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Abstract

Single-nucleotide polymorphisms (SNPs) in over 180 loci have been associated with

breast cancer (BC) through genome-wide association studies involving mostly unse-

lected population-based case-control series. Some of them modify BC risk of women

carrying a BRCA1 or BRCA2 (BRCA1/2) mutation and may also explain BC risk variabil-

ity in BC-prone families with no BRCA1/2 mutation. Here, we assessed the contribu-

tion of SNPs of the iCOGS array in GENESIS consisting of BC cases with no BRCA1/2

mutation and a sister with BC, and population controls. Genotyping data were avail-

able for 1281 index cases, 731 sisters with BC, 457 unaffected sisters and 1272 con-

trols. In addition to the standard SNP-level analysis using index cases and controls,

we performed pedigree-based association tests to capture transmission information

in the sibships. We also performed gene- and pathway-level analyses to maximize the

power to detect associations with lower-frequency SNPs or those with modest effect

sizes. While SNP-level analyses identified 18 loci, gene-level analyses identified

112 genes. Furthermore, 31 Kyoto Encyclopedia of Genes and Genomes and 7 Atlas
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of Cancer Signaling Network pathways were highlighted (false discovery rate of 5%).

Using results from the “index case-control” analysis, we built pathway-derived poly-

genic risk scores (PRS) and assessed their performance in the population-based

CECILE study and in a data set composed of GENESIS-affected sisters and CECILE

controls. Although these PRS had poor predictive value in the general population,

they performed better than a PRS built using our SNP-level findings, and we found

that the joint effect of family history and PRS needs to be considered in risk predic-

tion models.

K E YWORD S

familial breast cancer, single-nucleotide polymorphism, systems biology, association study

1 | INTRODUCTION

One of the strongest risk factors for the development of breast can-

cer (BC) is having a close relative affected with the disease. On the

basis of the increased risk of BC in first-degree relatives of a woman

with BC and segregation studies on BC cases in the families of

affected women, it was estimated that 5% of these women carry a

genetic predisposition factor transmitted according to a Mendelian

dominant model.1 Following the cloning of BRCA1 and BRCA2

(BRCA1/2) 25 years ago, diagnostic testing for pathogenic variants

(or “mutation”) in these two major BC susceptibility genes involved

in DNA damage response and DNA repair has been routine clinical

practice in many developed countries. It has facilitated risk estima-

tion and implementation of cancer prevention strategies and has

now the potential to influence cancer therapy.2,3 More recently,

other BC susceptibility genes have been identified essentially

through resequencing of candidate genes investigated because of

their direct or indirect functional link with BRCA1 and BRCA2

(PALB2, ATM, CHEK2, etc.),4-10 and BC risk associated with patho-

genic variants in these genes ranges from elevated like BRCA1/2 to

moderate like ATM. In the meantime, common modest-risk single-

nucleotide polymorphisms (SNPs) located in over 180 loci were

detected by genome-wide association studies (GWAS). Combined as

polygenic risk scores (PRS), these SNPs would explain about 10% of

familial clustering.11-13 However, taking together all genetic varia-

tions involved in BC susceptibility, about 50% of the familial relative

risk for BC remains unexplained. Given current data, it is very likely

that the remaining familial aggregation of BC will be explained by

many genetic alterations with a wide spectrum of associated risks,

possibly in combination with other factors such as lifestyle or

environmental-related factors.

Today, the search for new BC susceptibility variants seems to be

in a dead end, where increasing the size of the studies has reached its

limits and does not seem to bring new discoveries, and where alterna-

tive strategies must be developed. Here, we proposed to use multi-

level approaches including single-variant, gene- and pathway-level

analyses to maximize the power to detect modest effect sizes or

lower-frequency BC predisposing variants,14 to explore the coherence

in findings, and to get further insight into the underlying molecular

mechanisms involved in BC susceptibility. In addition, we built new

PRS for BC prediction based on pathway analyses and evaluated their

performance.

