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Abstract
For severely paralyzed people, Brain- Computer Interfaces (BCIs) can potentially replace 
lost motor output and provide a brain- based control signal for augmentative and alterna-
tive communication devices or neuroprosthetics. Many BCIs focus on neuronal signals 
acquired from the hand area of the sensorimotor cortex, employing changes in the pat-
terns of neuronal firing or spectral power associated with one or more types of hand 
movement. Hand and finger movement can be described by two groups of movement 
features, namely kinematics (spatial and motion aspects) and kinetics (muscles and 
forces). Despite extensive primate and human research, it is not fully understood how 
these features are represented in the SMC and how they lead to the appropriate move-
ment. Yet, the available information may provide insight into which features are most 
suitable for BCI control. To that purpose, the current paper provides an in- depth review 
on the movement features encoded in the SMC. Even though there is no consensus on 
how exactly the SMC generates movement, we conclude that some parameters are well 
represented in the SMC and can be accurately used for BCI control with discrete as well 
as continuous feedback. However, the vast evidence also suggests that movement should 
be interpreted as a combination of multiple parameters rather than isolated ones, plead-
ing for further exploration of sensorimotor control models for accurate BCI control.
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1 |  INTRODUCTION

Damage to the sensorimotor system caused by either trauma, 
stroke or neuromuscular disorder may result in severe paral-
ysis or loss of motor function (Armour, Courtney- long, Fox, 
Fredine, & Cahill, 2016; World Health Organization, 2011). 
In the worst case, people can lose control over all their vol-
untary movements and may become locked- in (Posner, 
Saper, Schiff, & Plum, 2007; Smith & Delargy, 2005). In 
that situation, the means of communication are exception-
ally limited. In the last decades, Brain- Computer Interfaces 
(BCIs) have been presented as a muscle- independent tool 
to restore communication of locked- in individuals, which 
could, eventually, improve their quality of life (Anderson, 
2004; Rousseau et al., 2015). BCIs replace the lost motor 
control by bypassing the muscles and directly linking 
the brain to a computer (Daly & Wolpaw, 2008). In gen-
eral terms, BCIs record neuro- electrical or hemodynamic 
signals from the brain, extract features from the recorded 
signal, translate the features into a control signal for the ac-
tuator, and provide feedback to the user, ideally without sig-
nificant delay (Wolpaw, 2007). For a BCI to be of practical 
value to the user, the brain signal features must be detected 
and extracted in a highly reliable manner. An attractive 
brain region for BCI feature extraction is the sensorimo-
tor cortex (SMC, Brodmann area 1–4) (e.g. Pfurtscheller & 
Lopes da Silva, 1999; Vansteensel et al., 2016; Yuan & He, 
2014). The sensorimotor cortex consists of two areas: the 
primary motor cortex (M1), classically related to movement 
preparation and execution, and the primary somatosensory 
cortex (S1), related to afferent processing of sensory infor-
mation. An interesting feature of the SMC is its somatotop-
ical organization (Penfield & Boldrey, 1937), which entails 
an orderly and detailed arrangement of body parts. In this 
review, we focus on the SMC as a whole (M1 and S1) as 
the use of both areas can be beneficial for improving ac-
curacy of BCI control. Of special interest for BCI is the 
relatively large portion of the SMC, called the “hand knob” 
(Yousry et al., 1997), that is devoted to the control of the 
hand and finger movements, and plays a role in arm move-
ments as well. Due to its large representation in the SMC 
and the straightforward measurement and interpretation of 
movement- related signal changes from this area, the “hand 
knob” is the most commonly used cortical area for BCI 
control and, therefore, the one we focus on this literature 
review.

Importantly, the remarkable spatially organized repre-
sentation of movements in the SMC does not provide in-
formation about which mechanical or physical parameters 
of the voluntary movement are actually encoded in this 
brain area. Human movement can be described through 
kinematic parameters and kinetic parameters (Jones & 

Lederman, 2006; Riehle & Vaadia, 2005). Kinematic pa-
rameters, also called “high- level control” refer to the spa-
tial and motion aspects of movement. The basic kinematic 
variables include the position, velocity, acceleration, and 
direction of the movement, and their combination into a 
complete trajectory. Conversely, kinetic parameters, also 
called “low- level control”, refer to the control of individ-
ual muscles and forces. In the last decades, many studies 
have investigated the representation of separate and/or 
combined kinematic and kinetic features of hand, finger, 
and arm movement in the SMC. In this review, we aim to 
define which features may be most suitable for use in BCI 
settings. For that, we take a BCI perspective to summa-
rize and highlight the most striking and consistent find-
ings in the field of movement encoding. We focus on both 
non- human primate and human studies that used different 
methods to record neuro- electrical and hemodynamic brain 
signals, including intracortical needle recordings, intracra-
nial electrocorticography (ECoG), and functional magnetic 
resonance imaging (fMRI).

2 |  LITERATURE SELECTION 
AND CHARACTERISTICS

We selected literature from Pubmed and Google Scholar 
using combinations of the search terms listed in Table 1. 
From 558 screened titles and abstracts, only English- written 
articles that focused on decoding executed hand and/or finger 
movements from brain signals recorded by intracortical nee-
dle electrodes, ECoG or fMRI from the sensorimotor cortex 
were included, resulting in 95 included papers, of which four 
addressed both kinetic and kinematic parameters and two 
combined more than one technique (Table 1). Stimulation 
studies were not included in this review, with the exception 
of Penfield and Boldrey (1937). Of note, many of the stud-
ies on primates and needle recordings involve reaching and 
grasping movements, which includes movement of both hand 
and arm. In this literature review we included these studies as 
the results provide further insight into how the hand, finger 
and arm movements are controlled by the cortex.

