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Abstract
Background: Glioblastoma multiforme  (GBM) is the most common and lethal 
primary malignancy of the central nervous system (CNS). Despite the proven benefit 
of surgical resection and aggressive treatment with chemo‑ and radiotherapy, the 
prognosis remains very poor. Recent advances of our understanding of the biology 
and pathophysiology of GBM have allowed the development of a wide array of novel 
therapeutic approaches, which have been developed. These novel approaches 
include molecularly targeted therapies, immunotherapies, and gene therapy.
Methods: We offer a brief review of the current standard of care, and a survey of 
novel therapeutic approaches for treatment of GBM.
Results: Despite promising results in preclinical trials, many of these therapies 
have demonstrated limited therapeutic efficacy in human clinical trials. Thus, 
although survival of patients with GBM continues to slowly improve, treatment of 
GBM remains extremely challenging.
Conclusion: Continued research and development of targeted therapies, based on 
a detailed understanding of molecular pathogenesis can reasonably be expected 
to yield improved outcomes for patients with GBM.
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BIOLOGY OF GLIOBLASTOMA MULTIFORME

Glioblastoma multiforme  (GBM), a World Health 
Organization  (WHO) grade  IV glioma, is the most 
common and lethal primary malignancy of the central 
nervous system  (CNS). More than 10,000 new cases are 
reported annually in the United States.[39,270] Despite 
aggressive treatment including surgical resection, chemo‑ 
and radiotherapy, median survival time for patients with 
GBM is only 14.6  months.[237] GBM is an incurable 
disease that almost invariably leads to neurological 
demise and death. Due to its high degree of invasiveness, 

radical resection of the primary tumor mass is not 
curative. Infiltrating tumor cells invariably remain within 
the surrounding brain, leading to disease progression or 
recurrence, either locally or distant from the primary 
tumor.[264]

Experimental evidence  supports the hypothesis that 
GBM contains a subpopulation of highly tumorigenic 
cells, glioblastoma stem cells  (GSCs), from which 
recurrent GBM is thought to derive.[10,32,59,266] GSCs have 
the capacity to self‑renew, differentiate into multiple 
lineages, and for tumorigenesis[32,33,127,170,175,200,225,226,230,231,267] 
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Unlike the bulk of the rapidly dividing tumor cells, GSCs 
are thought to be relatively quiescent, rendering them 
resistant to conventional chemo‑  and radiotherapy.[32] 
Failure of conventional treatments combined with its 
poor prognosis highlights the need for novel approaches 
for GBM that are targeted at residual tumor cells in order 
to prevent recurrence.

Primary versus secondary GBM
GBM can be classified as primary or secondary. Primary 
GBM occurs de novo; without evidence of a less malignant 
precursor, whereas secondary GBM develops from an 
initially low‑grade diffuse astrocytoma  (WHO grade  II) 
or anaplastic astrocytoma (WHO grade III). The majority 
of GBMs  (~90%) are primary.[160] Patients with primary 
GBM tend to be older  (mean age  =  55  years) than 
patients with secondary GBM  (mean age  =  40  years). 
Secondary GBM is associated with better prognosis 
and increased overall survival time compared with 
primary GBM. Although largely indistinguishable based 
upon histopathology, primary and secondary GBMs 
evolve from different genetic precursors and harbor 
distinct genetic alterations.[268] Genetic alterations more 
typical for primary GBM are epidermal growth factor 
receptor  (EGFR) overexpression, PTEN mutations, 
and loss of chromosome 10.[75,159,161,258] Whereas genetic 
alterations more commonly seen in secondary GBM 
include isocitrate dehydrogenase‑1  (IDH1) mutations, 
TP53 mutations, and 19q loss.[7,77,118,155,159‑161,268,280] 
Although different gene expression patterns in primary 
and secondary GBM were identified, characterization 
of the IDH1 mutation has allowed for reliable 
molecular differentiation of primary from secondary 
GBM.[9,158,160,269,280]

Prior to the discovery of IDH1 mutation in secondary 
GBM, primary and secondary GBM were distinguished 
based upon clinical findings. The diagnosis of primary 
GBM was made in patients without radiologic or 
histologic evidence of a less malignant precursor, whereas 
a diagnosis of secondary GBM was made in patients 
with preexisting low‑grade astrocytoma or evidence of 
a less malignant precursor either radiographically or 
histologically.[160] In 2008, it was reported that IDH1 
mutations occur in a disproportionately large portion of 
younger patients and in the majority of patients with 
secondary GBM.[164] Additionally, IDH1 mutations appear 
to be associated with better prognosis and increase in 
overall survival.[160] Interestingly, IDH1 mutations are 
also found in greater than 80% of diffuse astrocytoma 
and anaplastic astrocytomas, which are precursors of 
secondary GBM. In subsequent studies of primary and 
secondary GBM, IDH1 mutations were found in greater 
than 80% of secondary GBM and less than 5% of primary 
GBM.[9,158,269,280] Thus, IDH1 mutations are a reliable, 
objective molecular marker for secondary GBM over 
clinical and pathological criteria.[158,160]

GBM subtypes
Targeting the underlying genetic alterations leading to 
GBM is critical to develop effective treatment strategies. 
Although GBM is a highly heterogeneous tumor, high 
dimensional genomic profiling has allowed GBM to be 
categorized into four subtypes based upon characteristic 
genetic alterations and distinct molecular profiles. In 
order to better understand the pathogenesis of GBM, high 
dimensional genomic profiling has been used to identify 
genetic abnormalities driving GBM tumorigenesis. 
Using gene expression‑based molecular classification of 
GBM that integrates multidimensional genomic data 
to establish patterns of aberrant gene expression and 
copy number alterations seen in GBM, four subtypes of 
GBM were identified. These GBM subtypes are classical, 
mesenchymal, proneural, and neural.[15,20,25,154,169,238,258]

Each subtype harbors distinct genetic alterations and 
expression profiles.[20,258] The classical subtype is strongly 
enriched in the gene expression pattern observed in 
astrocytes.[23,258] It is characterized by aberrant EGFR 
activity, leading to EGFR overexpression.[25,169,258] 
Additionally, loss of chromosome 10 is frequently 
observed in the classical subtype. Mutations in TP53, 
NF1, and IDH1 are uncommonly found in the classical 
subtype.[258] The mesenchymal subtype is also enriched 
in the gene expression pattern seen in astrocytes, but 
in addition, expresses mesenchymal markers as well as 
microglia markers.[23,258] It is characterized by alterations 
in the gene for NF1. PTEN deletions, which lead to 
alterations in the PI3K/AKT/mTOR intracellular signaling 
pathways, are also commonly seen in the mesenchymal 
subtype. EGFR overexpression is less commonly seen in 
the mesenchymal subtype compared with other GBM 
subtypes.[258] The proneural subtype is enriched in 
proneural genes as well as the gene expression patterns 
seen in oligodendrocytes.[23,258] It is characterized by 
alterations in TP53, platelet‑derived growth factor 
receptor  (PDGFR), and IDH1.[7,77,118,258,268,280] Although 
overexpression of PDGFR is observed in many GBMs, 
focal amplification of PDGFR with resultantly high 
levels of PDGFR expression is most frequently seen in 
the proneural subtype. The proneural subtype is also 
associated with a younger age at diagnosis.[258] Neural 
subtype gene expression pattern is the most similar to 
that of normal brain tissue. It is strongly enriched in the 
gene expression pattern seen in neurons, and expresses 
both astrocytic and oligodendrocytic markers.[23,258]

