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Abstract: Copper (Cu) is essential for multiple biochemical processes, and copper sulphate (CuSO4) is a
pesticide used for repelling pests. Accidental or intentional intoxication can induce multiorgan toxicity
and could be fatal. Curcumin (CUR) is a potent antioxidant, but its poor systemic bioavailability is the
main drawback in its therapeutic uses. This study investigated the protective effect of CUR and N-CUR
on CuSO4-induced cerebral oxidative stress, inflammation, and apoptosis in rats, pointing to the
possible involvement of Akt/GSK-3β. Rats received 100 mg/kg CuSO4 and were concurrently treated
with CUR or N-CUR for 7 days. Cu-administered rats exhibited a remarkable increase in cerebral
malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 associated with decreased GSH, SOD, and
catalase. Cu provoked DNA fragmentation, upregulated BAX, caspase-3, and p53, and decreased BCL-2
in the brain of rats. N-CUR and CUR ameliorated MDA, NF-κB p65, and pro-inflammatory cytokines,
downregulated pro-apoptotic genes, upregulated BCL-2, and enhanced antioxidants and DNA integrity.
In addition, both N-CUR and CUR increased AKT Ser473 and GSK-3β Ser9 phosphorylation in the
brain of Cu-administered rats. In conclusion, N-CUR and CUR prevent Cu neurotoxicity by attenuating
oxidative injury, inflammatory response, and apoptosis and upregulating AKT/GSK-3β signaling. The
neuroprotective effect of N-CUR was more potent than CUR.
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1. Introduction

Copper (Cu) is a redox-active metal found in many organs and tissues. It is essential
for a plethora of biochemical processes such as blood clotting, iron absorption, protein
homeostasis, energy production, and cellular metabolism [1]. It acts as a cofactor necessary
for many redox-regulating proteins [2]. Cu homeostasis is maintained within the normal
level by precise regulatory mechanisms that regulate its absorption, excretion, and blood
level [3]. Genetic alteration in Cu-regulating ATPases, ATP7A, and ATP7B can cause
Menkes disease (MD) and Wilson disease (WD), respectively [2,4,5]. MD is associated with
a defect in Cu absorption and severe Cu deficiency, while WD results in Cu toxicity and
affects several organs, including the liver, brain, and eye [2]. Chronic exposure to Cu has
been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer’s
disease [6], Parkinson’s disease [7], and familial amyotrophic lateral sclerosis (ALS) [2,8].

Copper sulphate (CuSO4) is a well-known pesticide used for repelling pests that
decreases the crop yield in agriculture. It is commonly used in tissue culture incubators to
minimise the contamination risk as it has bactericidal and fungicidal properties. Accidental
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or intentional CuSO4 intoxication can induce multiorgan dysfunctions that could be fatal.
The systemic absorption of Cu occurs through the gastrointestinal tract, lungs, and skin [9].
The clinical manifestations of Cu toxicity are erosive gastropathy, acute liver and kidney
injuries, intravascular hemolysis, arrhythmia, rhabdomyolysis, and seizures [10]. Although
the mechanisms of CuSO4 toxicity are not fully addressed, they represent a combination
of significant oxidative stress and endocrine perturbation in the vulnerable organs of the
body [11]. Animal studies showed that the chronic oral administration of CuSO4 causes liver
and kidney functional impairment due to increased Cu levels in the respective organs [12].
The toxic effects of Cu on the liver and kidney have been studied extensively, while the
toxicities of other vital organs of the body are less documented. Similar to other metals, the
management of Cu toxicity includes the use of chelating agents such as D-penicillamine,
tetrathiomolybdate, and trientine [13]. Other chelators such as deferoxamine (DFO) have
an affinity for Cu binding [14]. Despite the effectiveness of these chelators, they often
associated with some serious adverse effects on cardiovascular, gastrointestinal, respiratory,
and nervous systems, which necessitates the use of safer alternatives. In addition, the
limited or moderate effectiveness of these chelators has been found in some cases.