3 |  SENSORIMOTOR MAPPING OF 
THE HAND AND FINGERS

The first evidence for hand and finger representation in the 
SMC was presented in 1937 by Penfield and Boldrey, who 
showed that electro- cortical stimulation of specific areas 
of the SMC elicits hand/finger movements (Penfield & 
Boldrey, 1937). This representation, also known as soma-
totopy, has been intensively investigated in the last decades 
in both non- human primates and humans. In 1993, Schieber 
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and Hibbard were the first to suggest that individual neu-
rons do not encode the movement of a single finger, but 
are, instead, involved in the movement of multiple fingers. 
Indeed, later primate studies showed that the movement of 
a finger results from the activity of a neuronal population 
distributed throughout the hand area in M1, and that a sin-
gle neuron may contribute to the movement of multiple fin-
gers (Georgopoulos, Pellizzer, Poliakov, & Schieber, 1999; 
Hamed, Schieber, & Pouget, 2007; Poliakov & Schieber, 
1999). Later, fMRI studies in humans confirmed the broad 
spatial distribution of the representations of individual 
fingers in M1 and showed, additionally, that these were 
highly overlapping (Figure 1a; Dechent & Frahm, 2003; 
Diedrichsen, Wiestler, & Krakauer, 2013; Indovina & 
Sanes, 2001; Olman, Pickett, Schallmo, & Kimberley, 2012; 
Shen et al., 2014; Wiestler, Mcgonigle, & Diedrichsen, 
2011). Nevertheless, some studies have demonstrated that 
individual fingers can still be decoded with high accuracy 

(Hamed et al., 2007; Hotson et al., 2016; Kubanek, Miller, 
Ojemann, Wolpaw, & Schalk, 2009) and show a consistent 
ventral to dorsal activation map from thumb to little finger 
respectively (Miller, Zanos, Fetz, Den Nijs, & Ojemann, 
2009; Siero et al., 2014). In order to further investigate the 
representation of individual fingers, Schellekens, Petridou, 
and Ramsey (2018) recently proposed a new approach to 
interpret the dispersed finger- related fMRI activation in 
the SMC, which is much in line with the early evidence 
of Gaussian population receptive fields (pRF) in the visual 
cortex (Dumoulin & Wandell, 2008). They showed that 
if we consider a model of population receptive fields for 
fMRI voxels in the SMC, a detailed ventral to dorsal so-
matotopic organization of individual finger representations 
emerges, where each voxel is mostly associated with a sin-
gle, preferred, finger and to some degree with the adjacent 
fingers (Figure 1b). By assuming that a neuronal popula-
tion integrates movements of distinct but related fingers, 

T A B L E  1  Search terms used in this study and overview of the number of papers included. From the 95 included papers, four studies 
combined two types parameters (kinetic and kinematic), and two studies combined two techniques (ECoG and fMRI)

Concept Search terms

Primate or human Primates, non- human 
primates, human

Sensorimotor cortex Sensorimotor cortex, 
Brodmann Area (BA) 1–4, 
primary motor cortex, M1, 
primary somatosensory 
cortex, S1, sensory cortex,

Hand or finger 
Movement

Hand movement, finger 
movement

Functional magnetic 
resonance imaging

fMRI, MRI

Electrophysiology Local field potentials, spikes, 
arrays, electrocorticography, 
ECoG, recordings

Encoding Encoding, decoding, decoded, 
mapped, mapping

Kinetic or kinematic 
parameter

Individual finger, posture, 
hand gesture, velocity, 
direction, position, accelera-
tion, movement trajectories, 
force, muscle activity, 
electromyography, EMG, 
movement speed, movement 
frequency

Number of papers included

Parameters Primate electrophysiology Human ECoG Human fMRI Total

SMC mapping 5 4 8 17

Kinetic 21 3 11 35

Kinematic 24 21 4 49

Total 50 28 23
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this method promises to offer new perspectives for the in-
terpretation of cortical motor cortical representation, motor 
control, and sensorimotor integration.

4 |  KINETIC PARAMETERS OF 
HAND AND FINGER MOVEMENT

Kinetic movement parameters describe the relationship be-
tween movement and its dynamics, more specifically the 
forces, torques, and muscle activities. These parameters are 
intrinsically interconnected, as muscles produce the force ap-
plied by the body. Force is a vector with both a magnitude 
and a directional component. Whereas the magnitude part 
can conceptually be related to the activity of a single muscle, 
the directional part can be associated to the kinematic param-
eter “direction” described later in Section 5.1. To date, force 
and muscle activity have been studied under static isometric, 

dynamic isometric, and movement conditions. The static iso-
metric condition refers to paradigms where the applied force 
is constant and coupled with no movement, while the dy-
namic isometric condition refers to studies where the applied 
force magnitude is continuously changing, but no movement 
is made. The (dynamic) movement condition is a combina-
tion of continuously changing force magnitude coupled with 
actual somatic movement. The latter involves a more com-
plex interpretation, as during movement multiple forces and 
interactions are present (Hollerbach & Flash, 1982).

4.1 | Magnitude of force and muscle activity
The first attempt to investigate the relation between move-
ment parameters and neuronal responses started by compar-
ing the neuronal activity and force patterns during flexion/
extension of the wrist (Evarts, 1968) and wrist static fixation 
(Evarts, 1969). In these pioneer studies, the author concluded 

F I G U R E  1  Individual finger mapping in the sensorimotor cortex. (a) Direct mapping of individual finger movements in the left- hemispheric 
M1 hand area on magnified views of the inflated cortex for one subject shows considerable overlap between the representation of individual 
fingers. D1–5, thumb to pinky respectively (adapted with permission from Dechent & Frahm, 2003). (b) Gaussian population receptive fields (pRF) 
associated with finger flexion, projected on flattened surfaces of 2 subjects (S1 and S2). The light gray lines define the borders of the sensorimotor 
cortex and the triangle is aligned with the base of the central sulcus (CS). The top row shows the estimated Gaussian centers (pRF center), which 
represent the finger digit somatotopy, with red to blue representing thumb to little finger. The bottom row depicts the color- coded Gaussian spread, 
with red to blue representing small to large receptive fields. PreCG, Pre- central gyrus; PostCG, post- central gyrus (adapted with permission from 
Schellekens et al., 2018). [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

pRF centers

pRF spread

S1 S2

www.wileyonlinelibrary.com
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that exerted wrist force (and the derivative of the force), 
rather than the position or direction of displacement of the 
wrist, was related to the discharge of neurons in primates. 
Although a remarkable finding, this result did not seem to 
provide the whole story about the SMC as, later on, evidence 
for the representation of direction and position in the SMC 
was also found. Some findings regarding static force encod-
ing showed to be consistent and reproducible across studies. 
Namely, it was shown that different neuronal populations 
have different linear monotonic relations to force (Evarts, 
1969; Thach, 1978). While for some cells the monotonic 
relation held for the whole force range, for other cells the 
relation between neuronal activity and static force did not 
hold for forces at the extremes of the range, yielding a typi-
cal S- shaped function (Cheney & Fetz, 1980; Evarts, Fromm, 
Kroller, & Jennings, 1983). Other interesting findings were 
that (a) more neurons seemed to respond with larger ampli-
tude, and with greater regression slope, to extensor muscles 
(or forces) when compared with flexor muscles (or forces) 
(Cheney & Fetz, 1980); (b) the magnitude of force seemed to 
be accompanied by an increase in firing rate rather than an in-
crease in the number of recruited cells (Cheney & Fetz, 1980; 
Evarts et al., 1983); and (c) encoding of the force seemed to 
depend on the task characteristics, such as task sequence, vis-
ual stimuli, and force ranges (Hepp- Reymond, Kirkpatrick- 
Tanner, Gabernet, Qi, & Weber, 1999).

