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Abstract

Influenza activity is subject to environmental factors. Accurate forecasting of influenza epi-
demics would permit timely and effective implementation of public health interventions, but
it remains challenging. In this study, we aimed to develop random forest (RF) regression
models including meterological factors to predict seasonal influenza activity in Jiangsu pro-
vine, China. Coefficient of determination (R2) and mean absolute percentage error (MAPE)
were employed to evaluate the models’ performance. Three RF models with optimum para-
meters were constructed to predict influenza like illness (ILI) activity, influenza A and B
(Flu-A and Flu-B) positive rates in Jiangsu. The models for Flu-B and ILI presented excellent
performance with MAPEs <10%. The predicted values of the Flu-A model also matched the
real trend very well, although its MAPE reached to 19.49% in the test set. The lagged depend-
ent variables were vital predictors in each model. Seasonality was more pronounced in the
models for ILI and Flu-A. The modification effects of the meteorological factors and their
lagged terms on the prediction accuracy differed across the three models, while temperature
always played an important role. Notably, atmospheric pressure made a major contribution
to ILI and Flu-B forecasting. In brief, RF models performed well in influenza activity predic-
tion. Impacts of meteorological factors on the predictive models for influenza activity are
type-specific.

Introduction

Seasonal influenza has always been a major public health problem [1, 2]. It annually
causes tens of millions of respiratory illnesses and hundreds of thousand deaths world-
wide [3]. An accurate forecast of influenza activity in advance based on predictive models
is crucial for public health authorities to predict the seasonal fluctuation and facilitate key
response actions [4, 5], such as public health surveillance, deployment of emergency sup-
plies and hospital resource management. However, accurate prediction remains a great
challenge. A number of statistical approaches have been employed and evaluated.
Random forest (RF) regression model was suggested to have enhanced prediction ability
over the autoregressive integrated moving average (ARIMA), the generalized linear auto-
regressive moving average time series model [6, 7] in context of animal influenza activity
prediction. It performed better in identifying independent factors associated with
H1N1pdm influenza infections over boosted regression trees, conventional and penalised
logistic regression [8].

Meteorology plays an important role in the varied seasaonal patterns of influenza in
temperate, subtroptical and tropical regions. Influenza activity has been reported to
peak during rainy seasons in tropical climates and during dry, cold months of winter
in temperate climates. The impact of climate conditions on influenza A and B could be
different [9].

Influenza like illness (ILI) has been commonly used as the index of influenza activity
worldwide [3–5], however, a number of respiratory pathogenicities, including parainfluenza,
adenovirus and rhinovirus, could cause ILI and thus, influence ILI activity fluctuation [10].
Recently, the positive rate of influenza virus in surveillance samples has been considered a
more reliable indicator of influenza activity [11,12].

Jiangsu Province is situated in the middle east coast of China and is a transitional district of
warm temperate zone to subtropical zone. Researches conducted in this region could deliver a
more comprehensive understanding of climate impact on influenza activity. In this study, we
aim to develop RF models to predict the ILI activity, positive rates of Flu-A and Flu-B, respect-
ively, which has been rare in published studies.
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Materials and methods

Data sources

Surveillance of ILI and influenza virus in China is conducted
through a national sentinel network [13], with sentinel sites
covering 2.5% of all hospitals across the country. Data for
patients fitting the definition of ILI (i.e. body temperature
⩾38 °C with a cough and/or a sore throat) is reported to the

China Influenza Surveillance Information System (CISIS) on
a weekly basis. In Jiangsu, for each sentinel site, no less
than 20 nasopharyngeal swabs are collected in a week by
convenience samples of ILI cases before antiviral therapy.
These specimens are routinely tested for influenza virus sub-
types using real-time fluorescent quantitative polymerase
chain reaction (PCR) assay and the results are reported to
CISIS within 48 h.

Fig. 1. Temporal patterns of ILI activity and influenza virus
positive rates in Jiangsu province, 2011–2016.
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In this study, weekly data of ILI percentage in outpatients (ILI
%) and influenza virus positive rate in Jiangsu during 2011–2016
were obtained from CISIS. The daily meteorological data were
downloaded from China Meteorological Data Sharing Service
System (http://cdc.cma.gov.cn) and aggregated into weekly data.
These meteorological viriables include precipitation (PR), sun-
shine duration (SD), relative humidity (RH), atmospheric pres-
sure (AP), minimum temperature (MIN_T), mean temperature
(MEAN_T) and maximum temperature (MAX_T).

