, a range of downstream neuronal
cell death signaling events such as calpain activation [41], reactive oxygen species (ROS)
generation [42], and mitochondrial dysfunction [43], resulting in neuronal aponecrosis.
The calcium entry through extra-synaptic NMDARs contributes to calcium overload in
the mitochondria. The mitochondria, besides their role in ATP production, participate in
calcium homeostasis, acting as a buffering organelle. Disruption of mitochondrial calcium
homeostasis has either been linked to neuronal cell death by triggering apoptosis, or driven
by the opening of the mitochondrial transition pore [44]. Activation of extra-synaptic
NMDAR depends on multiple conditions, such as their topographic location and activity
in neurons, the activity of transporters in glial cells, and the overflow of glutamate at
synaptic sites. Interestingly, neuronal gap junctions [45] and clathrin-dependent endocyto-
sis [46] participate in some types of NMDA receptor-mediated excitotoxicity. To date, the
hypothesis relevant for glutamate-induced excitotoxicity claims a dual role of NMDARs in
cell survival and death. Activation of NMDARs can trigger survival or cell death signals,
depending on the subcellular locations or subtypes of NMDARs [47]. In mature neurons,
NR2A-containing NMDARs are abundant in the synapses, and NR2B-containing NMDARs
are enriched in the extrasynaptic sites. In general, synaptic/NR2A-containing NMDARs are
associated with pro-survival effects, whereas extrasynaptic/NR2B-containing NMDARs
are involved in pro-death signaling [48].

3.2. AMPAR Mediated Excitotoxicity

The α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid subtype ionotropic glu-
tamate receptors, (AMPA receptors), are composed of four subunits, GluA1 to GluA4
(NRA1-4). These NRA1/3/4 subunits, but not NRA2, have high permeability for Ca2+.
The majority of AMPA receptors in vivo contain GluR2 subunits whose ion selectivity is
dominant over other subunits [49,50]. AMPAR mediates fast synaptic transmission at exci-
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tatory synapses, while NMDAR is critical in producing several different forms of synaptic
plasticity [51]. Upregulation of calcium-permeable AMPARs, together with their biological
amplifying effects, triggers the Ca2+ influx overload and excitotoxicity, which can lead to
mitochondrial injury, endoplasmic reticulum (ER) stress, activation of apoptotic cascades,
and cell death [52]. Recent studies have found that compared with other neurons, motor
neurons are more vulnerable to AMPAR-mediated neurotoxicity [53]. For example, adult
mice develop posterior limb paralysis and bilateral motor neuron degeneration within a
few days after continuous injection of AMPA in the lumbar spinal cord, which may be
due to the low buffering capacity of motor neuron Ca2+ and the absence of NRA2-lacking
AMPARs [54]. By contrast, GluA2-lacking AMPARs at mPFC synapses may also medi-
ate altered outcome predictions after cocaine self-administration (SA) [55]. Similarly, in
D1-MSN, the presence of GluA2-lacking AMPARs were observed after mice exposed to
various regimens of cocaine. By increasing excitatory transmission onto D1R-expressing
MSN, an imbalance between direct and indirect pathway output from the NAc may be
created. In addition, the insertion of GluA2-lacking AMPAR not only strengthens the in-
puts but also makes them calcium permeable [56]. Interestingly, recent studies have found
that AMPARs with NRA1 were very important to induce long-term potentiation (LTP),
which was the main target of calcium/calmodulin-dependent kinases II [57,58]. Calcium-
permeable AMPAR-associated pathological alterations could induce neural excitotoxicity
in different brain regions, neural circuits, and cellular types, as well as various intracellular
signaling pathways, all of which may correspondingly lead to some unique manifestations
of neurological diseases [59].