Curcumin (CUR) is a hydrophobic polyphenolic compound found natively in tu-
rmeric [15]. It exhibits antioxidant [16], antimicrobial [17], anti-inflammatory, pulmoprotec-
tive [18], anti-diabetic [19], hepatoprotective [20–22], nephroprotective [23], and antitumor
actions [24]. In addition to these pharmacological effects, CUR possesses neuroprotective
activity where it protected the brain against oxidative injury induced by heavy metals [25].
CUR–cyclodextrin/cellulose nanocrystals (CNCx) exerted more potent antiproliferative
effect on prostate and colorectal cancer cell lines than CUR [26]. In addition, CNCx miti-
gated oxidative stress and improved myelination, and the cellular, electrophysiological, and
functional characteristics of Charcot–Marie–Tooth-1A transgenic rats [27]. Recently, Iurciuc-
Tincu et al. have immobilized CUR into polysaccharide particles and reported increased
stability and bioavailability [28,29]. CUR loading to polysaccharides facilitated overcoming
the gastric juice barrier and efficient absorption in the intestine [28,29]. CUR has shown a
modulatory effect on glycogen synthase kinase-3 (GSK-3) activity [30], and we have recently
reported the involvement of GSK-3β inhibition in mediating its protective efficacy against
lead hepatotoxicity [20]. GSK-3β is implicated in neuronal survival; however, the exact
mechanism is not clear-cut [31]. Studies have demonstrated increased neuronal death fol-
lowing the overexpression of GSK-3β [32], whereas its knockdown prevents apoptosis [33].
Despite the potent pharmacological effects of CUR, its poor systemic bioavailability and
rapid metabolism represent the main drawbacks in its therapeutic uses, which is a problem
that was amended by nanoparticle encapsulation [34]. In comparison to the native form,
nano-CUR (N-CUR) has a higher solubility and stability but similar activity [15]. Therefore,
this nanoformulation can significantly enhance the cell permeability and show more protec-
tive effects in vitro and in vivo. This study was conducted to investigate the involvement of
the Akt/GSK-3β pathway in CuSO4-induced cerebral oxidative stress, inflammation, and
apoptosis in rats and the ameliorative effect of CUR and N-CUR.

2. Results
2.1. N-CUR and CUR Attenuate Cu-Induced Cerebral Oxidative Stress

The ameliorative effect of CUR and N-CUR on oxidative stress in the brain of Cu-
exposed rats was evaluated through the assessment of malondialdehyde (MDA), re-
duced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Cerebral
MDA was significantly elevated in Cu-administered rats when compared with the control
group (p < 0.001; Figure 1A). In contrast, cerebral GSH content (Figure 1B), SOD activ-
ity (Figure 1C), and CAT activity (Figure 1D) were decreased in Cu-administered rats
(p < 0.001). Treatment with DFO, CUR, and N-CUR decreased MDA and increased GSH,
SOD, and CAT in the brain of Cu-administered rats. The effect of both CUR and N-CUR on
cerebral MDA was significant compared to DFO (p < 0.01).
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6 as compared to either DFO or CUR. 

Figure 1. N-CUR and CUR attenuate Cu-induced cerebral oxidative stress. Treatment with N-CUR,
CUR, and DFO decreased MDA (A) and increased GSH (B), SOD (C), and CAT (D) in the brain of
Cu-administered rats. Data are mean ± SEM, (n = 8). * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.2. N-CUR and CUR Suppress Cerebral Inflammation in Cu-Administered Rats

Cerebral levels of NF-κB p65, TNF-α, and IL-6 were assayed to determine the amelio-
rative effect of CUR and N-CUR on inflammation induced by Cu ingestion (Figure 2). Cu
administration increased NF-κB p65 (Figure 2A), TNF-α (Figure 2B), and IL-6 (Figure 2C)
in the cerebrum of rats (p < 0.001). All treatments (DFO, CUR, and N-CUR) decreased the
levels of cerebral NF-κB p65, TNF-α, and IL-6 significantly (p < 0.001). N-CUR was more
effective in decreasing cerebral NF-κB p65 (p < 0.05) than DFO, and TNF-α, and IL-6 as
compared to either DFO or CUR.
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Figure 2. N-CUR and CUR suppress inflammation in Cu-administered rats. Treatment with N-CUR,
CUR, and DFO decreased cerebral (A) NFκB p65, (B) TNF-α, and (C) IL-6. Data are mean ± SEM,
(n = 8). * p < 0.05, ** p < 0.01 and *** p < 0.001.
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2.3. N-CUR and CUR Prevent Apoptosis in Cu-Administered Rats

