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1  | INTRODUC TION

Ever since Julian Huxley introduced the concept of allometry in 
1932, biologists have related one physical trait of an organism to an-
other using power functions. Foresters, for example, quantify forest 

stand wood volume using diameter at breast height (DBH) and ecolo-
gists increasingly apply allometry to calculate shrub biomass (Berner 
et al., 2015; Chojnacky & Milton, 2008; Conti et al., 2019) when es-
timating landscape biomass (Alonzo et al., 2020; Berner et al., 2018). 
Species-specific allometry (Paul et  al.,  2015) is readily available 
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Abstract
We show that aerial tips are self-similar fractals of whole shrubs and present a field 
method that applies this fact to improves accuracy and precision of biomass estimates 
of tall-shrubs, defined here as those with diameter at root collar (DRC) ≥ 2.5 cm. Power 
function allometry of biomass to stem diameter generates a disproportionate predic-
tion error that increases rapidly with diameter. Thus, biomass should be modeled as 
a single measure of stem diameter only if stem diameter is less than a threshold Dmax. 
When stem diameter exceeds Dmax, then the stem internode should be treated as a 
conic frustrum requiring two additional measures: a second, node-adjacent diameter 
and a length. If the second diameter is less than Dmax, then the power function allom-
etry can be applied to the aerial tip; otherwise an additional internode is measured. 
This “two-component” allometry—internodes as frustra and aerial tips as shrubs—can 
reduce estimated biomass error propagated to the plot-level by as much as 50% or 
more where very large shrubs are present Dmax is any diameter such that the ratio of 
single-component to two-component uncertainty exceeds the ratio of two-component 
to single-component measurement time. Guidelines for estimating Dmax based on pilot 
field data are provided. Tall shrubs are increasing in abundance and distribution across 
Arctic, alpine, boreal, and dryland ecosystems. Estimating their biomass is important for 
both ecological studies and carbon accounting. Reducing field-sample prediction error 
increases precision in multi-stage modeling because additional measures efficiently im-
prove plot-level biomass precision, reducing uncertainty for shrub biomass estimates.
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for trees (Woodall et  al.,  2011); however, fewer species-specific 
equations are available for shrubs (Chojnacky & Milton,  2008). 
Because increasing populations of tall shrubs (Figure 1) grow in re-
mote regions, quantifying their abundance relies on remote sensing 
informed by application of allometry to field data, thus leaving abun-
dance estimates sensitive to propagated errors.

Expressed as a power function, biomass-diameter allometry is 
theoretically reasonable if a relative growth increment in a volume-
related measurement, such as wet field-mass M, is proportional to 
a relative growth increment in a linear-related measurement, like 
diameter D. The relationship ΔM∕M = bΔD∕D implies that a sample 
of wet field-mass for individual-i follows ln(Mi) = b ln(Di) + ln(a) + εi, 
where ln(a) is the constant of integration, and 2 < b < 3 captures the 
self-similar, fractal geometry of woody vegetation.

Because biomass is strictly positive, its mean and variance in-
crease together. This nonindependence of point estimate (e.g., mean) 
and uncertainty (e.g., standard error) implies that fitting power func-
tions with log-log plots can help control for heteroscedastic resid-
uals (Kerkhof & Enquist, 2009; Xiao et al., 2011), as can nls() with 
weighted regression (e.g., Berner et al., 2015). In practice, the bio-
mass of a large shrub predicted from its allometry could have orders 
of magnitude more uncertainty than a smaller shrub (Figure 2b). This 
mathematically expanding uncertainty reflects the reality of plant 
ecology and individual plant life-history (Kerkhof & Enquist, 2009). 
The problem is to accurately capture variability in plot-level shrub 
biomass while minimizing uncertainty in individual-plant biomass 
estimates subject to sampling time. The field-sampling method pre-
sented here and shown in Figure 1 offers several advantages. It is 

F I G U R E  1   Two-component sampling 
scheme that increases precision and 
accuracy in shrub biomass allometry. 
(a) Shrubs sampled as internodes and 
aerial tips. (b) Aerial tips are defined as 
those with supra-nodal diameter less 
than a threshold (Dmax), determined as 
a breakpoint for uncertainty in power 
function allometry. Illustration by Julia 
Ditto

(a)

(b)
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independent of curve-fitting approach, reduces uncertainty, and im-
proves accuracy by performing measurements that take advantage 
of the fractal nature of shrub architecture.