2 | MATERIAL AND METHODS

2.1 | Study participants

The studied population consisted of women participating in GENESIS

(GENE SISters), a French resource for familial BC research.15 In brief,

1721 women affected with breast adenocarcinoma, not carrying a

pathogenic variant in BRCA1 and BRCA2, and having at least one sister

with BC were enrolled in the study between 2007 and 2013 through

the national network of cancer genetics clinics (http://www.

unicancer.fr/en/unicancer-group). Affected sisters (N = 826), unaf-

fected sisters (N = 599) and unrelated cancer-free friends or col-

leagues of index cases (controls) were also included (N = 1419). These

latter were aged-matched (±3 years) to cases at interview. Blood sam-

ples, clinical, familial and epidemiological data were collected for each

What's new?

Genetic studies have identified more than 180 single-

nucleotide polymorphisms (SNPs) associated with breast

cancer susceptibility, but these studies are reaching their

limits. Here, the authors evaluated SNPs in the iCOGS

genotyping array using a multilevel approach, including single

variant, gene, and pathway analyses. They measured the

contribution of the SNPs to breast cancer in patients who

have a sister with breast cancer but do not carry a BRCA1/2

mutation. They showed that a pathway-derived polygenic

risk score performed poorly in the general population, and

that the best predictive model must include family history.

LONJOU ET AL. 1897

http://www.unicancer.fr/en/unicancer-group
http://www.unicancer.fr/en/unicancer-group


participant. Information about ethnic origin was self-reported by study

subjects. Here we focused our analyses on subjects of European ori-

gin; those represented over 98% of the GENESIS population. After

quality control (QC) procedures (see Section 2.3), we analyzed

genotyping data from 1281 index cases, 731 affected sisters,

457 unaffected sisters and 1272 unrelated controls.

Validation of the pathway-specific PRS was performed in the

CECILE population. CECILE is a population-based case-control study

which was conducted in Côte d'Or and Ille-et-Vilaine, two administra-

tive areas (départements) located in Eastern and Western parts of

France, respectively.16 Cases were BC patients aged 25 to 75 years,

with histologically confirmed invasive or in situ breast carcinoma

diagnosed between 2005 and 2007. A total of 1232 incident BC

cases and 1317 controls were enrolled in the study. Controls were

selected from the general population among women living in the

same areas with no personal history of BC. They were frequency-

matched to the cases by 10-year age group and study area. A face-

to-face interview with a trained nurse was conducted for all cases

and controls. A standardized questionnaire was used to obtain infor-

mation on hormonal and reproductive factors, personal medical his-

tory, family history of cancer. A blood sample was also collected

during interview. iCOGS genotyping data were available for 1019

cases (of which 900 cases had invasive tumors and 119 had in situ

tumor) and 999 controls.16 Demographic and clinical characteristics

of GENESIS and CECILE women included in the analyses are pres-

ented in Table S1.

2.2 | Strategy

We performed data mining of SNPs on the iCOGS array17,18 in the

GENESIS well-characterized population which includes familial BC

cases with no BRCA1/2 pathogenic variant, affected and unaffected

sisters and cancer-free friends or colleagues serving as controls.15 We

employed both unrelated case-control and pedigree-based designs at

single-variant, gene and pathway levels. We also performed protein-

protein interaction (PPI) analysis to identify genetic variation affecting

common pathways and to compare results obtained with the different

approaches.

We next assessed whether the cumulative effect of uncorrelated

SNPs in genes of the identified BC-associated pathways, expressed as

PRS, had predictive ability for BC by applying receiver-operating char-

acteristic (ROC) analysis to the CECILE-independent data set involving

unselected BC cases and controls from the French population.16

Finally, we also evaluated performance of the pathway-specific PRS in

a data set composed of the GENESIS-affected sisters and CECILE

controls. Figure S1 illustrates the study design.