GBM without IDH1 mutation has been identified as 
classical, mesenchymal, proneural, and neural. The 
majority of GBM with IDH1 mutation have the proneural 
gene expression pattern; however, only 30% of GBM 
with proneural gene expression patterns have the IDH1 
mutation.[160] These findings support the hypothesis 
that secondary GBM are a more homogeneous group 
characterized by an IDH1 mutation and a proneural 
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pattern of gene expression, whereas primary GBM are a 
more heterogeneous group with a diverse array genetic 
mutations and aberrant gene expression profiles.[160]

Overall, the proneural subtype is diagnosed at a younger 
age than other subtypes.[258] This is as expected given that 
secondary GBM, almost always the proneural subtype, 
is generally diagnosed in younger patients.[160,169] The 
proneural subtype is associated with better prognosis 
and increased survival compared with the other 
subtypes.[169,258] Interestingly, however, aggressive treatment 
with chemo‑and radiotherapy has been shown to 
significantly decrease mortality in patients with classical 
or mesenchymal subtypes, but has not been shown to 
significantly alter mortality in the proneural subtypes.[258] 
The discovery that GBM consists of various subtypes with 
different genetic alterations and gene expression patterns 
suggests that no single therapy will be efficacious across all 
subtypes. Due to the heterogeneity of GBM, it is likely that 
future therapies will be tailored to target the underlying 
molecular abnormalities seen in individual patients.

CURRENT STANDARD OF CARE AND 
TREATMENT

The current standard of care for patients with GBM 
includes maximal safe resection, followed by concurrent 
radiation therapy  (RT) to the resection cavity and 
chemotherapy  (with temozolomide  (TMZ), followed by 
adjuvant TMZ).[39,236]  [Table  1]. Surgical resection alone 
results in a median survival of approximately 6  months. 
Combined, surgical resection and RT extend median 
survival to 12.1  months. Addition of TMZ further 
extends the median survival to 14.6 months.[237]

Surgical resection
Surgery remains an important component in the 
treatment of GBM. It allows for a histologic confirmation 
of the diagnosis as well as cytoreduction. Surgery may 
also serve a therapeutic role by reducing the intracranial 
pressure, and depending on the location of the tumor, 
occasionally leads to recovery of some neurological 
function. The principal contraindications to resective 
surgery are poor performance status  (Karnofsky 
performance scale  [KPS] <70), advanced age, eloquent 
location or extensive bihemispheric involvement.

The goal of surgery is to achieve gross total resection 
of the contrast enhancing component of the tumor, 
without compromising neurological function.[168] Gross 
total resection may not be possible based on anatomic 
structures invaded by the tumor. Advances in surgical 
imaging techniques, such as intraoperative magnetic 
resonance imaging (MRI), diffusion tensor imaging, awake 
craniotomy, cortical mapping, stereotactic guidance, and 
fluorescent‑guided resection, have facilitated delineation 
of tumor borders and can help optimize maximal safe 
surgical resection[4,97,168]  [Table  2]. Fluorescent‑guided 

resection utilizes a pharmacologic agent that localizes 
to tumor but not the surrounding normal brain and 
fluoresces when exposed to light of a specific wavelength. 
This fluorescence can be used to guide tumor resection 
by identifying tumor tissue that may otherwise appear 
normal.[4,97,171,232] Studies comparing fluorescence‑guided 
resection with standard white light resection have shown 
that patients undergoing fluorescence‑guided resection 
were more likely to have a gross total resection and were 
more likely to be progression free at 6  months.[97,171,232] 
Although maximal surgical resection remains important, 
ultimately GBM does not have a surgical “answer”.

Chemo‑and radiotherapy
The combination of RT plus TMZ is the most efficacious 
adjuvant therapy to prolong survival after primary 
resection. Treatment following surgery usually consists of 
6  weeks of RT to the surgical cavity and TMZ, followed 
by 6 adjuvant cycles of TMZ.[234,237]

The current standard of care for RT in GBM is focal, 
fractionated external beam radiation therapy  (EBRT) 
to the surgical resection cavity and to a 2  cm margin 
of surrounding brain tissue.[1] Usually, 60  Gy of RT is 
delivered in fractions of 2 Gy over 6 weeks.[128,222] Ionizing 
radiation induces single‑strand and double‑strand breaks in 
the DNA of proliferating cells. Other modes of delivering 
RT have being investigated, including brachytherapy, but 
none have been proven more effective than the current 
standard approach.[39]

TMZ, an oral alkylating chemotherapeutic agent, causes 
DNA damage and triggers a cascade of events leading 
to tumor cell apoptosis.[47] Recently, TMZ was added 
to the standard of care for GBM treatment. Previously, 
chemotherapy had no demonstrable clinical benefit, and 
RT alone remained the standard of care after surgical 
resection.[4] In 2005, a clinical trial demonstrated that 
concurrent RT and TMZ followed by adjuvant TMZ 
significantly prolonged the median survival more than 
that of radiation alone (14.6 months versus 12.1 months; 
P  <  0.001). At the 5‑year analysis of this study, more 
patients treated with TMZ were alive  (9.8% versus 1.9%; 
P < 0.001).[237] These findings established the therapeutic 

Table 1: Current standard of care
Maximal safe surgical resection (Consider microscope, stereotaxy, 
intraoperative MRI, mapping, fluorescence)
Radiation therapy (fractionated external beam with 2 cm margin)
Temozolomide
MRI: Magnetic resonance imaging

Table 2: Surgical aids
Intraoperative imaging
Stereotactic surgery
Fluorescent‑guided resection
Cortical grids/mapping
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benefit of TMZ in combination with RT, establishing 
the so-called "Stupp regimen" standard of care for GBM 
treatment.[236,237] Despite these advances, the median 
progression‑free survival time is only 7  months.[39] 
When given in combination with RT, patients receive 
75 mg/m2/day of TMZ for 6 weeks. For adjuvant therapy 
following completion of RT, patients receive 150  mg/
m2/day of TMZ for 5  days every 28  days for at least 
6 cycles.[237]

As mentioned earlier, TMZ derives its therapeutic benefit 
from adding a methyl group to purine bases of DNA, 
which leads to DNA damage and triggers a cascade of 
events that leads to tumor cell apoptosis.[47,283] The primary 
cytotoxic target of TMZ is O6‑methylguanine. The 
methyl group added to O6‑methylguanine can be removed 
by O6‑methylguanine methyltransferase  (MGMT), which 
is a DNA repair protein that functions to remove methyl 
groups from the O6 position of guanine. Removal of 
this methyl group confers resistance of tumor cells to 
TMZ and other alkylating chemotherapeutic agents by 
protecting cells from their DNA‑damaging effects.[108,259,283] 
In some patients, MGMT expression has been decreased 
or silenced by methylation of the promoter regions of 
the MGMT gene, preventing it from removing methyl 
groups from the O6 position of guanine.[259] Thus, the 
methylation status of the promoter region of the MGMT 
gene is one of the main mechanisms contributing to TMZ 
sensitivity or resistance in patients with GBM.[34,94,140,253,259] 
Patients with an unmethylated MGMT are much less 
responsive to TMZ, whereas MGMT methylation confers 
sensitivity to TMZ in patients with GBM.[60,81,108,283]