Applications of allometry that scale-up from the individual to 
the plot-level and beyond require methods that reduce propagated 
error. As an example, whole-shrub biomass-DRC (“one-component”) 
allometry (Figure  2a, b) constructed from Alnus and Salix shrubs 
with DRC  >  Dmin  =  2.5  cm was applied to 1,430 individual tall 
shrubs measured among 17 circular plots (169 m2) in southcentral 
Alaska. The individual uncertainties were then propagated across 
the wet field-mass estimate for each sample-plot (Figure  2c) by 
Monte Carlo sampling from lognormal distributions and summing 
them (Supporting Information). Assuming independence of biomass 
measures among shrubs in a plot, the plot-level wet field-mass for n 
individual shrubs, each with individual prediction error �i, has uncer-
tainty U =

�

∑n

i=1
�
2
i
, based on the theorem that the variance of any 

sum of independent random variables is the sum of the variances 
(Mendenhall et al., 1981). Thus, applying power function allometry to 
individual shrubs yields plot-level uncertainty dominated by the un-
certainty of large individuals, as indicated by the very strong, signif-
icant correlation between plot-level uncertainty and count of large 
shrubs (Figure 2d). A two-component sampling method reduces the 
plot-level uncertainty by reducing the uncertainty of overly influen-
tial, large shrubs: those with DRC > Dmax. This field protocol mini-
mizes individual shrub uncertainty as measured by the range in the 
95% prediction error (95%PI), while increasing the precision and the 

accuracy of plot-level biomass estimates. In particular, and by exam-
ple, we show a substantial increase in precision over the sample plot 
estimates shown in Figure 2c.

2  | MATERIAL S AND METHODS

Our goal was minimizing uncertainty in biomass estimates given 
power function allometry. Our protocol considers shrubs as “two-
component” structures (Figure 1): stem internodes of length L with 
D > Dmax and terminal aerial shoots (tips) with Dmin ≤ D ≤ Dmax, where 
Dmax is a threshold diameter for treating stem internodes as conic 
frustra and Dmin defines the minimum shrub size (e.g., Dmin = 2.5 cm). 
We initially identify Dmax subjectively in plots of back-transformed re-
siduals versus arithmetic values of D as the diameter where biomass 
variability rapidly expands, then adjust Dmax if the temporal cost of 
multiple measurements exceeds the benefit of increased precision. A 
sketch of how this can be accomplished is presented in the Discussion.

Our allometry example considers only shrub individuals with 
DRC  >  2.5  cm  =  Dmin and includes 134 Alnus and Salix individ-
uals (2.9  ≤  DRC  ≤  40.5  cm; 0.9  ≤  M  ≤  374.1  kg) that we destruc-
tively sampled in southcentral Alaska to derive biomass-diameter 
allometry (Figure  2a, b), shown previously similar for Alnus and 
Salix (Lewis-Clark et  al.,  2018). Among these shrubs, 29 Alnus in-
dividuals were dissected and weighed as terminal aerial tips to in-
vestigate self-similarity. We dissected eight further individuals 

F I G U R E  2   Uncertainty propagated 
from individual to the sample-plot 
using whole-shrub (single-component) 
DRC-based allometry. (a) Log-log based 
allometry of shrub wet field-mass (M) 
on DRC (D) as linear model ln(Mi) = b 
ln(Di) + ln(a) + εi. Dashed lines give 
95% prediction interval (95%PI). (b) 
Unlogged data with allometry and 95%PI, 
highlighting expanding uncertainty 
(dashed lines). (c) Uncertainty of 
individual shrubs propagated to sample-
plot uncertainty for 17 circular 169 m2 
plots (identified as three letter codes, 
where first two letters signify study 
site) in southcentral Alaska. “Plot-level 
uncertainty” defined as range of 95%PI. 
Horizontal line segments connect 
upper (0.975) and lower (0.025) PI 
calculated as quantiles from Monte 
Carlo sampling; they are asymmetric 
about point estimates (vertical lines) due 
to power function allometry. (d) Plot-
level uncertainty plotted against the 
per sample-plot count of large shrubs 
(DRC > 14 cm). Large shrubs increase 
uncertainty in plot-level estimates of 
biomass
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(3.4 ≤ DRC ≤ 36.1 cm; 0.9 ≤ M ≤ 374.1 kg) as internodes and terminal 
aerial tips, each individually weighed and measured.