3.3. Calcium Channels Mediated Excitotoxicity

During glutamate-induced excitotoxicity, elevated levels of extracellular glutamic acid
cause persistent depolarization of the neuron. This triggers a cascade of parallel cellular
events that lead to cell death. Several key mechanisms of this cascade have been identified:
events depending on sodium influx, events depending on exocytosis of glutamate, and
events depending on calcium influx. It is plausible that sodium entry is responsible for
early necrotic cell death events, calcium entry for delayed apoptotic events, and exocytosis
of glutamate followed by activation of glutamate receptors, for synergic-amplification of
these aponecrotic, neurodegenerative processes. Since the first descriptions of glutamate-
induced excitotoxicity, it has been clear that the key intracellular driver of these mechanisms
is a massive increase in the intracellular calcium concentration [60]. In addition to the
NMDARs and calcium-permeable AMPARs responsible for the massive calcium influx,
voltage-dependent calcium channels (VGCC, Cav), activated by depolarization, are also
involved in glutamate-induced excitotoxicity [61]. However, calcium influx via VGCCs
is much less toxic than influx via NMDARs [62]. VGCCs are classified into two several
groups: the CaV1 subfamily (CaV1.1 to CaV1.4) including channels that mediate L-type
Ca2+ currents; the CaV2 subfamily (CaV2.1 to CaV2.3) including channels that mediate
P/Q-type, N-type, and R-type Ca2+ currents, respectively; and the CaV3 subfamily (CaV3.1
to CaV3.3) including channels that mediate T-type Ca2+ currents [63]. All, except the CaV3
(T type) channels, are associated with several auxiliary subunits, termed α 2δ, that have
been found to interact with the NMDA receptors NR2A and NR2B subunits [64]. In brain
slices of mouse somatosensory cortex, it has been found that a Ca2+ influx through CaV
2.1 (P/Q-type) channels is directly correlated with glutamate release and activation of
NMDA receptors, a process responsible for K+ depolarization-induced cortical spreading
depression [65]. In addition, Neuronal protection against glutamate excitotoxicity was also
found following treatment of primary corticostriatal neurons in mouse brains with Cav1
blockers [66]. In a small subset of cortical and hippocampal neurons, characterized by
elevated expression of VGCCs and enhanced voltage-gated calcium currents, and mitochon-
drial dysfunction, depolarization evoked stronger calcium elevations, approaching those
induced by NMDA [62]. These studies exemplify some of the contributions of calcium
channels to glutamate-mediated excitotoxicity.
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4. The Reciprocal Cross-Talk between IGF-1R and Glutamate Receptors

Glutamate-induced excitotoxicity during brain injury in ischemic stroke and trauma
leads to a significant increase in expression of IGF-1 in astrocytes [67], microglia [68,69], and
neurons [70], followed by a significant stimulation of IGF-1R phosphorylation [71]. IGF-I
autocrine and paracrine functions are mediated by activation of IGF-IR, which in turn leads
to the activation of downstream signaling pathways, PI3K-kinase pathway, and Ras–MAPK
pathway. Exogenously applied IGF-1 was found to be neuroprotective, reducing neuronal
loss and improving both motor and cognitive neurological outcomes, in animal models of
hypoxic-ischemic and traumatic brain injuries [72–74]. These findings led to the proposal
that IGF-1, or its agonists, may be used as therapeutics to improve outcomes following
brain injury in brain stroke, trauma, and other neurodegenerative diseases [25,75,76].
However, the mechanistic molecular and cellular gaps in understanding IGF-1-induced
neuroprotection require investigations on IGF-1R signaling cross-talk with glutamatergic
receptors. This understanding may speed up the progress in clinical translation of IGF-1 for
developing new neuroprotective therapies towards neurological diseases with glutamate
excitotoxicity as a common pathological pathway.

In NMDA-induced excitotoxicity (autophagy cell death) of cultured hippocampal
neurons, IGF-1 pre-treatment conferred neuroprotection, dependent on the PI3K-AKT-
mTOR signaling pathway [77–79]. Considering that: i. the cellular effects of IGF-I are
mediated by the insulin receptor substrate (IRS) proteins [80]; ii. IRS2 deficiency impairs
activation of the NR2B subunit of NMDA receptors; and iii. Akt phosphorylates NR2C,
and, unlike NR2A and NR2B, supports neuronal survival [81], it is plausible to hypothesize
that IGF-1-induced neuroprotection towards NMDA-induced excitotoxicity, is mediated by
IRS2 [82], and by the site-specific phosphorylation of NR2B and/or NR2C. Since NMDA-
induced excitotoxicity is also mediated by the stimulation of the tyrosine kinase Fyn–
NR2B–CaMKII pathway, and IGF-1 suppressed this pathway by phosphorylating Ser1303
of NR2B [83], a negative feedback mechanism was proposed between IGF-1R and the
different phosphorylation sites of extrasynaptic NR2B, thus explaining the neuroprotection
of IGF-1 towards NMDA-induced excitotoxicity (Figure 4).