The expression levels of BAX, caspase-3, and p53 were significantly increased in the
cerebrum of rats exposed to Cu as compared to the control group, as depicted in Figure 3.
In contrast, rats administered with Cu exhibited a remarkable downregulation of cerebral
BCL-2 expression. DFO, CUR, and N-CUR significantly downregulated BAX, p53, and
caspase-3 and upregulated BCL-2 in the cerebrum of Cu-administered rats. The effect of
N-CUR on BAX and BCL-2 was significant when compared with CUR, whereas its effect
was more potent on BAX, caspase-3, and p53 than the effect of DFO.
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Figure 3. N-CUR and CUR prevent apoptosis in Cu-administered rats. (A) Representative blots showing
changes in the expression of BAX, BCL-2, and caspase-3. (B–E) N-CUR, CUR, and DFO decreased
(B) BAX, increased (C) BCL-2, and downregulated (D) caspase-3, and (E) p53 expression in the brain of
Cu-administered rats. Data are mean ± SEM, (n = 8). * p < 0.05, ** p < 0.01 and *** p < 0.001.

The beneficial effects of CUR and N-CUR against Cu-induced cerebral cell death were
further confirmed via assessment of DNA fragmentation (Figure 4). Cu-administered
rats showed an increase in DNA fragmentation levels as compared to the control group
(p < 0.001). All treatments (DFO, CUR and N-CUR) prevented the deleterious effect of Cu
on DNA integrity.

2.4. N-CUR and CUR Upregulate AKT/GSK-3β Signaling in Cu-Administered Rats

To investigate the effect of Cu and the ameliorative effect of DFO, CUR, and N-CUR
on cerebral AKT/GSK3β signaling, the phosphorylation levels of AKT and GSK3β were
determined using Western blotting (Figure 5). Cu-treated rats exhibited a significant
decrease in pAKT Ser473 and pGSK-3β Ser9 as compared to the normal rats (p < 0.001).
Treatment with DFO, CUR, or N-CUR increased cerebral AKT and GSK-3β phosphorylation
levels. N-CUR exerted a stronger effect on AKT/GSK-3β signaling than DFO and CUR.
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Figure 5. N-CUR and CUR upregulate AKT/GSK-3β signaling in Cu-administered rats. (A) Rep-
resentative blots of pAKT, AKT, pGSK-3β, and GSK-3β. (B,C) N-CUR, CUR, and DFO increased
AKT Ser473 (B) and GSK-3β Ser9 (C) phosphorylation in the brain of Cu-administered rats. Data are
mean ± SEM, (n = 8). *** p < 0.001.

2.5. N-CUR and CUR Upregulate Brain-Derived Neurotrophic Factor (BDNF) in
Cu-Administered Rats

The administration of Cu resulted in a significant downregulation of BDNF expression
in the cerebrum of rats, as shown in Figure 6. Treatment of the Cu-administered rats with
DFO, CUR, or N-CUR increased the levels of cerebral BDNF. While the effect of CUR on
BDNF was significant as compared to DFO, the effect of N-CUR was more potent when
compared to both treatments.
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3. Discussion

Cu is the third most abundant essential transition metal in humans, and the brain is the
second organ containing the highest content after the liver [35]. It is essential for antioxidant
defenses, energy homeostasis, and many other physiological processes [1]. However, it may
cause neurotoxicity and contribute to the pathogenesis of neurodegenerative diseases [1],
where oxidative stress represents the main underlying mechanism [36]. The present results
revealed the development of cerebral oxidative stress manifested by elevated MDA and
decreased GSH, SOD, and CAT in Cu-administered rats.