2.1 | Field algorithm

Given diameter D, single-component allometric equations describe 
woody biomass M as a power function M = aDp, with p > 2; uncer-
tainty also scales as a power function of D, with p > 2. The following 
two-component field-sampling algorithm reduces uncertainty in es-
timated biomass of large (DRC > Dmax) shrubs, where diameter Dmax 
offers the greatest acceptable uncertainty for M = aDp.

Step 1: Identify root collar.
Step 2: Record diameter D1 there.
Step 3: If D1 ≤ Dmax, stop; aerial tips with D ≤ Dmax have accept-

ably low uncertainty. Else if D1  >  Dmax, identify stem internode 
above D1 as a conic frustrum. Record its length L and end diame-
ters D1 > Dmax and D2 (where D2 is measured just below the upper 
node swelling).

Step 4: Return to Step 2 for stems above the node, treating each 
stem diameter as D1.

The individual shrub biomass estimate is the sum of biomass 
estimates for frustra and aerial tips with associated uncertainties. 
The uncertainty in each sample-plot is calculated using Monte Carlo 
sampling of internodes and tips from lognormal distributions with 
parameters estimated from log-log allometry.

Aerial tip allometry Inspection of the 134 shrubs indicated that 
variability in M increased substantially at DRC > 7.5 cm (Figure 2a), 
suggesting Dmax = 7.5 cm. Using 7.5 cm as the threshold diameter, we 
established allometric relationships between DRC ≤ Dmax and M for 
n = 37 individual shrubs; between D ≤ Dmax and M for n = 95 terminal 
aerial tips from large (DRC  >  Dmax); and those two samples taken 
together (n = 132). We also calculated the percent overlap between 
the aerial tip allometric estimates (including prediction error) and 
individual shrub allometric estimates. Allometry was established by 
regressing ln(M) on ln(D), then exponentiating the 95%PI upri and lwri 
bounds of ln(Mi) found with 2.5 ≤ Di ≤ 7.5 cm at intervals of 0.01 cm 
to determine uncertainty.

Stem internode allometry Stem internodes with D > 7.5 cm were 
modeled as regular conic frustra with diameters D1 and D2 and length 
L (Figure 1b), where frustrum volume V = π L (D1

2 + D1 D2 + D2
2)/12. 

We cut, measured, and weighed in the field as wet field-mass 40 
internodes from eight individual alder shrubs of two species (n = 20 
internodes each from A. viridus and A. incana). Internodes varied 
as 2.7  ≤  D  ≤  36.1  cm (mean  =  9.6  cm), 16.5  ≤  L  ≤  224.2  cm, and 
0.2 ≤ M ≤ 9.1 kg (mean = 8.2 kg). We compared these linear regres-
sion wet-density estimates (i.e., the regression coefficient estimates) 
to wet-density directly measured in two field-cut stem pieces with 
known weight and estimated volume as measured by submer-
sion in water (A. incana: 0.74 kg/L = 3.49 kg/4.73 L and A. viridis: 
0.83 kg/L = 2.35 kg/2.84 L). Besides regression of untransformed 
internode variables, we also regressed ln(M) on ln(V), inspecting both 
regressions for heteroscedasticity.