Implantation of carmustine wafers into the resection 
cavity is another Food and Drug Administration  (FDA) 
approved treatment of GBM.[272] Similar to TMZ, 
carmustine is a DNA alkylating agent.[47] Biodegradable 
wafers impregnated with carmustine line the tumor 
resection cavity, allowing for delivery of chemotherapy. 
Carmustine is released into the surrounding brain tissue 
immediately after tumor resection and its effects last 
for several weeks.[4] In clinical trials, carmustine wafers 
used in combination with radiation and TMZ have been 
shown to modestly prolong survival in subsets of patients. 
However, because there are complications associated with 
the use of wafers, including infection, swelling, need for 
removal, and impairment of wound healing,[88,141,272] they 
are not used routinely at most centers.

THERAPIES UNDER INVESTIGATION

MOLECULARLY TARGETED THERAPIES

Genetically, GBM is a highly heterogeneous tumor 
harboring multiple recurrent and nonrecurrent genetic 
alterations.[8] Within the same tumor, cytogenetically 

related and unrelated clones coexist.[8] Due to recent 
progress in genomics, several aberrantly activated 
pathways and mutated genes have been implicated 
in the pathogenesis and malignant progression 
of GBM.[8,212,255] These findings have inspired the 
investigation of molecularly targeted therapies designed 
to target tumor‑specific recurrent genetic alterations as 
a novel approach to treating GBM.[8,255] Many mutations 
occur in receptor tyrosine kinases  (RTKs) or components 
of their downstream signaling pathways, making them 
potential targets for drug development and evaluation 
in clinical trials.[165,212,255] The majority of growth factor 
receptors are transmembrane glycoprotein RTKs with 
extracellular ligand‑binding domains and intracellular 
kinase domains.[8,212] Activation of these RTKs triggers a 
cascade of downstream signaling events, and inappropriate 
activation of these signaling pathways is thought to drive 
tumor growth, survival, invasion into normal brain, and 
secretion of angiogenic factors[212]  [Figure  1]. Thus, 
inhibition of these pathways and their downstream 
intracellular signaling components is the goal of 
molecularly targeted approaches to treatment of GBM. 
See Table 3 for a list of these various pathways.

Molecularly targeted therapies can broadly be divided 
into small molecule inhibitors and monoclonal 
antibodies. Small molecule inhibitors are nonpolymeric, 
organic compounds able to cross cell membranes and 
target specific intracellular constituents.[47] Many small 
molecule inhibitors are tyrosine kinase inhibitors  (TKIs), 
which function by selectively targeting the intracellular 
kinase domain of RTKs, blocking receptor activation of 

Figure 1: Activation of RTKs triggers a cascade of downstream 
signaling events, and inappropriate activation of these pathways 
drives tumor growth, survival, invasion into normal brain, and 
secretion of angiogenic factors. The hexagons labeled with TK 
represent the intracellular component of the RTK, and the TKI is 
shown inhibiting the TK activity. MABs are too large to cross cell 
membranes, so they are used to target cell surface proteins and 
other extracellular peptides.[59-61] The MAB is shown inhibiting the 
ligand from binding and activating the extracellular ligand-binding 
domain of the RTK



Surgical Neurology International 2014, 5:64	 http://www.surgicalneurologyint.com/content/5/1/64

downstream signaling pathways. Single kinase inhibitors 
have activity against only one RTK, whereas as multikinase 
inhibitors have activity against several different RTKs. 
Conversely, monoclonal antibodies, too large to cross 
cell membranes, are used to target cell surface proteins 
and other extracellular peptides.[56,111,241] In clinical trials, 
targeted agents are generally studied as single agent 
therapies in recurrent GBM or used in combination with 
RT and TMZ for treatment of newly diagnosed GBM.[47] 
Overall, the results of multiple clinical trials with various 
molecularly targeted agents have demonstrated only 
modest therapeutic benefit, as discussed below.

Inhibition of growth factor pathways
Amplification of EGFR signaling is one of the most 
common genetic alterations seen in GBM.[8,168] Over 60% 
of GBM overexpress EGFR, and in about half of these, 
overexpression is the result of a mutant form of the 
receptor, EGFRvIII, which has a constitutively active 
kinase domain.[8,167,168,212,255] EGFR overexpression 
promotes tumor growth, survival, angiogenesis, and 
invasion.[147,220] EGFR is also overexpressed in other 
cancers, and a variety of small molecule TKIs and some 
monoclonal antibodies have been investigated for their 
potential to block aberrant EGFR signaling.[8]

Gefitinib and erlotinib are oral small molecule 
EGFR TKIs that have been extensively studied in 
preclinical and clinical trials of GBM. Binding to 
intracellular kinase domain of EGFR, they inhibit 
the activation of its downstream signaling pathways. 
In preclinical models of GBM, gefitinib and erlotinib 
have demonstrated antiproliferative and antiinvasive 
effects, potent inhibition of EGFR, and prolonged 
survival. Unfortunately, in clinical trials, they have 
shown limited therapeutic efficacy.[8,166] Both gefitinib 
and erlotinib have been studied as monotherapy in 
recurrent GBM and in combination with RT and TMZ 
for newly diagnosed GBM, but neither agent provided 
any clinical benefit.[21,166,176,177,201,212,248] Several additional 
clinical trials using erlotinib in combination with 
radiation and TMZ have shown that erlotinib enhances 

tumor cell sensitivity to radiation.[8,47] Other studies, 
however, have not shown the same results.[47] Overall, 
small molecule EGFR TKIs have provided minimal to no 
benefit in clinical outcomes.[85,176,177,188,189,201,252]

Cetuximab is a chimeric murine‑human monoclonal 
antibody that blocks activation of EGFR by its 
ligands.[165] Cetuximab binding also leads to internalization 
and downregulation of EGFR, and it has been suggested 
that cetuximab may have antibody dependent cytotoxic 
effects on the GBM cells it binds.[76] In preclinical models 
of GBM, cetuximab decreased growth and prolonged 
survival. Unfortunately, in clinical trials, cetuximab has 
shown limited therapeutic benefit and has not improved 
patient outcomes.[42,65,76,89,90,157]