Cu cycles easily between stable oxidised and unstable reduced states to coordinate
ligands and enzymes and facilitate redox reactions, thereby acting as a cofactor for many
enzymes [37]. Although the redox nature makes Cu essential for many biological processes,
it renders it toxic because of the generation of highly reactive hydroxyl radicals [36]. In
addition, Cu can increase mitochondrial reactive oxygen species (ROS) generation and alter
the activity of respiratory chain enzymes [38]. The generated ROS are potent oxidising
agents that provoke the oxidative damage of lipids, proteins, and DNA [39], leading to
lipid peroxidation (LPO), DNA breaks, and other deleterious effects [40]. Accordingly,
LPO was elevated and GSH, SOD, and CAT were declined in the brain of Cu-administered
rats in the present study. Given the role of oxidative stress in mediating Cu toxicity, CUR
can suppress neurotoxicity via its radical-scavenging and antioxidant properties. Here,
rats that received CUR and N-CUR exhibited a remarkable reduction in cerebral MDA
levels and enhanced GSH, SOD, and CAT. The antioxidant efficacy of CUR has been
reported in numerous studies that employed animal models of neurotoxicity induced by
D-galactosamine, fluoride, formaldehyde, rotenone, vincristine, tetrachlorobenzoquinone,
pentylenetetrazole, acrylamide, and other agents (reviewed in [41]). In addition, CUR
reduced cerebellar LPO in lead-intoxicated rats [25]. These beneficial effects were attributed
to the potent radical-scavenging activity of CUR. The activation of nuclear factor erythroid
2-related factor 2 (Nrf2), a redox-sensitive factor that regulates antioxidant genes and
suppresses oxidative stress [42], might also have a role in the neuroprotective activity of
CUR. In this context, CUR enhanced Nrf2 and antioxidant defenses in rat cerebellar granule
neurons challenged with hemin [43] and quinolinic acid-induced neurotoxicity [44].

The upregulation of BDNF in the brain of Cu-administered rats treated with CUR and
N-CUR might have a role in boosting the antioxidant defenses through Nrf2 activation.
In accordance, a recent study demonstrated that CUR increased BDNF in the brain of
quinolinic acid-intoxicated rats, and this activated ERK1/2 and consequently enhanced
Nrf2 expression and GSH levels [44]. BDNF belongs to the neurotrophin family and is
involved in the maintenance of adult neuronal function [45]. In astrocytes, BDNF has
been proposed to play a role in regulating Nrf2 and their metabolic cooperation between
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neurons [46]. In a model of traumatic brain injury with transplanted neuronal stem cells,
BNDF induced Nrf2-mediated antioxidant response [47]. Therefore, this study introduced
new information that the upregulation of BDNF plays a role, at least in part, in the protective
effect of CUR against Cu neurotoxicity and that N-CUR has a stronger effect on modulating
BDNF expression. However, the lack of data showing changes in Nrf2 expression could be
considered a limitation of this study.

In addition to the attenuation of oxidative stress, CUR and N-CUR suppressed NF-κB
and pro-inflammatory cytokines in the brain of Cu-administered rats. The inflammatory
response observed in Cu-administered rats is a direct consequence of excessive ROS gener-
ation. The activation of NF-κB and subsequent release of many inflammatory mediators
occur as a result of increased cellular ROS [48]. The pro-inflammatory action of Cu is
driven by its potential to catalyse ROS generation and decreasing GSH [36], which is an
effect reported in the present study. CUR and N-CUR effectively ameliorated cerebral
inflammation in Cu-administered rats. N-CUR decreased the levels of TNF-α and IL-6
significantly when compared with CUR, demonstrating enhanced anti-inflammatory ac-
tivity of the nano form. The ability of CUR to suppress inflammation has been reported
in several studies. In a rat model of acrylamide neurotoxicity, Guo et al. [49] showed that
CUR attenuated neuroinflammation by decreasing TNF-α and IL-1β levels. In addition,
CUR decreased circulating TNF-α in an animal model of lead neurotoxicity [50].