2.2 | Calculating plot-level uncertainty

The normally distributed error term �i (Figure 1) is lognormally dis-
tributed and multiplicative when back-transformed (Kerkhof & 
Enquist, 2009). Prediction errors (PI) in regression combine the re-
gression error of the estimate with the standard error of the residu-
als �3 and—given an independent variable value—are available for 
linear models in the statistical package R (vers. 3.6.2; R Core Team 
2019) as “residual.scale” and “se.fit” using the predict.lm() function. 
For p > 1, the back-transformed 95%PI displays positive skew about 
the expected value Mi = aDi

p and is bound by

Given regressions for internodes, aerial tips, and for whole 
shrubs, we calculated point estimates of wet field-mass M together 
with upper and lower bounds of 95%PI for every shrub piece and 
individual measured in the field among 17 sample-plots (2,019 
pieces of 1,430 individual shrubs). Because the sum of lognor-
mal distributions have no closed-formed distribution (Asmussen 
& Rojas-Nandayapa,  2008), we employed the following Monte 
Carlo algorithm (n = 10,000; described in detail in the Supporting 
Information) to estimate uncertainty for each plot using each sam-
pling method (DRC single-component and two-component as tips + 
internodes):

1. For each shrub or shrub piece in each sample-plot, estimate 
the expectedln(M) and seln(M) using log-log models fit in R using lm(), 
and se.fit = TRUE as arguments to the predict.lm() function.

2. In the rlnorm() function in R, following Bolker (2008) set

with

for all tips and all internodes (and shrubs from one-component model), 
then randomly sample from the lognormal distributions n times and 
sum to get n Monte Carlo estimates of total sample-plot biomass.

3. Find the middle 95% quantile of the n Monte Carlo samples 
as a 95%CI of the estimate using the quantile() function in R with 
p = c(0.025,0.975).

3  | RESULTS

3.1 | Aerial tip allometry

Tall shrubs appear to be self-similar because the parts and whole 
share similar allometry (Figure 3). 95%PI for individual alder shrubs 

lwri = exp

[

a − t(n−2,0.975)

√

residual. scale2 + se. fit2
]

Db

i
,

upri = exp

[

a + t(n−2,0.025)

√

residual. scale2 + se. fit2
]

Db

i
.

meanbiomass = expectedln(M) −−se2
ln (M )

∕2

sdbiomass = seln(M)
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with DRC ≤ 7.5 cm nearly overlapped completely (99%) those of aerial 
tips from alders with DRC > 7.5 cm, suggesting that one regression is 
sufficient to describe all shrub tips with D ≤ 7.5 cm, whether rooted 
or not (Figure 3ab). While smaller aerial tips tended to be somewhat 
heavier than rooted plants of the same diameter, the predicted dif-
ference for fixed diameter was always less than 0.3 kg across the 
interval 2.5 ≤ D ≤ 7.5 cm. The ln(M) on ln(D) regression for combined 
aerial tips and whole plants with DRC ≤ 10.2 cm was equivalent to 
M = 0.07 D2.437 (R2 = 0.80, n = 133), similar to the whole shrub-only 
allometry of M = 0.07 D2.414 (R2 = 0.92, n = 134) for individuals with 
2.5 ≤ DRC ≤ 40.5 cm (Figure 2b).

3.2 | Stem internode allometry

Wet field-mass of alder internodes was well described by internode 
size as a frustrum volume using simple linear regression (Figure 3c). 
For Alnus viridis, R2 = 0.97 (n = 20 stems) with a wet-density estimate 
of 0.84  ±  0.03 g/cm3 (estimate  ±  se). The directly measured wet-
density (0.83  g/cm3  =  wet field-mass/volume) was less than one-
half a standard error of the regression coefficient from the slope 
estimate. The wet field-mass of Alnus incana was also well fit by 
frustrum volume (R2 = 0.96, n = 20 stems); the slope of the regres-
sion 0.77 ± 0.04 g/cm3 compared favorably to the directly measured 
wet-density (0.74 g/cm3); the latter was less than one standard error 
from the point estimate of the slope. Nevertheless, residuals in these 
regressions visually appeared heteroscedastic in diagnostic plots.

Because log-transformation of the variables brought about ho-
moscedasticity in residuals, and the difference in wood wet-density 
between the two alder species was not significant at the 0.05 level, 

we regressed ln(M) against ln(V) ignoring species  (Supporting 
Information). The slope of this log-log linear regression was es-
sentially equal to one (p = 1.0007, se = 0.028), suggesting a linear 
relationship through the origin. Taking the intercept (a = −0.0906, 
se = 0.057) and exponentiating produced a 95%CI for wet-density of 
the stem wood as 0.81 to 1.02 kg/L. We used the log-log allometric 
version of internodes in estimating wet field-mass.