Complementary studies indicated physiological antagonistic effects of glutamate-
activated NMDARs on the IGF-1 receptors. During excitotoxicity, the excessive glutamate,
by binding and activation of NMDAR-NR2B, decreased the phosphorylation of tyrosine
residues 1131, 1135/1136, 1250/1251, and 1316, while it did not affect tyrosine 950 in the cor-
tical neurons’ IGF-1R [84]. This finding is indicative that glutamate may have various effects
on different phosphorylation sites of IGF-1 receptors that may impact IGF-1 signaling, since
phosphorylation sites of IGF-1R are linked to its various anti-apoptotic, neuroprotective ef-
fects [85]. In line with these findings, studies in mice have shown that when glutamate was
injected intracerebroventricularly, decreased phosphorylation of IGF-1 receptors and Akt
resulted, and that this effect was reversed by the NMDA antagonist MK-801, but not by the
non-NMDA antagonist. Similarly, an endogenous glutamate increase that was induced by
focal cerebral ischemia, gradually reduced the phosphorylation of IGF-1 receptors and Akt,
shortening the therapeutic window of IGF-1 [86]. In another approach, it was found that
oxidative stress (H2O2 treatment), as occurring during glutamate excitotoxicity, attenuated
IGF-1R tyrosine phosphorylation and its survival signaling properties via NMDAR- NR2B
receptors in SH-SY5Y human neuroblastoma and primary-cultured cortical neurons. In this
study, small interference RNA (siRNA) for NR2B, blocked the effect of glutamate on IGF-1R
phosphorylation, while the NR2As siRNA treatment was not effective [87]. These findings
are consistent with our early findings using rat hippocampal neuronal cultures, in which
glutamate, by acting on NMDAR, attenuated IGF-1 receptor tyrosine phosphorylation and
its survival signaling properties [88]. Glutamate-induced uncoupling of IGF-I signaling,
by phosphorylating the IGF-I receptor docking protein insulin-receptor-substrate (IRS)-1
on Ser 307, through a pathway involving activation of PKA and PKC, may constitute an
additional route contributing to excitotoxicity [89]. Interestingly, it was also reported that
metabotropic glutamate receptor 2 (mGlu2) may cause transactivation of IGF-1R through
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phosphorylation by the FAK-tyrosine kinase [90]. These selected studies exemplify the
existence of a feedback mechanism between the extrasynaptic NR2B and IGF-1R, coun-
teracting the neuroprotection of IGF-1 towards NMDA-induced excitotoxicity (Figure 4).
This concept is further supported by the “loss of function” studies. Astrocytes regulate
many aspects of the brain microenvironment, including controlling glutamate-glutamine
cycling, which ultimately supports neuronal metabolism, neurotransmission, and neuro-
protection from excitotoxicity. Using small-molecule, IGF-1R inhibitors, and Cre-driven
genetic approaches to reduce IGF-1R in vivo and in vitro in cultured rodent astrocytes, a
significant reduction in the glutamate uptake was observed, due to a significant decrease in
the expression levels of the glutamate transporter. These data indicate that reduced IGF-1
signaling will favor an accumulation of extra-synaptic glutamate, which may contribute to
glutamate-excitotoxicity in disease states where IGF-1 levels are low [91].

Figure 4. Molecular cross-talk mechanisms between glutamate and IGF-1. The green arrows indi-
cate the mechanism of IGF-1; the red arrows indicate the mechanism of glutamate. IGF-1 inhibits
glutamate-induced neurotoxicity by activating the β-subunit of IGF-1R: 1© Inhibiting excitotoxicity
induced by glutamate receptor subunit-induced calcium influx, through IRS-2-mediated Ser phos-
phorylation of NR2B; 2© IRS-1 activated survival downstream MEK/ERK and PI3K/Akt signaling
pathways, inhibits excitotoxicity, and confers neuroprotection. However, the overactivation of the
NR2B subunit of NMDAR also inhibits the neuroprotective effect of IGF-1: I. The activation of the
NR2B subunit inhibits the phosphorylation and activation of the β-subunit of IGF-1R, resulting in its
uncoupling with IRS-1; II. Activation of NR2B subunit enhances IRS-1 serine phosphorylation and
inhibits tyrosine phosphorylation, thereby reducing IGF-1R phosphorylation and attenuating IGF-1
survival-promoting effect.