Other groups explored the relation between static iso-
metric and dynamic isometric force conditions in primates 
(Smith, Hepp- Reymond, & Wyss, 1975; Wannier, Maier, & 
Hepp- Reymond, 1991), and showed that while some cells 
were related to both force and rate of force change, other cells 
correlated with either force or rate of force change (Smith 
et al., 1975). Also, they demonstrated that most recorded neu-
rons display various (different) discharge patterns during dy-
namic and static force conditions, from phasic (onset- related) 
increases and decreases, to tonic (proportional to force) in-
creases and decreases, and combinations of both (Wannier 
et al., 1991).

In humans, multiple studies showed that the fMRI signal 
(number of activated voxels and/or average signal intensity) 
in contralateral M1 increases as a function of increasing lev-
els of isometric static grip force (Cramer et al., 2002; Dai, 
Liu, Sahgal, Brown, & Yue, 2001; Keisker, Blickenstorfer, 
Meyer, & Kollias, 2009; Peck et al., 2001; Thickbroom, 
Phillips, Morris, Byrnes, & Mastaglia, 1998; Van Duinen, 
Renken, Maurits, & Zijdewind, 2008). When compar-
ing static with dynamic (movement) grip forces, however, 
some studies showed that static force induces a significantly 
smaller blood- oxygen- level dependent imaging (BOLD) sig-
nal than dynamic force in contralateral M1, both during iso-
metric (Keisker, Hepp- Reymond, Blickenstorfer, & Kollias, 
2010; Kuhtz- Buschbeck et al., 2008) and movement condi-
tions (Ehrsson et al., 2000; Thickbroom et al., 1999). These 

studies suggest that the processing of repetitive transient force 
changes requires more metabolic activity in M1 than static 
forces, possibly due to the movement onsets originated during 
the dynamic (movement) conditions. Using ECoG signals 
and sophisticated regression algorithms, three groups have 
attempted to predict the time- varying force profiles during 
coarse and precision grasp and showed an accurate prediction 
of force magnitude, mostly using low- passed ECoG signals 
and high- frequency band power signals from M1 (Chen et al., 
2014; Flint et al., 2014; Pistohl, Schulze- bonhage, Aertsen, 
Mehring, & Ball, 2012). Altogether, force seems to be repre-
sented in the SMC of both non- human primates and humans, 
although human fMRI studies showed a more obvious repre-
sentation during dynamic force conditions.

Peck et al. (2001) argued that the increase in activations 
observed with higher force levels can be attributed to the re-
cruitment of additional muscle groups to stabilize the arm. 
Indeed, they showed that after correction for muscle activity, 
the fMRI signal only weakly increased with increasing force 
levels, suggesting that force and muscle are not independently 
encoded in SMC. Expanding on this point, many groups 
showed that it is possible to predict electromyography (EMG) 
activity from neuronal discharges (Koike, Hirose, Sakurai, & 
Iijima, 2006; Morrow & Miller, 2002), from summed M1 
activity (Schieber & Rivlis, 2006), from averaged neuronal 
population activity using ECoG (Flint et al., 2014; Nakanishi 
et al., 2017; Shin et al., 2012) and from fMRI BOLD signals 
(Ganesh, Burdet, Haruno, & Kawato, 2008).

4.2 | Directional component of force and 
muscle activity
In 1985, Kalaska and Hyde reported, for the first time, on 
disentangling the directional component of the static isomet-
ric force from its magnitude, using a single paradigm that 
involved multi- joint 2D forces, and compared the effect of 
magnitude and direction of force on the neuronal and elec-
tromyographic (EMG) activities. Their results, later further 
extended and confirmed by other studies (Kalaska, Cohen, 
Hyde, & Prud'homme, 1989; Kalaska & Hyde, 1985; Taira, 
Boline, Smyrnis, Georgopoulos, & Ashe, 1996), showed that 
most cells recorded from the motor cortex respond exclu-
sively to the direction of force, whereas most of the muscle 
activity was correlated with both the direction and magnitude 
of force. These results suggested that (a) in the muscles, the 
specification of magnitude is embedded within the directional 
signal, (b) the direction of force is most prominent in M1, and 
(c) the direction of force can be controlled independent from 
its magnitude. Furthermore, these results are in agreement 
with findings from studies that used more complex dynamic 
isometric conditions, and which showed that M1 cortical 
cells are directionally tuned and that their activity varies with 
the change in force and visually defined target- directions, 
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rather than with the total force (and muscle activity) exerted 
by the subject (Georgopoulos, Ashe, Smyrnis, & Taira, 1992; 
Georgopoulos, Caminiti, Kalaska, & Massey, 1983). The 
above results indicate that M1 is preferentially involved in 
the control of the dynamic component of the force and that 
when dynamic conditions are superimposed on static ones, 
the dynamic process seems to assume primary importance 
in the motor cortex. Lastly, studies that examined movement 
conditions in the presence and absence of external loads 
showed a strong effect of the directional component of the 
movement on the motor cortical activity in both situations 
(Georgopoulos, Kalaska, Caminiti, & Massey, 1982; Kalaska 
et al., 1989; Riehle & Requin, 1995; Schwartz, Kettner, & 
Georgopoulos, 1988) (see also Section 5.1). The findings that 
directional tuning seems to occur in M1 in both isometric and 
movement conditions suggest that there is a common under-
lying factor for M1 activity, possibly related to a more ab-
stract spatial representation of the motor output (Ashe, 1997).

5 |  KINEMATIC PARAMETERS OF 
HAND AND FINGER MOVEMENT

Kinematic parameters comprise the spatial and motion as-
pects of the movement. These parameters can describe: (a) 
“static” direction during point- to- point movements; (b) con-
tinuously varying position, velocity and acceleration, which 
can be further subdivided into its amplitude and direction 
components; or (c) combinations of these, such as movement 
trajectories. In this section, we summarize the non- human 
primate and human findings organized in five topics, being 
direction of point- to- point movements, continuously vary-
ing velocity and acceleration, static versus dynamic position, 
movement rate and movement trajectories.