Overexpression of PDGFR signaling is another frequent 
alteration found in GBM. PDGF stimulates tumor growth 
through autocrine signaling, promoting angiogenesis 
through paracrine effects on adjacent endothelial cells.[162] 
Imatinib is a small molecule multikinase inhibitor that 
binds PDGFR as well as several other RTKs. Similar 
to EGDF TKIs, imatinib blocks the PDGFR kinase 
domain to prevent activation of its downstream signaling 
pathways. Unfortunately, similar to EGFR inhibitors, 
clinical trials with imatinib demonstrated a lack of 
therapeutic efficacy and minimal clinical benefit.[192,271] 
Initially, these results were attributed to the presence 
of drug efflux pumps at the blood-brain barrier actively 
removing imatinib from the brain.[165] Thus, subsequent 
clinical trials administering hydroxyurea with imatinib 
were conducted. Results of these trials, however, 
showed that addition of hydroxyurea did not improve 
outcomes.[61,193,195]

Inhibition of angiogenic pathways
GBM is a highly vascularized tumor characterized by 
extensive angiogenesis.[168,199] Vascular endothelial growth 
factor  (VEGF), a critical mediator of angiogenesis, is 
highly overexpressed in GBM.[31,62,68,69,165,184] VEGF has 
been correlated with clinical outcomes, including time 
to recurrence and survival.[214,264] Several small molecule 
inhibitors and monoclonal antibodies have been 
developed to block this signaling.[255] Antiangiogenic 
therapies are currently the most advanced group of 
targeted therapies for GBM, and there have been 
multiple clinical trials demonstrating their therapeutic 
efficacy.[168,184]

Bevacizumab  (trade name Avastin) is a humanized 
monoclonal antibody that binds and neutralizes 
the VEGF ligand, preventing activation of its 
receptors.[56,121,168,180,241,260] In clinical trials of recurrent 
GBM, bevacizumab demonstrated clinical benefit and 
improved progression‑free survival.[72,168,260‑262] In 2009, 
based on the results of two clinical trials, bevacizumab 
was approved by the FDA for use as monotherapy in 
recurrent GBM. Bevacizumab is thought to improve 

Table 3: Molecularly targeted therapy
Inhibitors of growth factor pathways

EGFR
PDGFR

Inhibitors of angiogenesis pathways
VEGF
Integrins

Inhibition of intracellular signaling pathways
PI3K/AKT/mTOR
Ras/Raf/MAPK

EGFR: Epidermal growth factor receptor, PDGFR: Platelet-derived growth factor 
receptor, VEGF: Vascular endothelial growth factor, PI3K: Phosphatidylinositol 3-kinase, 
AKT: Protein kinase-B, mTOR: Mammalian inhibitor of rapamycin, 
MAPK: Mitogen-activated protein kinase



Surgical Neurology International 2014, 5:64	 http://www.surgicalneurologyint.com/content/5/1/64

outcomes by reducing angiogenesis, decreasing growth 
of tumor cells expressing VEGF, disrupting the 
microvasculature of the tumor leading to increased 
tumor hypoxia, and increasing tumor cell sensitivity 
to RT.[24,67,105,184] It is currently undergoing clinical trials 
for use in combination with radiation and TMZ for 
treatment of newly diagnosed GBM. To date, the results 
of these clinical trials have shown some promising results, 
but additional trials are also currently underway to 
confirm clinical benefit.[35,112,168,262,263] Results of a phase 
III trial recently presented at American Society of Clinical 
Oncology  (ASCO) demonstrated that the addition of 
bevacizumab to RT and TMZ does not improve overall 
survival in patients with newly diagnosed GBM over that 
of RT and TMZ alone. The addition of bevacizumab 
was shown to slightly improve progression‑free survival 
in patients with newly diagnosed GBM; however, this 
did not reach statistical significance. Compared with 
RT and TMZ alone, RT and TMZ in combination 
with bevacizumab was associated with higher rates of 
toxicities. Although full interpretation of the long‑term 
results of this study are ongoing, current results suggest 
that addition of bevacizumab to RT and TMZ for 
treatment of patient with newly diagnosed GBM does 
not improve prognosis.[82,184]

Cedarinib, sunitinib, and vatalanib are multikinase TKIs 
with predominant VEGF inhibition that have been used 
to block angiogenesis in GBM. Cedarinib and sunitinib 
are inhibitors of VEGF, PDGFR, and c‑kit. Despite 
encouraging results in preclinical trials, clinical trials 
with these agents have demonstrated limited therapeutic 
benefit, and in some trials, were associated with high 
toxicity rates.[12,110,156,194,198] In clinical trials, similar to 
cedarinib and sunitinib, vatalanib, an oral inhibitor of 
VEGF and PDGFR, provided no clinical benefit.[194]

Cilengitide is another novel antiangiogenic therapy being 
studied in GBM. It is a cyclized pentapeptide small 
molecule inhibitor that selectively blocks activation 
of the ανβ3 and ανβ5 integrins. The integrins are 
a family of cell adhesion molecule transmembrane 
glycoprotein receptors that mediate cell-matrix and 
cell-cell interactions. In GBM, the ανβ3 and ανβ5 
integrins are widely overexpressed in GBM cells and 
tumor vasculature, and in addition to VEGF, they 
are key mediators of angiogenesis, tumor growth, and 
metastasis.[13,213,224] Several clinical trials have shown that 
cilengitide is well tolerated with minimal toxicity, and 
ongoing clinical trials are investigating its therapeutic 
efficacy and clinical benefit.[196,197,213,235] The results of 
a phase III trial recently presented at ASCO showed 
that the addition of cilengitide to RT and TMZ for 
treatment of newly diagnosed GBM does not improve 
progression‑free survival or overall survival compared with 
RT and TMZ alone. In this trial, cilengitide was well 
tolerated and its safety profile was confirmed. To date, 

results of this trial suggest that the addition of cilengitide 
to RT and TMZ for treatment of newly diagnosed GBM 
does not improve prognosis.[233]

Inhibition of intracellular signaling pathways
Downstream signaling of many RTKs, including EGFR 
and PDGFR, lead to activation of the PI3K/AKT/mTOR 
and RAS/RAF/MAPK secondary messenger systems. 
Dysregulation of these intracellular signaling pathways 
often occurs in GBM.[8,39] PTEN and NFI are endogenous 
inhibitors of PI3K and RAS, and these inhibitors are often 
lost or mutated in GBM.[47,142] Other signaling molecules 
in the PI3K and RAS pathways are also commonly 
mutated in GBM. These alterations further contribute 
to inappropriate P13K and RAS activity in GBM. The 
identification of these alterations, however, allows for the 
investigation of other approaches besides inhibition of 
RTK to interfere with aberrant signaling pathway activity.