Apoptotic cell death was observed in the brain of Cu-administered rats in the present
study. BAX, caspase-3, and p53 were upregulated, whereas the anti-apoptotic BCL-2 was
declined in the brain of rats as a result of Cu ingestion. Cu-mediated ROS generation
induces mitochondrial permeability transition in astrocytes [51] and hepatocytes [52], lead-
ing to cell death via apoptosis. Excess ROS can activate the pro-apoptotic protein BAX,
which increases cytochrome c release by promoting the loss of membrane potential via
mitochondrial voltage-dependent anion channel [53]. Oxidative stress can also provoke
p53 nuclear accumulation and its binding to specific DNA sequences, leading to the tran-
scription of genes involved in cell death [54] and the release of mitochondrial cytochrome c
and the activation of caspases [55]. In contrast, BCL-2 suppresses the release of cytochrome
c and prevents apoptosis [56]. CUR downregulated the pro-apoptotic factors and increased
BCL-2 expression, demonstrating an anti-apoptotic effect that is a direct consequence of its
antioxidant and anti-inflammatory properties. The effect of N-CUR on BAX and BCL-2
expression was more potent than CUR. The cytoprotective efficacy of CUR has been re-
ported in a Drosophila model of Huntington’s disease [57]. In this model, CUR competently
ameliorated neurodegeneration, cytotoxicity, and the compromised neuronal function [57].

To further explore the mechanism underlying the neuroprotective effect of CUR in
Cu-administered rats and whether N-CUR is more potent, we determined their effect
on AKT/GSK-3β signaling. The phosphorylation of AKT Ser473 and GSK-3β Ser9 was
decreased in the brain of Cu-administered rats. While CUR ameliorated the altered phos-
phorylation levels of these proteins, N-CUR remarkably activated AKT/GSK-3β signaling.
Activated AKT mediates the regulation of different processes, including cell growth and
proliferation through the phosphorylation of GSK-3, mTOR, NF-κB, and other proteins [58].
AKT controls the activity of GSK-3β, which is active in resting cells, through phosphoryla-
tion at Ser9 [59]. Increased GSK-3β activity provoked liver injury [60], whereas its inhibition
accelerated the generation of hepatocytes and protected against acetaminophen [61] and
lead toxicity [62]. In neuronal cells, the overexpression of GSK-3β induced apoptosis [32,63],
demonstrating its crucial role in cell death. BAX phosphorylation has been suggested to
be stimulated through GSK-3, and the mutation of GSK-3 inhibited BAX mitochondrial
translocation [64]. Moreover, GSK-3 can work in concert with JNK to orchestrate neuronal
apoptosis [65]. In the current study, Cu ingestion decreased AKT Ser473 and GSK-3β Ser9
phosphorylation. Reduced inhibition of GSK-3β through its phosphorylation at Ser9 due
to suppressed AKT coincides with the observed upregulation of BAX and other mediators
of apoptosis. Therefore, the neuroprotective effect of CUR could be directly connected to
its ability to activate AKT, which then inhibits GSK-3β-mediated apoptosis. Accordingly,
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activation of the AKT/GSK-3β signaling by CUR conferred protection against liver injury
induced by heavy metals [20]. In support of our findings, computational approaches have
demonstrated that CUR inhibits GSK-3β by fitting into its binding pocket [66,67]. This
inhibitory effect has been confirmed by an in vitro study showing that the IC50 of CUR’s
inhibitory activity was 66.3 nM [66]. Furthermore, studies demonstrating the effect of CUR
on GSK-3 activity in several diseases have been reviewed by McCubrey et al. [30].