5.1 | Direction of point- to- point movement
One of the first groups investigating kinematic parameters of 
hand movement in primates were Georgopoulos et al. (1982). 
They used a so- called center- out task, which consists of a set 
of eight targets peripherally arranged with the same radial 
distance from the center, each representing the target posi-
tion of the monkey's hand. The authors correlated neuronal 
spiking activity in M1 to the direction in which the monkey 
moved its hand. In this case, direction was studied irrespec-
tive of the externally applied forces (for a comparison with 
forces see Section 4.2). The authors provided the first evi-
dence of directionally tuned cells, meaning that the neuronal 
discharge of a specific cell is most intense for hand move-
ments in a particular (“preferred”) direction, and gradually re-
duces for hand movements in other directions (Georgopoulos 
et al., 1982). This led to the coining of the term population 
coding, which refers to the concept that every directionally 

tuned neuron contributes additively to movement in any di-
rection. These findings were strengthened by other primate 
studies that showed a strong correlation between neuronal 
activity and movement direction in both 2D and 3D spaces 
(Ashe & Georgopoulos, 1994; Fu, Flament, Coltz, & Ebner, 
1995; Fu, Suarez, & Ebner, 1993; Georgopoulos, Kettner, 
& Schwartz, 1988; Georgopoulos, Schwartz, & Kettner, 
1986; Golub, Yu, Schwartz, & Chase, 2014; Kalaska et al., 
1989; Kettner, Schwarz, & Georgopoulos, 1988; Moran & 
Schwartz, 1999a; Rickert et al., 2005; Schwartz et al., 1988). 
Interestingly, Kettner et al. (1988) reported that the relation 
between neuronal activity and movement direction was in-
dependent of where the movement was made relative to the 
body. Others, however, have shown that changes in arm pos-
ture significantly change the preferred direction of M1 neu-
rons, both during reaching tasks (Scott & Kalaska, 1997) and 
wrist movements (Kakei, Hoffman, & Strick, 2003). These 
findings are of great importance for BCI control settings, in 
which the user body posture may change in the course of a 
day, and should be investigated further within that context.

Besides from single neuron recordings, there is also evi-
dence for directional tuning from neural population record-
ings, but less reported than in primate literature. Human 
ECoG studies, for example, showed accurate decoding of di-
rection from SMC during center- out tasks (e.g. Ball, Schulze- 
bonhage, Aertsen, & Mehring, 2009; Wang et al., 2012) using 
low- passed filtered features, low- frequency components 
(0–2 Hz) and high- frequency components (>50 Hz); and 
during two- target online control of Brain- Machine Interfaces 
(BMI) (Milekovic et al., 2012) using uniquely low- passed fil-
tered signals. The limited amount of evidence for directional 
tuning from human ECoG studies is probably related to the 
fact that ECoG electrodes measure from large populations of 
neurons each with a different preferred direction, whereas 
the primate studies investigated the responses mostly from 
(groups of) single cells. Nevertheless, it can be concluded 
that there is very strong and consistent evidence from both 
monkey and human research for the presence of a representa-
tion of movement direction in the SMC.

5.2 | Velocity and acceleration
Velocity and acceleration were initially investigated in pri-
mates using the center- out task described above. Some reports 
concluded that, although less clearly represented than direc-
tion of velocity, the magnitude of velocity or speed is encoded 
in the SMC, and that the magnitude of acceleration is the least 
represented (Ashe & Georgopoulos, 1994; Golub et al., 2014; 
Moran & Schwartz, 1999a; Schwartz, 1993). Importantly, 
however, Paninski, Fellows, Hatsopoulos, and Donoghue 
(2004) and Wang, Chan, Heldman, and Moran (2007) ex-
pressed concerns about the center- out task, as its concept 
makes it difficult to study velocity as a separate movement 
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parameter, due to its interdependence with other parameters, 
such as position. Wang et al. (2007) attempted to reduce the 
statistical dependencies between velocity and position, and 
compared the results of a standard center- out reaching task 
with a random reaching task, in which the starting position 
and end target were chosen randomly in the 3D space (Wang 
et al., 2007). They showed not only a representation of posi-
tion but also confirmed the presence of a representation of ve-
locity magnitude (speed) and velocity direction in M1 during 
movement during target- holding and movement periods.

Human ECoG studies have reported that speed is more 
clearly represented in M1 than velocity direction, and that 
specific frequency components of the signals are associated 
with each of these kinematic parameters (Hammer et al., 
2013, 2016). The authors argued interestingly that the dif-
ference in representation of direction and speed between the 
single neuron level (where direction was better represented 
than speed) and large population level could be explained by 
the scale of the recording, in that the speed tuning may be 
constructively summed up across the neuronal population, 
and is, therefore, most evident in the average of large enough 
populations (>10,000 neurons) (Hammer et al., 2016).

5.3 | Static position versus dynamic position
Using the center- out task, several groups studied the re-
lationship between neuronal response and different static 
hand positions in primates and showed that the neuronal dis-
charge varied with the (target, static) position and distance 
between hand position and the target (Fu et al., 1993, 1995; 
Georgopoulos, Caminiti, & Kalaska, 1984). In order to inter-
pret the seemingly similar correlation of position and move-
ment direction with single neurons discharge (Section 5.1), 
Fu et al. (1995) suggested that these were in fact temporally 
encoded in M1. That is, the specific timing of the firing rather 
than the firing rate itself would encode these parameters. 
Indeed, they found that the majority of the direction- related 
neuronal discharge occurs first during the pre- movement pe-
riod, followed by a peak just before holding at the final posi-
tion. These results demonstrate that single cells could encode 
multiple parameters in a serial manner, tentatively explaining 
the encoding of more than one movement parameter. This 
theory was later explored by other groups who found sequen-
tial encoding of the dynamically varying velocity and posi-
tion (Paninski et al., 2004; Wang et al., 2007).

In humans, static position paradigms using finger and 
hand postures were investigated mostly with the ultimate 
goal of increasing the degrees- of- freedom of BCI systems. 
Both ECoG (Bleichner et al., 2016; Chestek et al., 2013) 
and fMRI (Bleichner, Jansma, Sellmeijer, Raemaekers, & 
Ramsey, 2014; Leo et al., 2016) studies revealed accurate 
discrimination of a limited number of different hand/finger 
postures and synergies (i.e. hand postures that result from 

recruiting sets of muscles and joints simultaneously), using 
the averaged signals during the movement periods, even 
during online control of a prosthetic limb (Chestek et al., 
2013). Remarkably, similar to what was found in primates 
(Fu et al., 1995), Bleichner et al. (2016) indicated that neu-
ronal activity, especially the high frequency broadband 
(>75 Hz), returned to baseline values during the static 
phase after movement. Exploring this, the same group 
later showed that temporal information was crucial for de-
coding, and that the combination of temporal and spatial 
features increased decoding accuracy (Branco et al., 2017) 
even in subjects for whom decoding results were initially 
poor (Bleichner & Ramsey, 2014). These results, together 
with those of Fu et al. (1995), suggest that static position 
itself is not represented in the SMC, but that SMC activity 
is more likely associated with the movement toward the 
position (i.e. the hand trajectory and movement direction).