PI3K signals through activation of AKT and subsequently 
mTOR. Perifosine is a small molecule inhibitor of AKT 
that has been shown in preclinical trials to reduce 
signaling through the PI3K pathway. Currently, clinical 
trials with perifosine are being conducted to evaluate its 
clinical efficacy.[39,172] Rapamycin, temsirolimus, sirolimus, 
and everolimus are all small molecule inhibitors of 
mTOR. In clinical trials, these agents have been well 
tolerated, but they have demonstrated limited therapeutic 
efficacy.[41,47,78,179,218,265] RAS signals through activation 
of RAF and MAPK proteins. The rate‑limiting step in 
RAS signaling is farnesylation. Accordingly, inhibitors of 
farnesyl transferase, including tipifarnib and lonafarnib, 
have been investigated in GBM.[40,218,223] Preclinical 
studies have shown reduced signaling through the RAS 
pathway, but in clinical trials, they have not provided 
benefit.[40,47,218] Downstream of RAS, RAF signaling occurs 
through activation of its kinase domains. Sorafenib is a 
multikinase TKI of RAF, VEGF, PDGFR, and several 
other kinases. In clinical trials, sorafenib was been well 
tolerated, but only had limited therapeutic benefit.[165,198]

Multi‑targeted kinase inhibitors and combination 
therapy
Clinical trials of small molecule TKIs have demonstrated 
limited efficacy in patients with GBM. This is likely 
the result, at least in part, of multiple mutations and 
pathways driving tumor growth. Due to the intratumor 
heterogeneity, lack of a dominant single oncogenic 
“driver” mutation and redundancy of signaling pathways 
in cancer cells has become increasingly clear that 
targeting a single receptor or signaling pathway is unlikely 
to succeed in GBM.[212] Therefore, several strategies have 
been developed to improve the therapeutic efficacy of 
targeted molecular therapies. These strategies include 
using combinations of multiple single‑targeted agents 
and designing small molecule compounds that target 
multiple kinases simultaneously. These strategies have 
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the potential for greater efficacy by inhibiting multiple 
pathways, but they also have an increased risk of toxicity 
from systemic inhibition.[39] Several multi‑target agents 
have been described in the above sections based on 
the primary pathway they target. Several clinical trials 
have evaluated the use of multi‑kinase inhibitors and 
combinations of molecularly target agents. Unfortunately, 
while toxicities often increased substantially, no 
“combination therapy” has demonstrated superior clinical 
benefit over single agents.[12,47,61,110,156,192‑195,198,212,271]

IMMUNOTHERAPY

Immunotherapy attempts to harness the immune system 
to selectively destroy tumor cells. It includes both 
passive and active strategies.[256] Passive immunotherapy 
uses antibodies, immune cells, or other components of 
the immune system to target the tumor cells.[39,148,149] 
This approach does not require activation of the 
patient’s native immune response; rather, immune cells 
are activated ex vivo and then reinjected.[241] Passive 
immunotherapy involves use of monoclonal antibodies, 
cytokine‑mediated therapies, and adoptive cell transfer 
approaches.[254] Monoclonal antibodies were discussed 
earlier and will be further discussed later in the “Gene 
Therapy” section that follows. Active immunotherapy 
attempts to stimulate the patient’s native immune 
response against the tumor. Active immunotherapy 
includes peptide‑based and cell‑based approaches. 
These therapies are often referred to as cancer vaccines. 
Currently, most immunologic therapies available are 
antibody‑based therapies, some of which were discussed 
earlier. There are, however, several cancer vaccines being 
evaluated as treatment for GBM in clinical trials.[241] 
See Table  4 for a list of the various active and passive 
immunotherapeutic approaches.

The immune system can be divided into the innate and 
the adaptive immune systems.[111] The innate immune 
system consists of macrophages, monocytes, neutrophils, 
basophils, eosinophils, natural killer  (NK) cells, and 
complement. The cells of the innate immune response are 
able to recognize pathogen‑associated molecular patterns 
and defend against the foreign invaders.[241] The adaptive 
immune system consists of T and B lymphocytes and 
antigen presenting cells  (APCs), and in contrast to the 
innate immune system, the cells of the adaptive immune 

system must be activated by antigens. T  lymphocytes 
can be divided into cytotoxic and helper. Activation of 
cytotoxic T lymphocytes leads to cell‑mediated killing, 
whereas activation of T helper lymphocytes leads to 
release of cytokines and recruitment of more immune 
cells. Activated B lymphocytes are responsible for 
production of antibodies and antibody‑mediated cell 
cytotoxicity. APCs internalize antigen by phagocytosis or 
endocytosis, then present a fragment to bind and activate 
T cells. Dendritic cells  (DCs) are the most active APCs, 
and they are often referred to as professional APCs.[254]

Passive immunotherapy: Adoptive cell transfer
Adoptive cell transfer uses stimulated immune effector 
cells to generate cell‑based cytotoxic responses to attack 
GBM cells.[256,275] In this approach, autologous immune 
cells are activated ex vivo and readministered.[63,168,241,256] 
The cells can be given systemically or intratumorally. 
The two main immune cells used in adoptive cell 
transfer are lymphocyte‑activated killer  (LAK) cells and 
cytotoxic T lymphocytes  (CTLs).[63,168,241] LAK cells are 
usually obtained by culture of autologous peripheral 
lymphocytes in the presence of interleukin‑2  (IL‑2) to 
promote maturation and activation, yielding a polyclonal 
population of both T and NK cells.[241] Although these 
cells yield a cytotoxic immune reaction, it is nonspecific, 
and not exclusively directed at tumor cells.[63,275] CTLs 
are obtained from peripheral blood mononuclear cells or 
tumor‑infiltrating lymphocytes that are stimulated ex vivo 
with autologous tumor cells, generating activated CTLs 
with specificity to the tumor.[63,168,241]

Some of the earliest attempts at immunotherapy 
for treatment of GBM involved LAK cells and/or 
CTLs.[241] Although results were mixed, CTLs appear 
to be better tolerated than LAK cells, likely because of 
their high specificity of targeting tumor cells. Overall, 
results of clinical trials with LAK cells and CTLs have 
demonstrated minimal therapeutic efficacy and have not 
had an impact on survival.[11,17,18,57,58,92,93,96,104,117,123,133,143,168,1

73,174,183,228,246,247,256,274,275]

Active immunotherapy: Cancer vaccines
Active immunotherapy is similar in concept to vaccination. 
It boosts the patient’s native immune response against 
the tumor cells by priming it with antigen exposure.[1,278] 
Several sources of GBM‑related antigen may be used in 
active immunotherapy, which include intact tumor cells, 
tumor cell lysate, tumor‑derived peptides and mRNA, 
and synthetic peptides.[256] Active immunotherapy 
approaches include peptide‑based therapies and cell‑based 
therapies[1,255,278]  [Figure  2]. In peptide‑based therapies, 
GBM‑related antigens are administered to the patient 
as a vaccine to stimulate an immune response.[39,278] 
The antigens used for cancer vaccines are usually small 
peptides, around nine amino acids in length, which 
are capable of activating cytotoxic T lymphocytes. 
Rindopepimut is an injectable peptide vaccine designed to 

Table 4: Immunotherapy
Passive immunotherapy

Monoclonal antibodies
Cytokine‑mediated therapies
Adoptive cell transfer

Active immunotherapy
Peptide‑based approaches
Cell‑based approaches
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stimulate an immune response against a specific EGFRvIII 
antigen.[54,264] EGFRvIII variant is a constitutively active, 
mutant form of EGFR expressed in GBM.[37] A segment 
of this mutant peptide has been used as a vaccine to 
generate EGFRvIII‑specific antibodies.[37,95,208] In clinical 
trials of patients with GBM expressing EGFRvIII, 
rindopepimut has shown some promising results, but 
clinical trials have not been completed.[208‑210]