5. IGF-1 Modulation of Glutamate-Induced Synaptic Plasticity

Synaptic plasticity involves both short-term and long-term processes. The short-
term synaptic plasticity includes facilitation, depression, and potentiation, and the long-
term synaptic plasticity includes long-term potentiation (LTP) and long-term depression
(LTD) [92], which can lead to synaptic dysfunction, causing learning and memory impair-
ment once the two processes are unbalanced [93]. NMDARs and AMPARs are important ex-
citatory receptors for synaptic transmission and plasticity. IGF-1 is one of the neurotrophic
factors that is maintaining glutamatergic synaptic function by stimulating the PI3K/Akt or
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MAPK/Erk signaling pathway [94]. Moreover, IGF-1 is inducing phosphorylation of glyco-
gen synthase kinase 3 beta (GSK3β) at serine-9 and thus causing its inactivation, a critical
convergence event in the promotion of survival of the glutamatergic, cerebellar granule
brain neurons [95]. Since GSK3β mediates the interaction between the two major forms
of synaptic plasticity in the brain, NMDAR-dependent long-term potentiation (LTP) and
NMDA receptor-dependent long-term depression (LTD) [96], the IGF-1 induced stimulation
of the phosphorylation of GSK3β significantly affects the synaptic plasticity. Moreover, the
synaptic plasticity mechanisms of IGF-1 may be accomplished by the modulation of the
brain levels of the brain-derived neurotrophic factor [97], the increase in calcium influx
through L-type calcium channels, and the activation of CaMKIIα [98,99], as well as by
the decrease in the GABA-A receptor- alpha-1 subunit expression [100], the regulation of
the astrocytes’ glutamate-transporters [93], and the cooperative interactions with different
neurotrophins [101].

AMPAR is expressed in a wide range of brain glial cells, besides neurons, where
they regulate important cellular functions. AMPAR allows glial cells to sense the activity
of neighboring neurons and synapses, rendering the glial cells sensitive to elevations of
the extracellular concentration of glutamate, thus triggering neuronal pathophysiological
responses and amplifying neuronal excitotoxicity [102]. The glutamate concentration and
cellular localization of AMPAR along with IGF-1, 2 expressions were upregulated in the
periventricular white matter (PWM) of neonatal rats exposed to hypoxia injury [103]. In
primary microglial cultures subjected to hypoxia in vitro, administration of exogenous
glutamate decreased IGF-1, suggesting that increased IGF-1expression may represent an
early protective mechanism in attenuating the hypoxic damage, but a subsequent glutamate-
induced decrease of IGF-1 expression may cause cell death due to excitotoxicity [102].
Intraperitoneal injections of IGF-1, over two weeks, reversed deficits in hippocampal
AMPA signaling, LTP, and motor performance in Shank3-deficient mice [104].

Shank3 is part of the glutamate receptor body, which physically connects the parent-
NMDA receptor to the metabolite mGlu5 receptor by interacting with the scaffold-folding
protein PSD95-GKAP-Shank3-Homer [105]. These findings may suggest an important role
of IGF-1 on correcting the integrity of the glutamate receptosome required for the synaptic
transmission and plasticity.

6. IGF-1 Modulates Calcium Pathway

IGF-1 induces within seconds a large, tyrosine-, kinase-dependent increase in calcium
channel currents in cerebellar granule neurons. While P, Q, and R channels were unaffected,
N and L channel activities were significantly potentiated at specific membrane voltages.
Moreover, transient expression of the dominant negative and wild-type phosphatidylinosi-
tol 3-OH kinase (PI3K) subunits, as well as the application of specific inhibitors, suggest
that the role of PI3K on IGF-1 is critical, indicating that the regulation of N and L calcium
channels may control calcium-dependent processes, such as neurotransmitter release and
IGF-1-dependent survival [106]. In the cortex and hippocampal neurons, depolarization
and IGF-1 rapidly increase phosphorylated-CREB levels, which require CaV1.3 activity and
the S1486 phosphorylation site to achieve a full effect [107]. In addition, IGF-1 promotes the
survival of cerebellar granule neurons by enhancing calcium influx through L-type calcium
channels increased CaMK-IV activity, which acts to decrease nuclear transcription factor
CCAAT enhancer-binding proteins (C/EBPβ). Conversely, NMDA receptor-mediated
influx rapidly elevates nuclear C/EBPβ and induces excitotoxic death via activation of
the calcium-dependent phosphatase, calcineurin (Figure 5). Moderate levels of AMPA
receptor activity stimulated L channels to improve survival, whereas higher levels stim-
ulated NMDA receptors and reduced neuronal survival, suggesting differential synaptic
effects. Finally, N-type calcium channel activity reduced survival, potentially by increasing
glutamate release [97]. The Na+/Ca2+ exchanger (NCX) is an important bidirectional trans-
porter of calcium in neurons and is involved in neuroprotection. In rat primary neuronal
cultures, IGF-1 produced an increase in the NCX-mediated inward current and a decrease
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in the NCX-mediated outward current, indicative of its involvement in IGF-1-induced
neuroprotection [108]. Therefore, the neuroprotective effects of IGF-1 on neurons can be
achieved by regulation of several subtypes of calcium channels, which in turn modulate
the expression and activity of CaMKs and of specific nuclear transcription factors regu-
lating genes involved in neuronal calcium homeostasis, and maintaining the survival of
neuronal cells.