5.4 | Movement rate
Human fMRI and ECoG studies have also focused on de-
scribing hand/finger movement rate, that is, the frequency 
of repeated finger tapping movement, where an increase in 
finger tapping rate leads to an increase in both the veloc-
ity and acceleration amplitudes of the finger movement. 
In fMRI, a linear relationship between the movement rate 
and the BOLD amplitude was found for lower movement 
rates, but saturation occurs at higher movement frequen-
cies (Jäncke et al., 1998; Riecker, Wildgruber, Mathiak, 
Grodd, & Ackermann, 2003; Sadato, Ibanez, Deiber, & 
Bihan, 1997; Siero et al., 2013). The range of frequencies 
for which the linear relation (and saturation thereafter) was 
identified varied considerably across studies, from 0–1 Hz 
(Siero et al., 2013) to 1.5–5 Hz (Jäncke et al., 1998), and 
there is currently no explanation for these differences in 
saturation points. The saturation itself has been associated 
with a decrease in the amplitude of movement- induced 
changes in spectral power in the high frequency band 
(>65 Hz) of the electrical neuronal signal (Siero et al., 
2013). Indeed, ECoG research has shown that, after the 
first movement, neuronal activity during each subsequent 
movement declines when multiple similar movements are 
made at a fast rate (Hermes, Siero et al., 2012; Siero et al., 
2013). Nevertheless, none of the previous studies has in-
vestigated the modulation of the ECoG signal's amplitude 
with respect to movement rate and it remains to be deter-
mined if increasing movement rate is associated with con-
sistent change in the amplitude of the recorded signal.

5.5 | Movement trajectories
So far, most studies have focused on the description of kin-
ematics variables as static, scalar quantities, by comparing 
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the temporal average of the movement feature and the tem-
poral average of the neuronal output. By combining in-
formation from position and velocity, however, one can 
reconstruct the trajectory of the movement, that is the path 
followed by the hand or fingers when moving toward a 
target or position. Indeed, investigating the representa-
tion of complete continuous, more natural, trajectories can 
be of great interest, not only for our understanding of the 

neuronal underpinnings of movement, but also for the de-
sign of BCIs.

The first evidence for the presence of a representation of 
dynamic position (i.e. trajectory) in the motor cortex was 
given by Georgopoulos et al. (1988), who analyzed data 
from two monkeys performing a 3D center- out- task. This 
study, later confirmed by (Moran & Schwartz, 1999a,b; 
Schwartz, 1993; Schwartz & Moran, 1999), showed that 

F I G U R E  2  Fingertip trajectories. Fingertip trajectories (x, y, z coordinates) were decoded from one (epilepsy) patient implanted with 
ECoG grids (1 cm inter- electrode distance) over the left hemisphere sensorimotor cortex. In this study signals from nine frequency bands were 
used: 0–4, 4–8, 8–14, 14–20, 20–30, 30–60, 60–90, and 90–120 Hz. Left panel: 3D view of the finger trajectories. The delta and high- frequency 
bands (>90 Hz) contribute most significantly to the trajectory prediction. Predicted (red lines) and actual trajectories (blue lines) for all trials are 
displayed. Right panel: Examples of the predicted (red lines) and actual trajectories (blue lines) for three individual fingers (thumb, index and 
middle finger) compared using correlation coefficient (CC) and normalized root- mean- square- error (nRMSE) values. The graphs express changes 
in x, y, and z coordinates over time, as well as the x–z plane projections (bottom row) of curves in the 3D view (adapted with permission from 
Nakanishi et al., 2014). [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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although quantitatively less represented in M1 than target 
direction and velocity, the continuous change in position of 
the hand was highly correlated with the neuronal response 
and could be constructed using both directional and length 
information of the population vector. Later, several primate 
needle studies reconstructed hand and arm movement trajec-
tories from the SMC and used them to control, in real- time, 
robotic device in 1D and 3D spaces, using both linear and 
non- linear algorithms (Aggarwal, Mollazadeh, Davidson, 
Schieber, & Thakor, 2013; Paninski et al., 2004; Wessberg 
et al., 2000). Aggarwal et al. (2013) showed, additionally, 
that spiking activity, rather than local field potentials (av-
eraged signal between 0.7 and 175 Hz), was the most infor-
mative for decoding trajectories. Other studies in monkeys 
showed successful reconstruction of arm (Chao, Nagasaka, 
& Fujii, 2010) and hand (Shimoda, Nagasaka, Chao, & Fujii, 
2012) trajectories, mostly from the higher- frequency com-
ponents of ECoG (>40 Hz). These results are, in fact, in line 
with the findings of Aggarwal and co- workers, as higher- 
frequency band signals are thought to be especially related 
to spiking activity (e.g. Buzáki & Wang, 2012; Miller, 
Sorensen, Ojemann, & Den Nijs, 2009; Ojemann, Ramsey, 
& Ojemann, 2013).

Successful reconstruction of 2D and 3D trajectories 
has also been demonstrated using human ECoG signals re-
corded during arm and finger movements (Acharya, Fifer, 
Benz, Crone, & Thakor, 2010; Bundy, Szrama, Pahwa, & 
Leuthardt, 2018; Gunduz, Sanchez, Carney, & Principe, 
2009; Nakanishi et al., 2014, 2017; Pistohl, Ball, Schulze- 
bonhage, Aertsen, & Mehring, 2008; Schalk et al., 2007). 
Several of these studies investigated which electrodes and 
temporal- spectral features of the ECoG signal were most 
useful for decoding of trajectories. In general, M1 was the 
most informative cortical region, followed by S1, and the 
high- frequency band signals together with the low- pass 
filtered ECoG signal, also known as local motor potential 
(Acharya et al., 2010; Bundy et al., 2018; Nakanishi et al., 
2014, 2017; Pistohl et al., 2008; Schalk et al., 2007), were 
the most informative features. Remarkably, in one of the 
studies of Nakanishi et al. (2014), the authors even showed 
that the finer fingertip trajectories (Figure 2) can be pre-
dicted with very high precision (r > 0.92) from the upper 
part of the SMC.