In cell‑based therapies, APCs are activated with 
GBM‑related antigens, rather than the antigen itself, 
to prime the immune system and then injected into 
the patients to generate an immune response.[38,168,275,278] 
As DCs are professional APCs, they are typically 
used.[254,256,278] The DCs are typically collected from 
the patient’s autologous peripheral blood mononuclear 
cells, cultured in the presence of growth factors and 
matured, activated ex vivo with tumor‑related peptides, 
and then readministered to generate an antitumor 
response.[38,39,63,136,275,276,278] These activated cells can 
be delivered intradermally, to the lymph nodes or 
intratumorally.[241] Several clinical trials of cell‑based 
therapies are underway. Overall, DC vaccines appear to 
be well tolerated, but have not yet resulted in significant 
therapeutic benefit.[5,6,27,30,48,115,132,136,181,278,279,281,282]

GENE THERAPY

Gene therapy for the treatment of cancer involves the 
delivery of genetic material, which includes transgenes, 
toxins, and viruses, into tumor cells for therapeutic 
purposes. The genetic material is typically packaged 
within a vector for delivery into cells. See Table  5 for a 
list of various gene therapy approaches. There are a variety 
of different vectors, which include both viral and nonviral 
vectors. Some gene therapies have shown promising results 
in preclinical trials, but clinical trials have been unable 
to demonstrate any significant therapeutic efficacy.[151,242] 

Lack of clinical benefit is, at least in part, likely due to the 
low transfection efficiency of most viral vectors.

Vectors
Vectors are classified as viral or nonviral. Viral vectors 
were the first and most commonly used vectors in gene 
therapy for GBM. Viral vector‑based delivery systems 
take advantage of the ability of viruses to deliver their 
genetic information into the host cell.[151] As part of their 
normal life cycle, viruses bind host cells and, through 
transduction, introduce their genetic material. For use 
as vectors in gene therapy, viruses undergo modification; 
components of their viral genomes are removed and 
replaced with the therapeutic genetic material to be 
delivered to the target cell. Depending on which parts of 
the viral genome are removed, viruses can be engineered 
into replication‑competent or replication‑deficient vectors. 
To generate replication‑deficient vectors, the coding 
regions of the viral genome required for viral replication 
are removed.[45,151] Thus, replication‑deficient vectors 
can transduce their host cell, but are unable to replicate 
within their host. Conversely, replication‑competent 
vectors contain coding regions needed for viral replication, 
enabling them to continue replication and propagate viral 
infection to surrounding cells.[151]

Vectors ideally transduce tumor cells while sparing 
normal cells in order to avoid toxicity to the 
surrounding brain.[45,122,168] Different viruses have 
been used as vectors, each with their own advantages 

Figure 2: In peptide-based therapies, GBM-related antigens are administered to the patient as a vaccine to stimulate an immune 
response. Once administered, DCs, which are professional APCs, internalize these GBM-related antigens and present them to the immune 
effector cells to stimulate an immune response. In cell-based therapies, APCs are activated with GBM-related antigens, rather than the 
antigen itself, to prime the immune system and then injected into the patients to generate an immune response

Table 5: Gene therapy
Conditionally cytotoxic (enzyme-prodrug activating therapy; suicide 
gene therapy)
Directly cytotoxic (targeted toxin therapy)
Immunostimulatory
Oncolytic virotherapy
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and disadvantages. The viral vectors available for 
gene therapy can be divided into integrating and 
nonintegrating vectors. Vectors based on retroviruses and 
lentiviruses integrate their viral genetic material into the 
chromosomal DNA of the host cell. Vectors based on 
adenoviruses and herpes simplex viruses type  1  (HSV‑1) 
are able to deliver their genetic material into the nucleus 
of their host cell, but they are unable to integrate it into 
the host cell DNA. Retroviruses and adenoviruses are 
among the earliest and most widely studied viral vectors 
for use in gene therapy.[29,249,273]

Retroviruses are a large family of enveloped RNA 
viruses.[119] They contain a reverse transcriptase that, 
following transduction, allows them to integrate their 
genetic material in the host DNA.[119] Retroviruses 
selectively infect actively dividing cells, which allows 
them to target rapidly dividing GBM cells while sparing 
normal brain cells.[129] A major drawback is that they may 
be unable to target the relatively quiescent GSCs that 
may be responsible for tumor resistance to treatment 
and recurrence.[45] Another drawback of retroviruses 
is that they are unstable and difficult to produce at 
high titers. In order to increase viral titers within the 
brain, virus‑producing cells  (VPCs), which continuously 
produce replication‑deficient retrovirus, are often injected 
into the brain instead of direct viral injection.[187,190] 
VPCs, however, have a short lifespan and a limited 
ability to migrate within the brain.[187] Lentiviruses, a 
subpopulation of retroviruses, are able to infect dividing 
as well as nondividing cells, allowing them to overcome 
the drawbacks of traditional retroviruses.[22,119,129]

Adenoviruses, large double‑stranded DNA viruses, are 
unlike retroviruses and lentiviruses. They are unable 
to integrate their DNA into the host genome following 
transduction.[45,119,151] They are, however, able to infect 

dividing and quiescent cells.[64] They express their 
transgenes at high levels and can be produced at high 
titers. Herpes simplex virus‑1  (HSV1), a member of 
the herpesvirus family, is also a large, nonintegrating, 
double‑stranded DNA virus. It has neurotropic properties 
that enable it to efficiently infect both quiescent and 
proliferative cells of the CNS.[43,64,163] HSV1 has one 
of the highest vector packing capacities for delivery of 
genetic material into cells, and this capacity can be 
utilized for simultaneous delivery of multiple genes with 
one vector.[64,102,103,126]

In addition to viruses, stem cells have been explored 
as vectors for delivery of gene therapies in GBM. The 
three types of stem cells studied as vectors in GBM 
are neural, embryonic, and mesenchymal.[242] Stem cell 
vectors appear promising because of inherent tumor 
trophic properties, which may enhance delivery of 
genetic material to tumor cells and increase therapeutic 
efficacy.[2,3,114,122,242,284] Nanoparticles have also been 
explored as vectors for delivery of gene therapies in GBM. 
Liposomes are the most widely used nanoparticle vectors. 
These vectors act by delivering genes to a targeted site 
based upon their size, charge, and high surface to volume 
ratio, which provides a powerful source for diffusion.[242]

Conditionally cytotoxic gene therapy
Conditionally cytotoxic gene therapy, also referred to 
as enzyme‑prodrug activating therapy or suicide gene 
therapy, is the most commonly used gene therapy 
approach in GBM.[242] In conditionally cytotoxic 
approaches, the transgene for a noncytotoxic enzyme 
is delivered into tumor cells, and this enzyme remains 
noncytotoxic until the administration of a noncytotoxic 
prodrug. Upon prodrug administration, the enzyme 
converts the noncytotoxic prodrug into a toxic metabolite 
that induces tumor cell death[242,255]  [Figure  3]. For 