Figure 5. IGF-1 modulation of calcium signaling. Neuroprotective effects of IGF-1 on neurons are
achieved by regulation of several subtypes of calcium channels. CaV1.3 channels are modulated
by IGF-1 through activation of the phospholipase C and CaMK-II-induced phosphorylation of the
CaV1.3 subunit; the phosphorylation of serine residue 1486 of the CaV1.3 subunit rapidly increased
CREB levels. In addition, IGF-1 promotes the survival of cerebellar granule neurons by enhancing
calcium influx through L-type calcium channels, increased CaMK-IV activity that in turn acts to
decrease the CCAAT enhancer nuclear binding proteins (C/EBPβ). Conversely, NMDA receptor-
mediated calcium influx rapidly elevates nuclear C/EBPβ and induces excitotoxicity via activation of
the calcium-dependent phosphatase, calcineurin.

7. IGF-I Confers Neuroprotection towards Neurological Diseases with
Glutamate Excitotoxicity

IGF-I exerts its pleiotropic neuroprotective functions in an endocrine, autocrine, and
paracrine fashion [109]. Numerous research studies indicated that the reduced IGF-1
levels in the serum followed by decreased activity of IGF-1 signaling pathways plays a
significant role in the progression of many neurological disorders, including those with
glutamate excitotoxicity as a common pathological pathway such as ischemic stroke and
traumatic brain injury [110]. Clinically, several studies have shown that reduced levels



Cells 2022, 11, 666 12 of 20

of IGF-1 in human patients correlated with increased mortality rate, poorer functional
outcomes, and increased morbidities following an ischemic stroke [5]. In animal mod-
els of ischemia, administering exogenous IGF-1 using various routes of administration
(intranasal, intravenous, subcutaneous, or topical) at various time points before and/or
following the insult, attenuated the neurological damage and accompanying behavioral
changes (Table 1) [104,111–127]. Therefore, since dysregulation of IGF-1 signaling was a
common observation in neurodegenerative manifestations of excitotoxicity, the clinical
rationale proposed that restoration of abnormal IGF-1signaling by exogenous supplementa-
tion could result in neuroprotection and neurotrophic effects for many clinical-pathological
presentations. For this purpose, different delivery routes and therapeutic protocols were
used in clinical trials on human patients treated with human recombinant IGF-1 or its
analog Trofinetide [glycyl-L-methylprolyl-L-glutamic acid (NNZ-2566)] [128,129]. Multiple
studies show mixed pieces of evidence with regards to serum IGF-1 concentration and
the long-term neuroprotective effects, tolerability, safety, and efficacy of IGF-1 in many
CNS disorders, most notably stroke, traumatic brain injury, amyotrophic lateral sclerosis,
Alzheimer’s disease, autism spectrum disorder, and others. Table 1 presents preclinical and
human clinical studies and trials providing strong evidence that IGF-I confers neuroprotec-
tion in preclinical experimental animal models and clinical trials in human patients with
different neurological diseases. However, there are many reservations about these clinical
evaluations. Serum IGF-1 may not adequately reflect the concentration of IGF-1 within
the brain and there are methodological variations between studies measuring IGF-1 itself,
with some measuring total level and others just the free amount [130]. Interestingly, one
prospective population-based study found no direct association between IGF-1 and cogni-
tion over 20 years in 746 men [131]. Much larger, prospective longitudinal clinical studies
are required to establish not just correlation, but determine any direction of causation, if it
exists, between IGF-1 treatment and a clinical neuroprotective, therapeutic effect.