Notably, the aforementioned primate and human stud-
ies investigating the representation of movement trajec-
tory used sophisticated regression models to optimally 
predict the position and velocity vectors, which incorpo-
rated not only multiple kinematic variables, but also their 
temporal dynamics. The adequate decoding of move-
ment trajectories obtained with these models indicates 
that the use of movement trajectories for BCI purposes 
may provide users with a precise interaction with the 
environment.

6 |  DISCUSSION

Brain- Computer Interfaces have been proposed as a tech-
nology to replace, restore, enhance, supplement, or improve 
(lost) natural central nervous system output (Brunner et al., 
2015; Wolpaw, 2007). The sensorimotor cortex (SMC) is 
frequently taken as a source of signals for BCI control, as it 
shows large and consistent signal changes related to move-
ment. However, a further improvement of the accuracy and 
specificity of BCI control will benefit from a thorough un-
derstanding of how the SMC cortical activity specifies the 
spatiotemporal properties of the movement. To what extent 
kinematic and kinetic parameters contribute to the output 
movement is still a topic of great discussion (Kalaska, 2009; 
Todorov, 2000). Therefore, we summarized here the most 
consistent evidence on the representation of kinematic and 
kinetic parameters of arm, hand, and finger movement con-
trol in the SMC.

6.1 | Using kinetics or kinematics for BCI?
In general, evidence for a clear representation of most move-
ment parameters was found, from low- level forces and 
muscle activities (kinetics) to high- level spatial and motion 
aspects (kinematics). The first studies on movement parame-
ters compared force to neuronal output (Evarts, 1968), based 
on the assumption that the motor cortex has a direct relation 
with muscle output. Later on, multiple studies focused on the 
direction component during isometric force and movement 
conditions, both revealing a strong evidence (mostly in mon-
keys) for direction tuning of the SMC neurons (Georgopoulos 
et al., 1982, 1986, 1992; Kalaska & Hyde, 1985; Kettner 
et al., 1988; Moran & Schwartz, 1999a; Schwartz et al., 1988; 
Taira et al., 1996). Other interesting findings were that move-
ment parameters (e.g. movement direction) did not seem to 
be coded by single- neuron patterns but by neuronal ensem-
bles (Georgopoulos et al., 1982), and that the neurons may 
temporally encode different parameters at different stages of 
the movement (Branco et al., 2017; Elsayed, Lara, Kaufman, 
Churchland, & Cunningham, 2016; Fu et al., 1995; Moran & 
Schwartz, 1999a; Sergio & Kalaska, 1998), pleading for the 
prevailing encoding of spatial- temporal features of the move-
ment, such as trajectories, rather than separate parameters. 
Indeed, the prediction of trajectories (combination of hand/
finger position and velocity) showed impressive results both 
in non- human primates and humans (e.g. Nakanishi et al., 
2014; Shimoda et al., 2012; Wessberg et al., 2000), suggest-
ing that the SMC provides enough discriminative informa-
tion to replicate the intended arm and finger movements, a 
concept which can be successfully used for online BCI con-
trol of prosthetics and robots (Aggarwal et al., 2013; Paninski 
et al., 2004; Wessberg et al., 2000).
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Even though the decoding of continuous variables, such 
as movement trajectories, is of great value for the BCI con-
trol of robotic arms and hands, BCIs can also be benefit from 
the decoding of discrete classes of movement, in that each 
class could control an independent degree- of- freedom of the 
system. In that regard, the most discriminative parameters 
represented in the human SMC appear to consist of indi-
vidual finger movement [either single (Miller, Zanos, et al., 
2009; Siero et al., 2014) or repeated movements (Hermes, 
Siero et al., 2012; Siero et al., 2013)], movement direction 
(Milekovic et al., 2012) and complex movements [such as 
hand postures, configurations or muscle synergies (Chestek 
et al., 2013; Ejaz, Hamada, & Diedrichsen, 2015; Bleichner 
et al., 2016; Leo et al., 2016)]. Using ECoG and fMRI re-
cordings in humans, the optimal spatial location and the best 
temporal- spectral signal features for decoding were investi-
gated. Most discriminative information was located in the 
SMC, with some studies indicating significant information 
from supplementary motor areas (Indovina & Sanes, 2001), 
pre- motor cortex, and pre- frontal cortex (Chao et al., 2010; 
Nakanishi et al., 2017; Shimoda et al., 2012); and most dis-
criminative features were the low- passed filtered and high- 
frequency band signals (Chao et al., 2010; Nakanishi et al., 
2017; Shimoda et al., 2012).

Altogether, the extensive variability in parameters repre-
sented in SMC supports the presence of a complex relation-
ship between behavior and neuronal activity, likely because 
the SMC is responsible for the generation of complex move-
ments composed of different speeds, forces and directions, 
and interacts with many different cortical and subcortical 
areas and spinal cord. In 2009, Kalaska raised several inter-
esting questions, such as: “Which movements should we be 
looking at?”, “Can we really decouple movement parame-
ters?”, and “What is the role of the motor network on the 
SMC?” Indeed, most studies looked at correlations between 
neuronal output and specific parameters, which can be easily 
confounded by the inevitable correlation with other parame-
ters (Reimer & Hatsopoulos, 2009), and therefore are unlikely 
to unveil the causality between any of the parameters and the 
neuronal source. As an example, most of the individual fin-
ger representation studies used finger flexion and extension 
paradigms, which also elicit changes in finger velocity, po-
sition, and direction. Perhaps, a better way to interpret these 
results is to consider the existence of a motor mechanical and 
behavioral model that incorporates the complete motor out-
put (Ebner, Hendrix, & Pasalar, 2009), as discussed in the 
following section.