3.3 | Individual plant-level uncertainty

Uncertainty—defined as range in 95%PI found with Monte Carlo 
sampling for individual shrub biomass using single-component allom-
etry (DRC only) was on average double that using two-component 
(tip  +  internode) allometry when comparing the eight shrubs of 
known biomass with measured internodes (average calculated expo-
nentiated mean difference of paired log-uncertainties; t = 3.4, df = 7, 
p =.006). Individual plant wet field-mass point estimates from the 
two models differed by only about 10% on average [geometric mean 
of ratios = 1.11; two-tailed paired samples t-test of ln(wet field-mass) 
t = 1.69, df = 7, p =.14], as would be expected given that the indi-
vidual plants were included in constructing both model approaches.

3.4 | Plot-level uncertainty

At the plot-level, the single-component uncertainties (Figure 4b) 
were on average 39% more than two-component uncertainties and 
significantly so (one-tailed paired samples t-test of ln(uncertainty): 
t  =  4.07, p  =.0004, df  =  16). Point estimates of total shrub wet 

F I G U R E  3   Allometry of two-component model of shrub biomass. (a) Log of wet field-mass plotted against diameter for 37 whole shrubs 
and 95 aerial tips from three taxa (2.5 ≤ D ≤ 7.5 cm). Dashed lines indicate 95%PI for aerial tips (blue) and whole plants (red). Solid lines give 
least squares regression in log-log space (aerial tips in blue and whole plants in red). (b) Same data and allometry as in (a) but untransformed. 
(c) Wet field-mass of alder shrub internodes regressed against internode volume as a frustrum for 40 internodes from eight individual shrubs 
of two species. The solid lines give best least squares fit for each species (blue: A. viridus; red: A. incana) with dashed lines the 95%PI
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field-mass in sample plots (Figure  4a) were generally smaller in 
single-component than in two-component models (paired sam-
ples t-test of logged point estimates t = −2.5, p  =.023, df  =  16; 
Figure 4a).

Overall, for individual shrubs with DRC  >  Dmax the single-
component uncertainty was halved by the two-component method 
and accuracy increased. At the plot-level, we found that among 1,430 
individual Salix and Alnus shrubs (2.5 ≤ DRC ≤ 30.4 cm) measured in 
17 plots (169m2), the uncertainty in total sample-plot biomass es-
timation using the two-component method was 40% less than the 
single-component method; this difference depended on the count 
of shrubs with DRC > Dmax.

4  | DISCUSSION

Increases in shrubs in arctic and dryland ecosystems are well-
documented but poorly quantified as measured change in biomass. 
Part of the reason is a lack of allometry. Because these landscapes 
of increasing tall shrubs are often vast and remote, quantifying 
abundance there relies on remote sensing informed by fieldwork 
at the plot-level (Greaves et al. 2016, Berner et  al.,  2018; Alonzo 
et  al.,  2020) that applies allometry. Scaling from the individual to 
the landscape and beyond requires plant-level measures that pre-
cisely estimate plot-level biomass to inform landscape-level models 
with error propagation. The propagation of error in remote-sensing 
informed biomass estimates is an increasingly important considera-
tion. That importance motivates this study.

We found three results pertinent to the problem of reducing 
uncertainty in estimates of tall shrub biomass based on allometric 
power functions of stem diameter D. First, uncertainty of allometry 

for aerial stem tips (see Figure 1) overlapped the allometry for rooted 
shrubs. This result of self-similarity—that one allometric equation 
is sufficient (Figure 2a, b) for a given taxon's parts and whole—is a 
remarkable and useful application of fractal geometry, because it 
means that parts of shrubs can be measured for biomass using whole 
shrub allometry. One reason that field practitioners should take note 
of this result is that large shrubs have the greatest uncertainty both 
for statistical and for life-history reasons: older shrubs accumulate 
damage as well as opportunistic growth. These large shrubs con-
tribute to the greatest uncertainty in plot-level biomass estimates 
due to the nonlinear nature of allometry. By applying allometry to 
the components of large shrubs, particularly their internode stems 
which show far less uncertainty than tips, whole-shrub uncertainty 
is substantially reduced.