2.3 | Genotyping and QC procedures

All study participants from GENESIS and CECILE were genotyped

using the custom iCOGS array (Illumina Inc., San Diego, California)

targeting 211 155 SNPs throughout the genome. The array was

designed in collaboration between the PRACTICAL, Breast Cancer

Association Consortium (BCAC), Ovarian Cancer Association Consor-

tium and Consortium of Investigators of Modifiers of BRCA1/2 con-

sortia. Genotyping of CECILE samples was performed in the context

of studies conducted by BCAC, and these data contributed to the

published GWAS.19 Detailed information about the design,

genotyping and QC procedures for iCOGS can be found within the

original publication.20 Genotyping of GENESIS samples was per-

formed subsequently at Genome Quebec and analyzed separately. In

GENESIS, genotype calling was performed using Illumina

GenomeStudio 2010 (Illumina Inc.). SNPs were excluded if genotyping

rate was lower than 90%, or minor allele frequency (MAF) was <0.001

in the whole data set, or Hardy-Weinberg equilibrium was rejected

(P < .001) in controls.

In order to identify potential duplicates and check for relatedness

between study participants, kinship coefficients were calculated

between all pairs of individuals with the –genome –genome-full com-

mand of PLINK21 using a subset of 81 057 independent SNPs (with

MAF ≥0.07 and r2 < .5).

2.4 | SNP-level analysis

SNPs were first tested individually using PLINK version 1.7.21 Odds

ratios (OR) were calculated for allelic model (a vs A). In the case-

control analysis, reported P values are adjusted for age at diagnosis

for cases and age at inclusion for controls. Multiple testing was taken

into account by using Benjamini and Hochberg's procedure to com-

pute the false-positive discovery rate (FDR), with a significance

threshold of 0.05 (PFDR).
22 Family-based association tests were carried

out using the “dfam” option of PLINK. This method implements the

sib-transmission disequilibrium test and also allows for unrelated indi-

viduals to be included via a clustered analysis using the Cochran-Man-

tel-Haenszel method.23

2.5 | Gene-level analysis

Gene-level analyses were performed using VEGAS2 (version

2, https://vegas2.qimrberghofer.edu.au/vegas2v2), a versatile gene-

based test for GWAS,24,25 which performs gene-based tests based on

association test from single-variant analyses and accounts for linkage

disequilibrium (LD) between SNPs and the number of SNPs tested to

avoid an increase in false-positive results due to genes with multiple,

highly correlated markers. The method tests the evidence for associa-

tion on a per-gene basis by summarizing either the full set of SNPs in

the gene or a subset of the most significant SNPs. Here the 10% most

significant SNPs in a gene were used. The results shown were

obtained using GENESIS unrelated controls as reference data set for

LD calculation. We considered a SNP to belong to a gene if it is

located within 50 kb on either side of the gene's transcribed region,

which we found to be a good balance between incorporating short-
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range regulatory variants while maintaining the specificity of the

result for a specific gene, as variants associated with neighboring

genes can influence the test statistics for the gene of interest.

VEGAS2 algorithm assigns SNPs to genes and calculates gene-based

empirical association P values (PGENE) while accounting for the LD

structure within the gene.

SNPs were annotated using ANNOVAR.26 Among the 197 182

analyzed iCOGS SNPs, 161 907 (82.1%) are located in the coding

sequence of the genome or within 50 kb on either side of a gene's

transcribed region according to the position information obtained

from GENCODE Release 28 (https://www.gencodegenes.org/

releases/current.html).

2.6 | PPI analysis

Analysis was performed using Disease Association Protein-Protein

Link Evaluator (DAPPLE, version 19 and hg19 reference map) to

investigate physical connections between proteins.27 DAPPLE

searches the InWeb database for PPI that have been reported in the

literature and assigns a score reflecting the probability of being physi-

cally connected. The InWeb database compiles PPI data from numer-

ous sources including Reactome, IntAct, the Molecular Interaction

Database, the Biomolecular Interaction Network Database and Kyoto

Encyclopedia of Genes and Genomes (KEGG).27 DAPPLE is designed

to analyze disease-associated SNPs or genes on the basis that

disease-causing genetic variation is likely to affect common pathways

that may be revealed by PPI.27 Based on these interactions, DAPPLE

forms networks of physical protein-protein connectivity where pro-

teins are nodes connected by edges that represent interactions in the

InWeb database. Here gene lists were provided as input. In DAPPLE,

protein products of genes are scored based on their participation in

direct or indirect networks. These scores are Bonferroni corrected for

two tests if a protein participates in both direct and indirect networks

(Pcorr),
27 and the best score is assigned.