6.2 | Evidence from sensorimotor 
control models
One important question in the study of movement parameters 
is whether the concept of parameterization (i.e. describing 

the movement as a series of parameters) is valid (Ebner et al., 
2009). In recent years, the view on, and study of, movement 
parameters shifted from single parameter (e.g. direction, po-
sition, velocity) and simple conditions (single- joint, static 
isometric paradigms) to multiple parameters and complex 
conditions (trajectories, multi- joints, dynamic movement). 
As mentioned above, almost all movement parameters are 
associated with a detectable response in the SMC. This could 
be a result of the intrinsic correlation between movement pa-
rameters created by the musculoskeletal biomechanics and 
anatomy constrains. For instance, hand movement automati-
cally involves a combination of direction and magnitude of 
muscle contraction and forces, movement velocity, and ac-
celeration. However, these parameters are all interconnected 
and can be modeled together as part of one movement. Of 
note, two frameworks have been widely used to model the 
human movement, the Optimal Feedback Control (OFC) and 
Active Inference (AI) models (Friston, 2011). Even though 
other models are being used to explain motor control, we 
focus on these two as these are the most prominent frame-
works and present contrasting theories of how the brain and 
in particular the sensorimotor cortex controls movement. 
The OFC framework is an engineering model based on the 
principle of optimization. In this framework, M1 is assumed 
to be the cortical region in charge of sending top- down motor 
commands, where the motor command estimation is created 
by minimizing the error between the feedback signals (sen-
sory feedback provided by S1) and an efferent copy of the 
motor commands created by an optimal feedback law (Scott, 
2004). In other words, the OFC is a closed- loop process 
that minimizes the variability in the output parameters by 
continuously measuring the feedback and correct the motor 
output. Conversely, the AI framework is a statistical hier-
archical model based on the principle of energy minimiza-
tion. In this framework M1 is thought to provide top- down 
predictions (rather than send motor commands), while other 
lower- level structures (e.g. spinal cord) are responsible for 
producing the motor commands. That is, AI is based on 
prediction of the motor output that relies on prior predicted 
beliefs and minimizes the prediction error by adjusting the 
internal model (Adams, Shipp, & Friston, 2013). Whereas 
in OFC both forward and inverse models are computed by 
the motor cortex, in AI the inverse mapping is left to the 
spinal cord and the (generative) forward model is estimated 
from the sensory data. Even though there is no consensus 
over which model best represents reality, the OFC model 
has been explored more intensively in the last decades. In 
an effort to explain that the correlations found between neu-
ronal signals and multiple movement parameters are not 
mutually exclusive, Todorov (2000) developed an interest-
ing OFC mechanistic model to explain the representation of 
motor behavior in the SMC, which incorporates properties 
of muscle and multi- joint mechanics. The model shows how 
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M1 activity can cause motor behavior, just by taking into 
consideration the physical (muscle and joint) constraints as-
sociated with movement. He showed that the observed cor-
relations of parameters simply emerge from the model and 
were consistent with the ones found in the literature, such 
as the representation of force magnitude in isometric tasks 
and of velocity in movement tasks, the dominance of veloc-
ity and force direction over magnitude, and the temporal 
multiplexing of direction and target position signals. This 
interesting theory, recently corroborated (Teka et al., 2017), 
suggests that the relative contribution of different movement 
parameters are not physiological characteristics, but rather 
depend on the actual motor behavior. Based on this theory, 
recent studies have attempted to use OFC to control Brain- 
Machine Interfaces in primates, by developing decoders 
that combine the target information, external feedback, and 
the neuronal spiking activity during movement (Benyamini 
& Zacksenhouse, 2015; Shanechi, Wornell, Williams, & 
Brown, 2013; Shanechi, Williams, et al., 2013). Results of 
these studies show not only that this model closely mimics 
the sensorimotor control system, but also that the use of more 
advanced models can be very promising for neural- control.

6.3 | Sensorimotor target areas for 
BCI control
This review focused on the results obtained from the senso-
rimotor cortex as a whole, up until now with no distinction 
made between M1 and S1 cortices. However, the specific 
role of M1 and S1 cortices and their interactions are a matter 
of great discussion. Despite the fact that M1 was classically 
defined as the center of motor control and S1 the center for 
sensory feedback, new evidence has shown that the role of 
S1 goes beyond sensory information processing. For exam-
ple, a recent study using ECoG in humans has shown that 
S1 activates before M1 during hand movement (Sun et al., 
2015). In addition, high accuracy decoding of hand and fin-
ger movements from S1 has been demonstrated by recent 
BCI studies performed with paralyzed patients (Degenhart 
et al., 2018; Wang et al., 2013) and people with arm ampu-
tation (Bruurmijn, Pereboom, Vansteensel, Raemaekers, & 
Ramsey, 2017; Kikkert et al., 2016). These results support 
data from earlier fMRI and electrocortical stimulation stud-
ies, in particular the findings (a) in individuals with spinal 
cord injury, who show fMRI activation of S1 during at-
tempted movements (Cramer, Lastra, Lacourse, & Cohen, 
2005; Hotz- boendermaker, Hepp- Reymond, Curt, & Kollias, 
2011; Hotz- boendermaker et al., 2008); (b) in individuals 
with induced ischemic nerve blocking, who had preserved 
fMRI responses without sensory feedback (Christensen et al., 
2007); and (c) in individuals with epilepsy who show iso-
lated and complex hand responses upon cortical stimulation 
of S1 (Haseeb et al., 2007; Nii, Uematsu, Lesser, & Gordon, 

1996). Interestingly, the two frameworks discussed in the 
previous section have contrasting views regarding the role of 
S1. While OFC considers S1 uniquely as a source of sensory 
information and describes an efferent copy from M1 to S1 
for control optimization, in AI the efferent copy comprises 
proprioception information and is sent from S1 to M1. That 
is, while M1 is involved in modeling the intended body state, 
S1 is involved in predicting the current (proprioceptive) body 
state (Adams et al., 2013). Regardless the role S1 plays in 
motor control, the above evidence suggests that BCIs may 
benefit from exploiting both M1 and S1 cortical regions for 
control and therefore the study of movement parameters 
should not be restricted to M1.

6.4 | Other BCI considerations
Besides a search for movement parameters that are associ-
ated with the most consistent and large signal changes in 
the SMC, there are other considerations that need to be ad-
dressed when designing a BCI. First, it should to be noted 
that most BCI studies described in this manuscript focus 
on offline decoding of multiple movement parameters. The 
question is whether the interpretation of the results between 
offline and online experiments would differ. Several stud-
ies have investigated this topic, and showed that the offline 
decoding of hand movement is highly predictive of BCI 
performance in real- time applications that use, for instance, 
prosthetic devices for feedback (Gharabaghi et al., 2014; 
Yanagisawa et al., 2011) or to control a one- dimensional 
“brain- click” on a computer program (Vansteensel et al., 
2016).