Figure 3: This figure shows conditionally cytotoxic gene therapy, also referred to as enzyme-prodrug activating therapy or suicide gene 
therapy, which is the most commonly used gene therapy. In conditionally cytotoxic approaches, as described in the text, the transgene for 
a noncytotoxic enzyme is delivered into tumor cells using a vector, and this enzyme remains noncytotoxic until the administration of a 
noncytotoxic prodrug. Upon prodrug administration, the enzyme converts the noncytotoxic prodrug into a toxic metabolite that induces 
tumor cell death
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enzyme‑prodrug activating therapy to be successful, the 
enzyme transgene must be delivered exclusively into 
tumor cells, and its enzymatic activity must be high 
enough to kill tumor cells without causing toxicity to 
surrounding normal cells or inducing a systemic immune 
response.[122] In most enzyme‑prodrug therapies, there 
is a significant bystander effect. This occurs when the 
cytotoxic metabolite is transmitted, via gap junctions 
or by diffusing through extracellular space, to cells that 
were not originally transduced with the enzyme.[28] Since 
expression of the enzyme gene will not occur in all tumor 
cells, this bystander effect is important in amplifying the 
cytotoxicity of the enzyme‑prodrug therapy.[144]

In GBM, the most commonly studied enzyme/prodrug 
combination is the herpes simplex virus‑1 thymidine 
kinase (HSV1‑TK)/ganciclovir (GCV) system.[242] HSV1‑TK 
is a thymidine kinase that converts the prodrug GCV 
into a toxic DNA analog that integrates into replicating 
DNA triggering tumor cell death.[14,83,255] In clinical 
trials of HSV1‑TK/GCV for GBM, replication‑deficient 
retroviruses and replication‑deficient adenoviruses have 
been used to successfully deliver the HSV1‑TK transgene 
into the tumor cavity.[99,122,151,242] As retroviruses can be 
unstable and difficult to produce at high titers, trials 
with retroviral vectors typically involve implantation 
of VPCs producing retroviruses expressing HSV1‑TK 
into the tumor resection cavity to increase titers. Once 
implanted, these cells produce retroviruses expressing the 
HSV1‑TK transgene, which diffuse into the surrounding 
brain tissue to infect tumor cells. Adenoviruses, in 
contrast to retroviruses, can be produced at high titers. 
Thus, trials with adenoviral vectors usually involve direct 
injection of virus expressing the HSV1‑TK transgene into 
the surgical resection cavity. Compared with retroviruses, 
adenoviruses have demonstrated higher gene transfer 
efficiency into GBM cells.[211] Overall, numerous clinical 
trials using either retroviral or adenoviral vectors have 
shown that HSV1‑TK/GCV therapy is well tolerated, but 
its therapeutic efficacy has been limited.[70,80,87,98,100,101,134,135

,178,185,186,210,211,221,229,242,245]

Directly cytotoxic gene therapy
Directly cytotoxic gene therapy, otherwise known 
as targeted toxin therapy, utilizes surface molecules 
overexpressed in GBM to target toxins directly into 
tumor cells to cause tumor cell death. This can be 
accomplished through viral vector‑mediated delivery of 
transgenes for highly toxic proteins or with recombinant 
molecules: Immunotoxins. Immunotoxins consist of a 
tumor‑specific monoclonal antibody or ligand conjugated 
to a toxin.[63,148,255,264] The antibody or ligand component 
binds selectively to surface molecules overexpressed in 
GBM and induces internalization of the immunotoxin. 
Upon internalization, the toxin triggers a cascade of 
intracellular events that lead to tumor cell apoptosis. 

Commonly used toxins are Pseudomonas exotoxin  (PE) 
and Diptheria exotoxin  (DT).[264] Immunotoxins target 
surface molecules overexpressed in GBM: EGFR, 
interleukin‑13  (IL‑13), urokinase‑type plasminogen 
activator  (uPA), and transferrin.[16,19,46,50,52,63,106,109,137,150,202,277

] Despite promising results in preclinical studies, clinical 
trials of immunotoxins have not shown significant clinical 
benefit.[124,125,131,153,182,191,203‑207,243,251]

One of the most studied immunotoxons in GBM is 
IL‑13‑PE, a recombinant protein of the cytokine IL‑13 
fused with the PE toxin. In normal cells, IL‑13 binds 
to a heterodimeric receptor complex composed of 
IL‑13 and IL‑4 receptors. The majority of GBM cells, 
however, overexpress a mutant form of the IL‑13 receptor, 
IL‑13Rα2.[28] Unlike the normal receptor for IL‑13, the 
mutant IL‑13Rα2 form binds IL‑13 in the absence of 
IL‑4, and it binds IL‑13 with higher affinity.[49‑53,145,146] 
As with other immunotoxins, results of clinical trials 
with IL‑13‑PE have shown no improvement in patient 
outcomes.[124,153,264]

Monoclonal antibodies can be conjugated to radionuclides, 
small molecule inhibitors, enzymes that require prodrug 
administration for activation, and chemotherapeutic agents 
for antibody‑mediated targeted delivery into tumor cells.[239] 
Radioimmunoconjugates, which consist of tumor‑specific 
monoclonal antibodies conjugated to radioactive iodine, 
are in essence radiolabeled antibodies that allow targeted 
destruction of GBM cells through radiation‑mediated 
DNA damage. Radioimmunoconjugates also target surface 
molecules overexpressed in GBM, including EGFR and 
integrin ανβ3. Similar to immunotoxins, clinical trials of 
radioimmunoconjugates have not demonstrated clinical 
benefits.[130,257]

Immunostimulatory gene therapy
Immunomodulatory gene therapy uses the genetic 
material of cytokines, lymphocytes, or other immune 
modulators to enhance the host immune response to the 
tumor. Immunomodulatory approaches are based on the 
expectation that antitumor immune responses, activated 
by tumor‑specific antigen expression, would effectively 
eliminate tumor cells. Unfortunately, often tumors develop 
mechanisms to evade these immune responses, creating 
an immune suppressive tumor microenvironment.[28,122] 
Thus, the goal of immunostimulatory gene therapy is 
to improve the immune response against the tumor. 
Several immunostimulatory approaches have been tested 
in GBM, including cytokine‑mediated gene therapy and 
immune cell recruitment strategies.