2.7 | Pathway-level analysis

Pathway-level analyses were performed using the set-based test

implemented in PLINK.21 This test is a self-contained test which uses

raw genotypes as input data; it calculates the average of test statistics

as the pathway enrichment scores, using independent and significant

(by preselected P value cutoff) SNPs in the pathway.26 Here we consid-

ered as significant SNPs with empirical P value (PEMP) ≤.05 in the case-

control and/or the family-based association test. For each pathway,

independent SNPs are first identified (r2 < .5), and from these an aver-

age statistic is calculated. The statistical significance of a pathway is

computed using permutation, thereby efficiently correcting by the num-

ber of SNPs and the LD structure within the pathway. In order to

account for the number of pathways tested, the FDR method was used.

In the present study, we used the reference biological pathway

annotation databases KEGG,28,29 which is a collection of manually

curated pathway maps, and Atlas of Cancer Signaling Network

(ACSN)30 which describes tailored maps of molecular processes

involved in cancer, to define the gene sets involving at least five

genes.

With KEGG definitions (as of July 2018), a total of 319 curated

biological pathways were tested. These pathways are organized into

six maps (metabolism, genetic information processing, environmental

information processing, cellular processes, organismal systems and

Human diseases) and 48 subgroups. For ACSN, we used version

ACSN2.0 (release 2018) and tested 121 cancer modules (pathways).

These modules are organized into 10 maps (adaptive immune

response, angiogenesis, cell cycle and DNA repair, cell survival, EMT

and cell senescence, fibroblasts, innate immune response, invasion

and motility, regulated cell death, telomere maintenance).

2.8 | Pathway-derived PRS calculation and
performance

To build each pathway-derived PRS, we considered all pathways with

PEMP ≤ .05 in the case-control analysis and first selected the SNPs

contributing to the associated pathway based on results of the PLINK

set-based test. Then to create global PRS for KEGG (PRSKEGG) and

ACSN (PRSACSN), we combined the SNPs from the different selected

pathways and applied the LD-driven clumping procedure from PLINK

to exclude SNPs in strong LD (r2 ≥ .8). Pathway-derived PRS were cal-

culated for each individual with the PLINK –score command using the

following equation: PRSi =
Pk

n=1ln (ORn) * Ci,n, where i represents

the individual whose score is calculated by summing over all SNPs n in

the pathway ranging from the first SNP 1 to the last SNP k; ORn is the

odds ratio of the risk allele for SNPn obtained in the GENESIS case-

control data set, and Ci,n is the individual's count of risk alleles for

SNPn (0, 1 or 2). A higher PRS corresponds with having more risk

alleles and thus, a higher amount of genetic risk for BC.

For each pathway-derived PRS, the ability of the model to dis-

criminate between case and control individuals was evaluated by ROC

curves, representing the sensitivity as a function of 1-specificity, using

the R package “pROC,” and the correlation between variables by

Pearson's coefficient. The area under the receiver-operator curves

(AUC), which is the probability that the predicted risk is higher for a

case individual than for a control individual and ranges from 0.5

(equivalent to a coin toss) to 1.0 (perfect discrimination) was calcu-

lated for the different data sets.

3 | RESULTS

In the standard GENESIS case-control analyses, only index cases and

unrelated controls were used, while all genotyped women, affected

and unaffected, were used in the family-based analyses. The genomic

control inflation factor31 which tests for population stratification, was

close to 1 indicating the absence of population stratification in our

data set (data not shown).
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3.1 | SNP-level analysis