Random forest

Rf is an ensemble machine learning method proposed by Breiman
[14]. RF creates multiple classification and regression trees, each
trained on a bootstrap sample of the original training data with
a randomly selected subset of input variables. There are two para-
meters to choose when running a RF algorithm: the number of
trees and the number of randomly selected variables. In regression,

the tree predictor takes on numerical values as opposed to class
labels used by the RF classifier. RF regression models take the aver-
age of outputs produced by the trees as the final prediction.

One of the most important features of RF is to calculate the
variable’s importance, which measures the association between a
given variable and the prediction accuracy. RF regression
approach discussed in this study uses the decrease in accuracy
to assess the variable’s importance. As suggested by previous stud-
ies about the good prediction capacity, we explored RF method in
human seasonal influenza activity analyses, testing its forecasting
and independent influence factors identifying performance.

Model evaluation

Data of 2011–2015 were split as a training set to fit the RF models,
reserving 2016 as testing set to evaluate the predicting accuracy.
Coefficient of determination (R2) and mean absolute percentage
error (MAPE) were employed to evaluate the models’

Table 1. Summary of weekly meteorological variables in Jiangsu province, 2011–2016

Variable Min P25 P50 Mena P75 Max

AP (Pa) 998.6 1006.8 1015.7 1015.2 1022.7 1034.0

Mean_T (°C) −2.191 6.953 17.092 15.621 23.551 32.648

MAX_T (°C) 1.252 11.622 22.471 20.174 27.467 37.407

MIN_T (°C) −5.997 3.44 12.698 11.938 20.434 28.199

RH (%) 45.93 67.86 74.40 73.40 80.24 91.18

PR (mm) 0 3.335 11.648 21.296 29.987 159.657

SD (hour) 2.252 27.574 37.274 37.987 48.717 82.009

Table 2. Cross correlation between dependent variable and meteorological factors

Dependent variable Lag

Correlation coefficient

AP Mean_T Max_T Min_T RH PR SD

Weekly ILI% 0 −0.195* 0.112* 0.106 0.119* 0.104 0.159* −0.006

1 −0.172* 0.081 0.077 0.086 0.067 0.181* −0.023

2 −0.146* 0.051 0.047 0.055 0.053 0.153* −0.061

3 −0.126* 0.026 0.025 0.028 0.033 0.142* −0.072

4 −0.113* 0.006 0.008 0.005 0.033 0.143* −0.1

Weekly positive rate of Flu-A 0 0.193* −0.225* −0.225* −0.216* −0.051 −0.059 −0.006

1 0.181* −0.221* −0.222* −0.210* −0.06 −0.041 −0.024

2 0.161* −0.204* −0.210* −0.189* −0.05 −0.013 −0.051

3 0.127* −0.173* −0.182* −0.156* 0.002 0.024 −0.103

4 0.096 −0.139* −0.152* −0.120* 0.041 0.038 −0.131

Weekly positive rate of Flu-B 0 0.375* −0.459* −0.465* −0.454* −0.271* −0.206* −0.143*

1 0.427* −0.492* −0.496* −0.486* −0.278* −0.226* −0.142*

2 0.461* −0.516* −0.519* −0.510* −0.291* −0.236* −0.144*

3 0.495* −0.539* −0.538* −0.533* −0.303* −0.256* −0.129*

4 0.509* −0.547* −0.545* −0.541* −0.299* −0.266* −0.136*

*statistically significant at 0.05.
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performance both in the model fitting stage and prospective fore-
casting stage. They were calculated as follows:

R2 =
∑ (ŷi − �y)2∑ (yi − �y)2

MAPE = 1
n

∑n

i=1

|ŷi − yi|
yi

× 100%

where yi means the ith observation, ŷi means the ith predication, �y
means average of observations and n is the number of
observations.

Statistics analysis

Descriptive statistics was used to illustrate the temporal pattern of
ILI% and the influenza virus positive rate. Time series analysis
methods were employed to identify the autoregressive order
[15] of the dependent variables (i.e. ILI%, positive rate of Flu A
and positive rate of Flu B). Cross correlation is a measure of asso-
ciation of a time series with another time series at different lags
[16], which is essentially a univariate correlation method. In
this study, cross correlation was used to determine the lag of cli-
mate variable that was most significantly associated with depend-
ent variables. All the analyses in this study were completed using
R version 3.5.0. Particularly, cross-correlation analyses were com-
pleted using the R package ‘TSA’. RF model fitting and forecasting
were done in the R package‘randomForest’ [17].