Table 1. Preclinical and clinical studies provide evidence that IGF-I confers neuroprotection in animal
models and neurological diseases.

Disease Animal Models Human Patients Reference

Ischemic Stroke

Attenuated infarct size with IGF-1
treatment in MCAO and

improved post-stroke
neurological behaviors.

Inverse correlation between
circulating IGF-1 levels and stroke
incidence; The levels of IGF-1in the
serum is also inversely associated

with the neurological deficits
following stroke.

[5,111]

Traumatic brain
injury (TBI)

IGF-1 is neuroprotective.
Functional neurological

improvement of motor and
cognitive functions in different

TBI models.

IGF-1 clinical trials in TBI
demonstrate that IGF-1

administration either alone or in
combination with GH was safe to

humans and successful in improving
metabolic parameters in

moderate-to-severe TBI patients.

[82]

Amyotrophic Lateral
Sclerosis (ALS)

In mouse models of ALS rhIGF-1
delayed disease onset, reduced

muscle atrophy, promoted
peripheral motor nerve

regeneration, and extended life.

Randomized, double-blind,
placebo-controlled, phase two and
three clinical trials reaffirmed that

rhIGF-1 administration was safe and
well tolerated in most subjects but

efficacy was not statistically
significant.

[110]
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Table 1. Cont.

Disease Animal Models Human Patients Reference

Alzheimer’s Disease
(AD)

In mice with increased cerebral
beta-amyloid plaques serum

IGF-1 modulated brain levels of
beta-amyloid and prevented

premature death

Multicenter, cross-sectional study to
assess the relationship between IGF-1
and cognitive decline indicated that

serum IGF-IGFBP-3 levels were
implicated in men with AD. However,

a double-blind, multicenter study
using growth hormone secretagogue

MK-677 which stimulates
upregulation and circulation of IGF-1,

failed to show efficacy in slowing
disease progression.

[109,112–114]

Autism spectrum
disorder (ASD)-

Phelan-McDermid
Syndrome (PMS)

I.p. injection of rhIGF-1 in
Shank3-deficient mice at clinically

approved doses of
0.24 mg/kg/day for 2 weeks

reversed the electro-physiological
deficits and

demonstrated reduced
AMPAR-mediated transmission

and showed normal LTP
comparable to the wild type

control mice

A clinical trial using 0.24 mg/kg/day
of rhIGF-1 in divided doses, in nine

children with PMS (Shank3 deficient)
demonstrated safety, tolerability,

and efficacy.

[104,115,117]

ASD- Fragile X
Syndrome (FXS)

In Fmr1 knockout mice
characterized by reduced

excitatory synaptic currents,
enhanced glutamate receptor

dependent-LTD, 100 mg/kg i.p.
injection of IGF-1 analog

Trofinetide (NNZ-2566) resulted
with reduced hyperactivity,

improved LSTM and LTP, and
normalized social recognition

and behaviors.

Phase II randomized, double-blind,
placebo-controlled, parallel-group,

confirmed the safety, tolerability and
efficacy at the high dose of treatment

with oral administration of
Trofinetide at 35 or 70 mg/kg twice

daily, in 72 adolescent or adult males
with FXS.

[119,120]

Friedreich’s ataxia
(FRDA)

IGF-I in FRDA-like transgenic
mice (YG8R mice) conferred

neuroprotection and normalized
motor coordination.

In a clinical proof of concept pilot
study, patients were treated s.c. with
IGF-1 therapy with 50 µg/kg twice a

day for 12 months and tolerability
and decrease in the progression of

neurological symptoms was
measured, together with long-term

stability of cardiac function.

[121–123]

Huntington’s
disease (HD)

IGF-1 intranasal delivery rescues
HD phenotype in YAC128 mice.

In 219 patients with genetically
documented HD and in 71 sex- and
age-matched controls, IGF-1 serum
levels were significantly higher in

patients than in controls, indicating
somatotropic axis is overactive to

confer neuroprotection.

[124,125]

Epilepsy

IGF-I ameliorated hippocampal
neurodegeneration and protected

against cognitive deficits in an
animal model of temporal

lobe epilepsy.