In addition to the findings of this study, Balasubramanian [68,69] presented important
quantum chemical insights into the neuroprotective mechanism of CUR and its efficacy to
prevent Alzheimer′s disease. The dual property of CUR to be nonpolar in parts and polar
in other parts is due to the presence of both phenolic and enolic protons combined with an
aliphatic hydrophobic bridge. This property enables CUR to cross the blood–brain barrier
(BBB) and bind to and prevent the polymerisation of amyloid-β (Aβ) oligomers [69]. By
employing quantum chemical computations, Balasubramanian [68] studied the chelate
complexes of CUR with Cu(II) and other transition metal ions that provoke the polymeri-
sation of Aβ and formation of neurotoxic conformations, reporting that the β-diketone
bridge, through the loss of an enolic proton of CUR, is the primary site of chelation. CUR
can form stable chelate complexes at the β-diketone bridge, thereby scavenging neurotoxic
metal ions and inhibiting Aβ polymerisation and the subsequent generation of neurotoxic
conformations [68]. Moreover, the ability of piperine, an alkaloid present in black pep-
per, to enhance the bioavailability and neuroprotective efficacy of CUR is noteworthy of
mention. Through the use of quantum chemical and molecular docking, Patil et al. [70]
demonstrated that piperine increased the bioavailability of CUR (20-fold) by inhibiting the
enzymes mediating CUR glucuronosylation and by intercalating into CUR layers through
intermolecular hydrogen bonding [70]. These processes enhance the metabolic transport
and consequently the bioavailability of CUR [70]. In support of these findings, Singh
et al. [71] reported the protective effect of CUR with piperine, a bioavailability enhancer,
against neurotoxicity induced by 3-nitropropionic acid (3-NP) in rats. When supplemented
with piperine, CUR improved motor function, attenuated oxidative stress and inflamma-
tory cytokines, and modulated catecholamines and dopamine turnover in the striatum of
3-NP-admninstered rats [71].

4. Materials and Methods
4.1. Chemicals and Reagents

CuSO4, CUR, carboxymethylcellulose (CMC), thiobarbituric acid, agarose, reduced
glutathione (GSH), and pyrogallol were obtained from Sigma (St. Louis, MO, USA).
Liposomal N-CUR was obtained from Lipolife (Essex, UK), and DFO was purchased from
Novartis Pharma AG (Rotkreuz, Switzerland). TNF-α and IL-6 ELISA kits were supplied
by R&D Systems (Minneapolis, MN, USA), and the NF-κB p65 ELISA kit was obtained
from MyBiosource (San Diego, CA, USA). Antibodies against pAKT Ser473, AKT, pGSK-3β
Ser9, GSK-3β, BDNF, and β-actin were supplied by Novus Biologicals (Centennial, CO,
USA). Primers were obtained from Sigma (St. Louis, MO, USA). Other chemicals were
supplied by standard manufacturers.

4.2. Animals and Treatments

Forty male Wistar rats, weighing 180–200 g, were obtained from the Animals Care
Centre at King Saud University. The animals were given free access to food and water
and acclimatised for one week under standard conditions and 12 h light/dark cycle and
free access to food and water. All experimental procedures were conducted in accordance
with the requirements of the research ethics Committee at King Saud University (Ethical
reference no. SE-19-129). After acclimatisation, the rats were randomly allocated into five
groups (n = 8) as follows:

• Group I (Control): received 1% CMC orally for 7 days.
• Group II (CuSO4): received 100 mg/kg CuSO4 dissolved in 1% CMC orally for

7 days [12].
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• Group III (DFO): received DFO (23 mg/kg) [72] and 100 mg/kg CuSO4 orally for
7 days.

• Group IV (CUR): received 80 mg/kg CUR suspended in 1% CMC [9,72] and 100 mg/kg
CuSO4 orally for 7 days.

• Group V (N-CUR): received 80 mg/kg N-CUR suspended in 1% CMC [9,72] and
100 mg/kg CuSO4 orally for 7 days.

Twenty-four h after the last treatment, the rats were sacrificed under ketamine/xylazine
anesthesia. Blood was collected via cardiac puncture and serum was separated by cen-
trifugation. The rats were dissected, and the brain was removed and kept frozen in liquid
nitrogen. Other parts from the cerebrum were homogenised in cold PBS (10% w/v), cen-
trifuged at 5000 rpm for 15 min at 4 ◦C, and the supernatant was used for assessment of
MDA, GSH, SOD, CAT, TNF-α, IL-6, and NF-κB p65.