A second valuable result for those of us interested in estimat-
ing tall shrub biomass is that stem internode biomass fits well a 
simple conic frustral volume using log-log linear regression with 
a regresion slope of one. This result has the benefit of passing 
through the origin as a linear function with log-normally distrib-
uted residuals. Supporting the use of frustra as geometric models 
of stem internodes (Figure 2c),  independently measured field-wet 
wood density was statistically indistinguishable from the regres-
sion coefficient of field-mass on frustrum volume. The calculation 
of a frustum volume is simple and requires only three measure-
ments. We found that measuring a frustrum's three dimensions 
took roughly four times as long as measuring a single diameter; 
however, it can greatly reduce the uncertainty in shrub biomass 
estimates, particularly when taper is rapid.

Finally, we note that the application of the two-component 
method of measuring shrubs as internodes plus terminal aerial 
tips can reduce whole-shrub uncertainty by more than 50% over 

F I G U R E  4   Plot-level uncertainty using single (DRC only) and two-component (tip + internode) allometry propagated through shrub 
individuals to the sample-plot level. (a) Comparison of the two methods' plot-level estimates including single-component estimates shown in 
Figure 2 (c). Orange vertical ticks give point estimates of summed tall shrub wet field-mass from single-component allometry. Vertical black 
ticks give sum from two-component allometry (frustra + aerial tips). Horizontal lines give 95%PI. (b) Plot-level uncertainty in shrub wet field-
mass as difference between upper and lower 95%PI boundaries. Each bullet represents a plot with two wet field-mass estimates: single- and 
two-component. Single-component uncertainties are generally greater than or equal to two-component allometry uncertainties. Dotted line 
has slope of one and passes through origin

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

0 0.5 1 1.5 2 2.5 3

HF1
PH1
HF2
HF5
HF4
PH4
PH3
HP3
PH5
HP5
HF3
PH2
PH6
HP2
CC1
HP1
HP4

Plots

Total shrub biomass (wet Mg)

Sample−plot estimates

(a)

|
Single−component  estimate

sum with 95%PI

|

Two−component estimate
sum with 95%PI

�

�

�
�

�

� �

�

�

�

�

�

�

�

�

�

�

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Two−component uncertainty (wet kg)

S
in

gl
e−

co
m

po
ne

nt
 u

nc
er

ta
in

ty
 (w

et
 k

g)

Comparing uncertainty

(b)



4872  |     DIAL et al.

single-component estimates and reduce plot uncertainty by 40% 
(Figure  3). The reduction increases with abundance of large di-
ameter shrubs in field plots. Of course, this reduction can be an 
even greater reduction by  choosing Dmax near the minimum size of 
shrub stems; however, the smaller the cutoff, the more stems per 
shrub must be measured, increasing sampling time.

4.1 | Finding Dmax and the cost to apply it

The cutoff diameter measure Dmax is a critical value best found 
from (1) project-specific allometry (allometry is notoriously re-
gional; Chojnacky & Milton, 2008); (2) an estimate of the distribu-
tion of stem diameters; and (3) empirical knowledge of sampling 
times. The value of Dmax may also be obvious from a visual plot of 
the absolute value of residuals (i.e., variability = |residuals|) versus 
DRC as a diameter near where variability in biomass increases dra-
matically. It is convenient to choose an integer value to increase 
speed of measurement in the field (e.g., here Dmax =  7.5  cm =  3 
inches). To justify taking more measurements, the increase in pre-
cision of allometric prediction must outweigh the cost of increased 
measurement time.

Given the allometry shown in Figure  2b, the prediction error 
(defined as the difference between upper prediction and lower pre-
diction values) scales approximately as D2.4 [as found by regressing 
log(prediction error) on log(diameter)], showing clearly that as Dmax 
approaches zero, so does the uncertainty in biomass estimate. A 
more rigorous approach than visual inspection of the raw data, is 
to choose an initial value for Dmax from the untransformed allom-
etry and apply it in the field in pilot sampling, so as to estimate the 
time required to make single component measurements versus 
two-component ones. The ratio of time taken for two component 
measures to single component measures can then be compared to 
the ratio of expected single-component prediction error to two-
component prediction errors using Dmax.