57 patients with focal epilepsy and
35 healthy controls were evaluated

for IGF-1 level; reduced serum levels
of IGF-1were found to correlate with

age and cardiovagal function, a
parameter of cerebral autoregulation
(the breath-hold index). Patients with

a longer history of epilepsy,
presented higher seizure frequency,
and temporal lobe epilepsy and had

lower serum levels of IGF-1.

[126,127]

Abbreviations: MCAO, middle cerebral artery occlusion; rhIGF-1, human recombinant IGF-1; GH, growth
hormone; i.p., intraperitoneal; s.c., subcutaneous. Fmr1, fragile X mental-retardation protein 1; Shnk3, SH3 and
multiple ankyrin repeat domains-3 protein; LTD, long-term depression; LTP, long-term potentiation; LSTM, long
short-term memory.
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8. Summary

Excess activation of ionotropic glutamate receptors, followed by calcium overload
and oxidative stress due to accumulation of reactive oxygen and nitrogen species, which
further leads to mitochondrial dysfunction, lipid peroxidation, and oxidation of proteins
and DNA, triggers neuronal aponecrotic cell death in the central nervous system under
physiological and pathological conditions. Evidence is emerging that neuronal loss fol-
lowing glutamate-induced excitatory neurotoxicity propagates through distinctive, and
mutually exclusive signal transduction pathways. IGF system components are widely
expressed in the nervous system where there is substantial evidence for neuroprotective
and neurotrophic actions of IGF-I. Some of the signaling pathways beneficially modu-
lated by IGF-1 to confer neuroprotection include PI3K/Akt/mTOR [77], Ras/Erk1/2 [132],
GSK3B/NF-kB/NLRP3 [133,134] and L-type calcium channel/CaMK II and IV that activate
CREB [135]and C/EBPβ [98]. Moreover, IGF-1 can regulate the glutamate-glutamine cycle
and ameliorate glutamate-induced excitotoxicity, but glutamate can also increase damage
to nerve cells by reducing the neuroprotective effects of IGF-1. These regulatory reciprocal
mechanisms include i. IGF-1 improvement of the LTP effect by GSK3β phosphorylation,
blocking NMDAR dependent-LTD; ii. IGF-1 enhancement of AMPAR dependent-LTP, by
activating the phosphorylation of AMPARs; iii. IGF-1 modulation of several subtypes
of calcium ion channels to regulate calcium homeostasis; and iv. glutamate activation of
NMDAR- NR2B, reducing the phosphorylation levels of IGF-1R, weakening the survival-
promoting, neuroprotective effect of IGF-1; v. NMDAR-induced serine phosphorylation
of IRS, dysregulating IGF-1 signaling and preventing its neuroprotective effects. IGF-1
ameliorates neuronal oxidative stress by increasing the synthesis of the antioxidant glu-
tathione [136] and increases the expression of neurotrophins’ trk receptors [137] towards
amplification of the neuroprotective effect. Moreover, IGF-1 increases the proliferation of
the brain’s neuronal progenitors [138]and increases hippocampal neurogenesis [139]. This
property, and the ability of IGF-1 to stimulate neurite outgrowth [140], may contribute to
neuronal regeneration [141] after glutamate-induced excitotoxicity. Animal and clinical
trials have proven the safety, tolerability, and efficacy of IGF-1, and the exploration of
the cross-talk pathways between IGF-1 and glutamate are ongoing, suggesting that IGF-1
may become a potential drug for the treatment of neurological diseases with glutamate
excitotoxicity as a common pathological pathway (Figures 4 and 5). Despite the progress in
the therapeutic use of IGF-I, the mechanisms of IGF-I-induced neuroprotection are not yet
fully elucidated and additional clinical trials using larger cohorts of human patients need
to be conducted. Insulin-like Growth Factor-1 (IGF-1) is neuroprotective and improves
long-term function after glutamate-induced excitotoxicity. However, from a pharmaceutical
point of view, its clinical application for the therapy of neurological disorders is disad-
vantageous due to its large molecular size, poor CNS uptake, and mitogenic potential.
Small, IGF-1 mimetic, cyclic peptides have advantages over IGF-1, representing a novel
strategy of pharmaceutical discovery for neurological disorders [142]. In conclusion, it
is expected that IGF-1 and derived peptidomimetics with pleiotropic effects will provide
a new, supplemental therapy that will target specific excitotoxic processes and brain cell
types that contribute to different neurological diseases.
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