Results

General description

More than 2 million ILI cases were reported to CISIS from the
sentinel sites in Jiangsu province during the study period, with
an average weekly ILI of 3.92%. Totally 146 236 throat swabs
were sampled from the ILI cases. Influenza viruses were detected
in 16 197 swabs through real time RT-PCR, reaching a general
positive rate of 11.08%. According to the typing results, Flu-A
and Flu-B accounted for 64.27% and 35.73% of all influenza posi-
tive samples, reaching an average positive rate of 7.12% and
3.96%, respectively. Two peaks were observed in the ILI activity
and the positive rate of Flu-A in each year, one occurred in winter
and the other in summer. While the positive rate of Flu-B just
showed a winter peak in a year (Fig. 1). The features of the
meteorological variables were summarised in Table 1.

Correlation analysis

As shown in Table 2, AP and PR were significantly correlated with
ILI% at lag 0–4. Mean_T and Min_T were also correlated with ILI
% but with no lag effect. Max_T, RH and SD presented no
relationship with ILI%. As to Flu-A, AP showed correlations at
lag 0–3. The three temperature variables presented correlations
at lag 0–4. All the meteorological factors were identified signifi-
cant correlations with Flu-B at lag 0–4. The results of autocorrel-
ation analysis were displayed in Fig. 2. ILI% presented
autocorrelation at lag 1, while both Flu-A and Flu-B at lag 3.

RF model fitting and forecasting

Three RF models with optimum parameters were finally con-
structed to predict ILI activity, Flu-A and Flu-B positive rates in
Jiangsu province, including 13, 23 and 39 predictors, respectively.
The dependent variable of Flu-A had undergone a natural loga-
rithmic transformation before the model fitting. See Table 3.

The performance of the models is summarised in Table 4 and
the predicting results are displayed in Fig. 3. The models for Flu-B
and ILI% presented excellent performance both in model fitting
stage and prospective forecasting stage, with MAPEs less than
10%. The model for Flu-A presented much worse than the other
two, with MAPE up to19.49% in the test set. Nevertheless, the pre-
dicted values matched the real trend very well.

Fig. 2. Partial autocorrelation function of time series ILI percentage, positive rate of
Flu A and positive rate of Flu B.

4 Wendong Liu et al.



Variable importance

In each model, the lagged dependent variable was the most
important of all predictors. The time variable presented as
important in the models for ILI and Flu-A. Most of the meteoro-
logical factors and their lagged terms had the potential to improve
the accuracy of the models to a certain degree, but their effects dif-
fered across the three models. For ILI forecasting, the weekly
MEAN_T, AP and one order lagged AP were more important
than the rest. For Flu-A, the lagged temperature specific variables
were relatively important. With regard to Flu-B, the lagged AP
and MAX_T presented greater effects than the other meteoro-
logical variables to improve the model accuracy. See Fig. 4.

Discussion

Forecasting of influenza activity in human populations is crucial
for influenza prevention and control [4]. Many methods have
been introduced for this purpose. As a conventional univariate
model, ARIMA technique has been commonly used to forecast
seasonal influenza surveillance at national, regional and local
levels [18–20]. ARIMA model is virtually a linear method. It
can achieve good predication when the variation contained in
the data is relatively stable. In practice, however, the long-term

trend and seasonality of influenza activity change over time, so
that the ARIMA model cannot always reach a satisfactory result.

Substantial studies have proposed that influenza activity is
climate-sensitive [21–23]. Climatic factors may influence the
survival and spread of influenza viruses in the environment,
the host susceptibility and exposure probability [24–26]. The
effects of meteorological factors on epidemics of ILI have
attracted considerable interest recently. Sudarat Chadsuthi,
et al. [27] fitted ARIMA model with temperature and RH as cov-
ariates to forecast the incidence of influenza in Thailand.
N’gattia1, et al. [28] also developed ARIMA with meteorological
variable rainfall to forecast influenza transmission. But the pre-
diction accuracy of these models was not good enough and the
climate variables did not clearly optimise the models. In this
study, we employed RF algorithm fitting models to predict influ-
enza activity with meteorological factors in Jiangsu province,
China. In contrast with previous studies, we constructed predict-
ing models not only for ILI but also for the positive rates of
influenza virus (i.e. flu-A and flu-B). All the models performed
very well in our dataset. Based on them, we can comprehensively
and systematically evaluate the influenza activity in the future,
which has significant and practical meaning for influenza pre-
vention and control. Given the good performance of RF in influ-
enza prediction, the models we established could be used for
influenza (sub)type-specific early warning and to evoke early
intervention. The key meteorological factors identified could be
used for publicity, to elevate the general population’s conscious-
ness and engagement in influenza prevention.