4.3. Determination of MDA and Antioxidants

MDA was determined as previously described [73]. GSH, SOD, and CAT were
assayed according to the methods of Ellman [74], Marklund and Marklund [75], and
Cohen et al. [76], respectively.

4.4. Determination of NF-κB p65, TNF-α, IL-6, and p53

NF-κB p65 was assayed using a specific ELISA kit (MyBioSource, San Diego, CA, USA),
and TNF-α and IL-6 were assayed using R&D Systems (Minneapolis, MN, USA) ELISA
kits. p53 was determined using ELISA kit supplied by Novus Biologicals (Centennial,
CO, USA).

4.5. Determination of DNA Fragmentation

Agarose electrophoresis and the colorimetric methods [77] were used to assess DNA
fragmentation. The results were presented as a fold change of the control.

4.6. Gene Expression

Changes in the expression of BAX, BCL-2, and caspase-3 were determined by RT-PCR
as previously described [78]. Briefly, RNA was isolated from the frozen brain samples
using TRIzol (ThermoFisher Scientific, Waltham, MA, USA). Following treatment with
RNase-free DNase (Qiagen, Hilden, Germany), RNA was quantified using a nanodrop.
RNA samples with OD260/OD280 nm ratio of ≥ 1.8 were reverse transcribed into cDNA.
The produced cDNA was amplified using PCR master mix (Qiagen, Hilden, Germany)
and the primer pairs listed in Table 1. The PCR products were loaded in 1.5% agarose gel,
electrophoresed, and the bands were visualised using UV transilluminator. The images
were analysed by ImageJ (version 1.32j, NIH, USA), and the values were normalised
to β-actin.

Table 1. Primers used for RT-PCR.

Gene GenBank Accession Number Primers (5′–3′) Product Size (bp)

BAX NM_017059.2 F: TGGCGATGAACTGGACAACA
R: TGTCCAGCCCATGATGGTTC 223

BCL-2 NM_016993.2 F: GAGGGGCTACGAGTGGGATA
R: CAATCCTCCCCCAGTTCACC 359

Caspase-3 NM_012922.2 F: GAGCTTGGAACGCGAAGAAA
R: GGCAGTAGTCGCCTCTGAAG 472

β-actin XM_039089807.1 F: CACTCCAAGTATCCACGGCA
R: TGCCTCAACACCTCAAACCA 303
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4.7. Western Blotting

The samples were homogenized in RIPA buffer supplemented with proteinase/phosp-
hatase inhibitors, centrifuged, and protein concentration was determined in the supernatant
using Bradford protein assay kit (BioBasic, Markham, Canada). Forty µg protein from
each sample was subjected to 10% SDS/PAGE and electrotransferred to nitrocellulose
membranes. The membranes were subjected to blocking in 5% milk in TBST followed by
incubation overnight at 4 ◦C with primary antibodies against pAKT Ser473, AKT, pGSK-3β
Ser9, GSK-3β, BDNF, and β-actin. The probed membranes were washed, and secondary
antibodies were added. After washing, the membranes were washed with TBST, developed
using Clarity™ Western ECL Substrate from BIO-RAD (Hercules, CA, USA), and then
visualised in ImageQuant LAS 4000. The band intensity was quantified using ImageJ
(version 1.32j, NIH, USA).

4.8. Statistical Analysis

The obtained data are expressed as mean ± standard error of the mean (SEM). Sta-
tistical analysis was performed by one-way ANOVA and Tukey′s post hoc test using
GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA). A p value < 0.05 was
considered significant.

5. Conclusions

These results confer new information on the protective effect of N-CUR on Cu neu-
rotoxicity. N-CUR and CUR attenuated oxidative stress, inflammation, cell death, and
oxidative DNA damage in the brain of Cu-administered rats. The modulatory effect of N-
CUR and CUR on AKT/GSK-3β signaling was involved, at least in part, in their protective
activity against Cu neurotoxicity. The neuroprotective effect of N-CUR was stronger when
compared to the native form, which is an effect that could be attributed to the improved
properties of CUR.
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