Second, the target population for BCIs are typically in-
dividuals with severe paralysis and/or communication prob-
lems (Pels, Aarnoutse, Ramsey, & Vansteensel, 2017). In 
most cases, actual movement is not possible, leaving imag-
ined and/or attempted movement as alternative options to 
control a BCI. In this review we focused on studies where 
actual movement was studied, and for these studies to be of 
optimal value for the BCI field, we need to be aware of the 
similarities and differences in neuronal representation of ex-
ecuted, imagined and attempted movement. Importantly, a 
great amount of evidence shows that attempted movements 
generate similar activation patterns in the SMC as actual 
movement. Examples are studies that showed that attempted 
and phantom hand movements could be accurately and ro-
bustly classified from the high- frequency band SMC sig-
nals using a real- time closed- loop feedback control, from 
amputated or paralyzed individuals (Degenhart et al., 2018; 
Gharabaghi et al., 2014; Wang et al., 2013; Wessberg et al., 
2000; Yanagisawa et al., 2011); two extended fMRI studies 
that showed that finger representation was intact (Kikkert 
et al., 2016) and that attempted complex hand gestures (6 
in total) can still be decoded accurately from individuals 
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with an amputated arm (Bruurmijn et al., 2017). Moreover, 
the results from the human pilot clinical trial BrainGate 
Neural Interface System (http://www.clinicaltrials.gov/ct2/
show/NCT00912041) have demonstrated successful decod-
ing of hand kinematics from SMC in paralyzed individuals 
(Ajiboye, Simeral, Donoghue, Hochberg, & Kirsch, 2012; 
Hochberg et al., 2012; Jarosiewicz et al., 2015; Pandarinath 
et al., 2017; Simeral, Kim, Black, Donoghue, & Hochberg, 
2011; Zhuang, Truccolo, Vargas- irwin, & Donoghue, 2010). 
An interesting question remaining to be answered is whether 
the OFC and AI motor control models described above 
(Section 6.2) change when no actual movement is performed 
and no feedback is provided.

Third, we saw that hand and fingers are well- represented 
in the SMC, although with some overlap. Considering that 
the brain is a plastic organ, an interesting question would be if 
any other body part, such as lips, eyes, or legs, produce activ-
ity in the same cortical location as the hand and fingers. This 
is especially relevant for users that still have residual muscle 
movement or control eye- tracking systems using their eyes. 
In these situations, it is not known whether there is overlap-
ping activity and if so, how are these different from the corti-
cal presentations know to date.

Fourth, as shortly mentioned above, there are indica-
tions that arm posture influences the cortical representation 
of some movement parameters, such as movement direction 
(Kakei et al., 2003; Scott & Kalaska, 1997). In other words, 
the representation of hand movement may change with dif-
ferent arm positions or orientations. This result may have 
consequences for home- use BCI control of severely para-
lyzed individuals, as a new cortical representation implies 
re- interpretation of the parameters (i.e. system calibration) 
each time the position of the arm changed (e.g. after care-
taking). Clearly, the extent to which this phenomenon affects 
BCI performance should be addressed in future studies, as 
stable and reliable BCI accuracy in real- life home situations 
is crucial for BCI acceptance and use by the target population 
(Huggins, Wren, & Gruis, 2011).

Lastly, with regard to the concept of learning (Ebner 
et al., 2009; Paz & Vaadia, 2004), it remains unknown 
whether the encoding of any parameter is predetermined or 
is a learned association. It is expected that the brain adapts 
to relevant behavioral variables, meaning that frequently 
used features should be encoded stronger than less fre-
quently used features (Ebner et al., 2009). Moreover, con-
sidering the fact that the motor structures are plastic and 
people are able to learn to control strategies, it is unclear 
whether chronic use of a particular movement (parameter) 
in BCI control settings affects the representation of the 
movement parameter and the long- term BCI performance. 
From literature, some evidence supports the idea that that 
frequently used finger configurations are more strongly 
represented than less frequently used configurations (Leo 

et al., 2016), but this topic needs further investigation from 
a BCI perspective.

6.5 | Limitations
Some of the diversity between the results of different stud-
ies may be explained by the different nature of the record-
ing techniques. In this review we focused on studies using 
intracortical needle, intracranial ECoG and fMRI recording 
techniques, as these provide the most accurate spatial and/
or temporal resolution of the acquired signals, which is espe-
cially important for the mapping of movement parameters to 
concise cortical regions (order of 1 neuron to 10,000 neurons) 
and in short time windows (order of milliseconds) (Nicolas- 
alonso & Gomez- gil, 2012). Most intracortical research was 
performed on non- human primates, which may not directly 
extrapolate to humans (Passingham, 2009). Yet, consistent 
conclusions were drawn across studies in multiple param-
eters, such as movement direction and trajectory. Moreover, 
less literature focused on fMRI measurements, possibly as 
these are considerably susceptible to movement artefacts, 
leading to limitations regarding the study of certain move-
ment parameters, and because of the slow hemodynamic 
response. Nevertheless, fMRI studies provide a broader map-
ping of cortical and sub- cortical areas than electrophysiologi-
cal techniques, and fMRI activation patterns have been shown 
to be highly correlated with changes in high- frequency ECoG 
signals (e.g. Hermes, Miller et al., 2012). As such, fMRI is 
recognized as a valuable technique to study the brain, also 
for BCI purposes.

Finally, there was quite some variability in the paradigms 
used, even when authors attempted to examine the same pa-
rameter of the movement. The reason for this difference is 
likely due to the considerable differences in setup between 
primate and human studies, and between electrophysiological 
and hemodynamic studies. In order to provide consistent and 
reproducible findings across all fields, an effort should be 
made to standardize paradigms to study specific parameters, 
allowing for a more accurate comparison between techniques.

7 |  CONCLUSION

This literature review provides a summary of existing lit-
erature on the representation of different kinetic and kin-
ematic parameters of movement in the sensorimotor cortex, 
with the goal of providing the research community with 
information about which parameters of the movement 
are promising candidates as a BCI control paradigm. We 
conclude that all evaluated parameters are to some extent 
represented in the sensorimotor cortex. Nevertheless, we 
show that some strategies, such as individual finger move-
ment, movement direction, complex hand movements, and 

http://www.clinicaltrials.gov/ct2/show/NCT009120
http://www.clinicaltrials.gov/ct2/show/NCT009120
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movement trajectories can be most accurately discrimi-
nated from the SMC and are, therefore, the most promis-
ing candidates for BCI control. The broad evidence for the 
encoding of multiple parameters suggests that movement 
should likely be interpreted as a combination of multiple 
parameters and that more complex mechanistic models 
may be the key to describe motor behavior. Future work 
should evaluate the decoding performance using these 
strategies, its stability in chronic long- term BCIs, as well 
as the online implementation of control models to improve 
decoding of natural movements.
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