Similar to many other members of the machine learning family
such as artificial neural networks, RF model cannot explain the
association between risk factors and influenza activity. But RF
can assess the importance of each variable on the accuracy of pre-
diction [14, 29], which is essential to optimise the model and may
provide clues for the further study of influenza risk factors. In this
study, we found that the lagged dependent variables (i.e. the pro-
portion of ILI in the outpatients and positive rates of flu-A and

Table 3. Predictors in different models

Model lag ILI-P Flu-A Flu-B time AP Mean_T Max_T Min_T RH PR SD

RF-ILI_P 0 √ √ √ √ √ √

1 √ √ √

2 √ √

3 √ √

4 √ √

RF-Flu_A 0 √ √ √ √ √

1 √ √ √ √ √

2 √ √ √ √ √

3 √ √ √ √ √

4 √ √ √

RF-Flu_B 0 √ √ √ √ √ √ √ √

1 √ √ √ √ √ √ √ √

2 √ √ √ √ √ √ √ √

3 √ √ √ √ √ √ √ √

4 √ √ √ √ √ √ √

Table 4. Performance evaluation of different random forest models

Model

R2 MAPE(%)

Train Test Train Test

RF-ILI_P 0.79 0.50 2.48 9.95

RF-Flu_A 0.89 0.0.82 11.24 19.49

RF-Flu_B 0.95 0.80 3.20 8.58
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Fig. 3. Plot of observed and predicted values via different
models.
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flu-B) in the previous weeks were more important than meteoro-
logical factors in the models. It suggests that these models took
advantage of the autocorrelation of the dependent variables. The
influenza activity in Jiangsu province presented obvious seasonality
which is a critical feature to fit predicting model. However, RF is
unable to learn the seasonal patterns because of randomly selecting
samples for each tree. In this study, we introduced a time variable
into the models to fit the seasonal variance of ILI and positive rates
of influenza viruses. The importance analysis shows that it played a
significant role to improve the models. This strategy is worthy of

reference when fitting the similar RF models. Compared with
other multivariate predicting methods [27, 28], RF is not subject
to multicollinearity, mainly due to randomly selecting variables
for each tree in RF [29, 30]. In this study, we selected predictor
variables through cross-correlation analysis. The meteorological
factors and their lagged terms were incorporated into the models
so long as they were identified to be significantly correlated with
the dependent variables. All of them presented some degree of
importance, which suggested that the RF models comprehensively
combined the climatic variables and their hysteresis effects.
Furthermore, the importance of the meteorological factors differed
across the three models, which may suggest that the influence of
meteorological factors differs between ILI, flu-A and flu-B. The
causes of this difference and its practical significance for influenza
surveillance deserve further studies.

In this study, humidity and PR were not recognised as major
meteorological factors related to ILI activity, positive rate of flu
A and B, while the temperature was identified as the main driver.
This is consistent with our previous study [31]. The present study
also indicates that AP plays an important role in the activity of ILI
and flu B. An increased influenza risk associated with rising AP
was also reported in another subtropical region in China, using
distributed lag nonlinear model [32].

Our study suggests that the selected meteorological variables
contributed less to the fluctuations of ILI, flu A and B, compared
with the effect of autocorrelation, which has been shown as the
most important of independent variables. Monamele GC, et al.
also supposed that meteorological parameters could only explain
no more than 30% of the influenza activity variation [33].
Although our constructed RF models showed desirable predictive
ability, especially for ILI and flu B, more meteorological factors,
such as specific humidity and absolute humidity, and population-
specific immunity level [8] are warranted to be evaluated to
improve the prediction of type/subtype-specific activity [34].

Conclusion

RF model is a good method to predict the influenza activity.
Three RF models were constructed to predict the positive rate
of influenza viruses and ILI incidence and performed very well.
The autocorrelation and seasonal variation contained in the
data of the dependent variables are crucial for the prediction
models. Meanwhile, the effects of meteorological factors and
cumulative effects over a period of time were combined to
improve the models. Further researches are warranted to explore
RF model with meteorological factors as well as other variables
and it has the potential to be a useful tool for predicting other
major infectious diseases.
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