Cytokines are a group of immune effector molecules that 
play a critical role in initiating, supporting, and inhibiting 
specific immune pathways. Cytokine‑mediated gene 
therapy aims to use these cytokines to facilitate immune 
surveillance and stimulate cell‑mediated immune responses 
against tumor cells. It involves specific delivery of transgenes 
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for various immunostimulatory agents into tumor cells.[151] 
Tumor cell expression of the gene is used to induce more 
potent immune responses to the tumor cell.[242]

Immune cell recruitment strategies attempt to recruit 
DCs or other APCs into the tumor microenvironment 
in order to prime an immune response against GBM. 
One strategy to do this combines cytokine‑mediated 
gene therapy with cytotoxic gene therapy. This 
approach involves delivery of fms‑like tyrosine kinase‑3 
ligand  (Flt3L), a cytokine that stimulates recruitment 
of DCs, as well as HSV1‑TK into the surgical resection 
cavity.[122] Following administration of the GCV, the dying 
tumor cells release the peptides that will activate the 
DCs that were recruited to the tumor microenvironment 
by Flt3L.[26,44,242] This approach has mainly been 
studied in preclinical trials and has demonstrated an 
immune response with tumor regression and enhanced 
survival.[26,44] Clinical trials evaluating this approach in 
patients with GBM have recently begun.[44,122,242]

Oncolytic virotherapy
In oncolytic virotherapy, unlike in other approaches, 
viral toxicity is directly responsible for tumor cell death. 
Oncolytic viral vectors are engineered as conditionally 
replicating viruses that specifically infect and replicate 
within tumor cells, while sparing the surrounding normal 
brain.[242] Oncolytic virotherapy takes advantage of the 
innate ability of lytic viruses to lyse and kill their host 
cells following infection.[122,151,255] Upon lysis, virions 
spread to infect the surrounding tumor cells, propagating 
their toxicity[45,242]  [Figure  4]. In order to be safe and 
effective, oncolytic viral vector replication and lytic 

destruction must be limited to tumor cells only, while 
being relatively avirulent in normal brain cells.[45,151] 
This can be accomplished by attenuating the virus to 
allow restriction of its replication to rapidly dividing 
cells, permitting them to infect and lyse tumor cells 
but not normal, nonreplicating brain cells. Additional 
molecular strategies used to accomplish this include 
deletion of components of the viral genome necessary 
for viral replication that are not expressed in normal 
cells but aberrantly expressed in cancer cells, insertion 
of promoter sequences into the viral genome that drive 
the expression of replication genes under the control 
of unique transcription factors overexpressed in cancer 
cells, and engineering viral capsid proteins that use 
unique molecular targeting to selectively transduce 
cancer cells.[151] Conditionally replicating HSV1 and 
adenoviruses vectors are the most commonly studied 
oncolytic viruses in clinical trials of GBM; however, other 
oncolytic viruses, such as reovirus, measles virus, and 
Newcastle disease virus, are also being investigated as 
therapeutic options for GBM.[28,71,151,152]

The first oncolytic virus tested in GBM was conditionally 
replicating HSV1.[84,242] HSV is a neurotropic virus; hence, 
it is critical that it is attenuated such that it only infects 
tumor cells in order to prevent toxicity to surrounding 
normal brain cells. Since it was first studied, HSV has 
been modified in different ways to achieve an adequate 
safety profile.[242] G207 is one of the most widely studied 
oncolytic HSV vector. It has been genetically engineered 
to replicate only within rapidly dividing cells.[28] Its 
HSV1‑TK gene has been left intact, which allows oncolytic 
virotherapy with G207 to be combined with GCV to 
further increase its cytotoxic effects.[122] In clinical trials, 
G207 was able to infect and replicate within tumor cells, 
but it was unable to kill tumor cells efficiently. Oncolytic 
HSV vectors genetically engineered to encode transgenes 
for cytotoxic or immunostumulatory proteins are also 
being explored.[86,240] Overall, clinical trials with G207 
and other oncolytic HSV vectors have shown high safety 
profiles, but they have demonstrated limited therapeutic 
efficacy.[138,139,244]

Conditionally replicating adenoviruses have also been 
studied.[242] Adenoviruses have been engineered to 
specifically replicate and lyse tumor cells in several 
different ways.[122] An advantage of adenoviruses to HSV 
oncolytic viruses is that they are naturally nonneurotropic, 
which enhances their safety profile. ONYX‑015 is an 
adenovirus that has been modified to only replicate in 
cells with a p53 mutation.[36,79,219,255] Ad5‑Delta is another 
adenovirus that only replicates in cells with defective 
retinoblastoma function.[2,3,73,74,79,250] Clinical trials using 
conditionally replicating adenoviruses have just begun, 
but early results indicate a favorable safety profile.[36]

A major drawback of oncolytic viruses is the host 
immune response, which limits their ability to spread 

Figure 4: This figure shows conditionally cytotoxic gene therapy, 
also referred to as enzyme-prodrug activating therapy or suicide 
gene therapy, which is the most commonly used gene therapy. In 
conditionally cytotoxic approaches, as described in the text, the 
transgene for a noncytotoxic enzyme is delivered into tumor 
cells using a vector, and this enzyme remains noncytotoxic until 
the administration of a noncytotoxic prodrug. Upon prodrug 
administration, the enzyme converts the noncytotoxic prodrug 
into a toxic metabolite that induces tumor cell death
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to surrounding cells and reduces their transduction 
efficiency. Currently, direct delivery of oncolytic virus 
to the tumor is the only method that has been used in 
clinical trials. Preclinical trials are investigating novel 
delivery of these viruses into the bloodstream, which 
include the use of neural and mesenchymal stem cells as 
vectors.[55,66,120]

OTHER NOVEL THERAPIES

A variety of other novel approaches for the treatment of 
GBM are currently being investigated. The NovoTTF‑100A 
is a device that uses alternating electric fields to 
disrupt cell division, and it is currently being studied 
as a treatment option for  GBM.[116] The use of thermal 
lasers to denature tumor tissues is another area being 
investigated.[39] Laser interstitial thermal therapy  (LITT) 
is a minimally invasive thermoablative procedure that 
uses a laser to create low‑powered thermal energy that 
heats and destroys tumor cells.[91,227] LITT has been used 
for several decades for the treatment of GBM and other 
tumors; however, its use has been limited due to several 
technical limitations, mainly difficulty in regulating the 
dose of LITT delivered to individual patients.[107,113,215‑217,227] 
In order to overcome these technical limitations, the 
NeuroBlate System (Monteris Medical, Inc.) was developed 
with technical advances, such as real‑time MRI‑guided 
thermography to facilitate detection of thermal damage 
to tissue, that allow for safer and more precise delivery of 
LITT for treatment of GBM. Recently, there have been 
several Phase I clinical trials done to evaluate the safety 
of the NeuroBlate System.[91,227] Results of these trials 
have demonstrated that the NeuroBlate System LITT has 
a favorable safety profile in patients with GBM; however, 
additional studies assessing clinical efficacy and outcomes 
still need to be conducted.[91,227]

CONCLUSION

GBM is the most common and lethal primary malignancy 
of the CNS. Even with surgical resection and aggressive 
treatment with chemo‑and radiotherapy, the prognosis 
remains very poor. Due to continued advancements, 
the understanding of the complex biology of GBM and 
its pathogenesis, a wide variety of novel therapeutic 
approaches have been developed and are currently 
under study as potential treatments for GBM. Despite 
promising results in preclinical trials, many of these 
therapies have provided limited or no therapeutic 
efficacy in human clinical trials. Thus, although survival 
of patients with GBM continues to slowly improve, 
treatment of GBM remains extremely challenging. 
Continued research and development of new molecular 
targeted and immunotherapeutic approaches, based on 
a detailed understanding of molecular pathogenesis, can 
reasonably be expected to lead to increased survival and 
more favorable prognosis of patients with GBM.
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