To calculate the expected prediction error (E[PE]) across all di-
ameters requires both allometry of prediction error (e.g., here PE = k 
D2.4, where k  =  exp(−2.02) is the scaling factor) and a probability 
density function of stem diameters, pdf(D), such that the expected 
prediction error for a single-component method of a single randomly 
sampled shrub from pdf(D) is

where the integral is taken over all diameters possibly measured. For 
the two-component method (ignoring the frustum error which is much 
smaller than the tip error), the expected prediction error of a single 
shrub measurement is

If the ratio of expected prediction error for a single-component 
to prediction error for two-component (i.e., E [PE1 ]∕E [PE2 ]

) is greater than or equal to the ratio of expected time for two-
component measure to time for single-component measure (i.e., 
(E
[

t2
]

+ t1 )∕t1), then applying a two-component strategy with Dmax 
improves precision by a factor more than or equal to its cost in time: 
E[PE1 ]∕E[PE2 ] ≥ (E [ t2 ] + t1 )∕t1.

4.2 | Worked example

We provide an example of calculating times per measurement from 
actual field data with Dmax = 10 cm for alders among n = 14 field 
plots (7.25  m radius) sampled during one day on Alaska's Kenai 
Peninsula. Using measurements of 1,286 tips and 87 frustra over a 
total of 14.7 person-hours spent in within field plots, we applied a 
multiple linear regression as total time per plot = t0 + t1 * (count of 
single-component measures per plot) +  t2 * (count of two-component 
measure per plot) + ε(0,σ), finding R2 = 0.96, ε ~ N(0,543), and t1 = 26 s 
as mean time of single component measure and t2 = 111 s as mean time 
of two-component measure. To calculate the expected time given the 
stem diameter distribution for the two-component measure, E[t2], 
requires knowing the proportion of stems with diameters >Dmax 
=10 cm (call this proportion PD>Dmax) to calculate E[t2] = t2 PD>Dmax 
to which the single-component value t1 must also be added, because 
given a stem it is first measured to determine if it must be sampled as 
a frustrum. Hence the addition of t1 to t2 weighted by the probability 
that its diameter is greater than Dmax.

To approximate the integrals given by Equations (1) and (2), we 
constructed a kernel density of the distribution of stem diameters 
from one day of sampling (n = 1,286 stems) using function den-
sity() with its defaults in base R; the output of density() includes 
the random variable as x (here diameter) and the density value 
as y. We approximated the pdf in Equation (1) using the default 
n  =  512 diameters for x (range: 0.85–18.5  cm) estimated by den-
sity(), calculated the prediction error at each xi using the allometry 
PE1 = exp (−2.02)D2.41, then multiplied each prediction error PE1 by 
the density estimate yi at each xi, summed and multiplied by Δx = 
(18.5–0.85)/512 to arrive at

expected error per measurement. Using Dmax = 10 cm = x266 and ap-
proximating Equation (2) as

Their ratio is E [PE1 ]∕E [PE2 ] = 1.4.
Weighting the time of sampling stems requiring the two-

component method (111  s) by the proportion of stems with 
D ≥ Dmax = 10 cm (here, PD>Dmax = 0.09) gives E[t2] = (111 s) × (0.0

(1)E
[

PE1
]

=

largestdiameter

∫
smallestdiameter

pdf (x) kx2.4dx

(2)E
[

PE2
]

=

Dmax

∫
smallestdiameter

pdf (x) kx2.4dx.

E [PE1 ] =

512
∑

i=1

yiexp (−2.02) x2.41
i

x = 14.6kg.

E [PE2 ] =

266
∑

i=1

yiexp (−2.02) x2.41
i

x = 10.4kg.
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9) = 10.0 s and adding t1 = 26 s gives 36 s. The ratio of expected 
time for a two-component measure to a single-component measure 
is 36/26 = 1.38 ≤ 1.4 = E

[

PE1
]

∕E
[

PE2
]

, suggesting that Dmax is well-
chosen, because the cost in time of a two-component measure is 
less than or equal to its benefit of reduction in uncertainty.

In summary, to rigorously calculate an optimal Dmax requires al-
lometry with known prediction errors, some prior knowledge of the 
distribution of stem diameters, and an estimate of the time required 
for both single-component and two-component measurements.
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