In the case-control analysis, no SNP reached the standard genome-wide

significance P value threshold of 5 × 10−8 (Figure 1). However, after

correction for multiple testing, SNPs at loci 3p24.1 (NEK10/SLC4A7),

6q23.3 (ARFGEF3) 10q26.13 (FGFR2) and 16q12.1 (TOX3/CASC16)

were associated with BC risk with PFDR < .05. Among these four loci,

3p24.1, 10q26.13 and 16q12.1 had been identified in the large-scale

GWAS conducted by the BCAC19 while locus 6q23.3 was new. Results

of the association test for the top SNP at each associated locus are

presented in Table 1. This table also shows results of the family-based

analysis. This latter analysis confirmed association with the new locus at

6q23.3, while the signal was not significant after correction for multiple

testing at 3p24.1, 10q26.13 and 16q12.1 (PFDR < .05). In addition, the

family-based association test further identified significant SNPs at

14 loci for which mainly suggestive association was found in the case-

control analysis (Figure 1). Among those, two SNPs were located within

loci 11q13.3 and 12q24.21 that had been previously identified by the

BCAC and top SNPs at 13 loci had MAF lower that 0.03 in GENESIS

controls (Table S2). Summary statistics for the 72 SNPs with

PFDR ≤ .05 in the standard case-control analysis or in the family-based

analysis are provided in Table S3. We found that 17 genes located in

14 of the top 18 loci were probably biologically connected as the PPI

networks formed by genes tagged by these SNPs had significant direct

and/or indirect connectivity (Pcorr < .05, based on 1000 network

resampling) (Figure 2A and Table S4).

3.2 | Gene-level analysis

To better characterize the molecular and cellular mechanisms involved

in the pathogenesis of BC, we next focused on the subset of iCOGS

SNPs tagging 32 444 genes, coding RNA, pseudogenes, miRNA or

LncRNA (Table S5). The gene-level analysis identified 112 genes with

PGENE ≤ .001 either in the case-control analysis or in the family-based

analysis (Table S6). Among the top 112 genes, only 8 are located in a

region highlighted previously in the SNP-level analysis (Table S4),

demonstrating the advantage of the gene-level analysis to highlight

new candidates. Of the 112 genes, 30 are directly or indirectly con-

nected in a PPI network (Figure 2B). To get a more general overview

of the interconnections between genes identified in the gene-level

analysis and candidate genes at loci identified in the SNP-level analy-

sis, we also constructed a PPI network combining results obtained

with the two approaches. The final network including 41 genes is

shown in Figure 2C and the DAPPLE score for each gene, reflecting

its participation in the network (Pcorr) is provided in Table S4.

Furthermore, we interrogated whether iCOGS SNPs in or nearby

the 112 top ranked genes were acting as cis-eQTLs using independent

mRNA expression data from 1092 breast invasive carcinomas from

the Cancer Genome Atlas available through PancanQTL project.32 We

found cis-eQTLs for AKNAD1 (1p13.3), GPSM2 (1p13.3), NEK10

(3p24.1), SLC4A7 (3p24.1), CDC25A (3p21.31), ADCY5 (3q21.1),

ALDH5A1 (6p22.3), HSPA14 (10p13), PLCE1 (10q23.33), UCP3

(11q13.4), TOX3 (16q12.1), MAP2K3 (17p11.2) and FBXO7 (22q12.3),

F IGURE 1 Miami plot of single-nucleotide polymorphism (SNP) association with breast cancer. A, Results of the case-control analysis.
B, Results of the family-based association test. −log10 P values for SNP associations are plotted against the genomic coordinates (hg19). The red
lines indicate the 10−5 threshold. Green points denote SNPs showing suggestive association with breast cancer
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indicating that causal SNPs at the associated loci could alter the regu-

lation of the expression of these 13 genes that therefore represent

good candidates to prioritize for further functional biological studies

(Table S7).

3.3 | Pathway-level analysis

To discover novel sets of variants with related functions which could

help explain the observed data, we performed pathway-level analyses

using summary association statistics from the single-SNP analysis. The

reference biological pathway annotation databases KEGG28,29 and

ACSN30 were used to define the gene sets.

In the case-control analysis, 31 KEGG pathways were identified

with PEMP ≤ .05 and 4 with PFDR ≤ .05 out of the 319 pathways tagged

by iCOGS SNPs (Table 2). Top pathways were involved in endocyto-

sis, signaling pathways regulating pluripotency of stem cells, regula-

tion of actin cytoskeleton, cell growth/death (p53 signaling pathway,

apoptosis), and pathways altered in prostate and gastric cancers.

Using ACSN2.0 annotation, suggestive association was found for

13 out of 121 tested modules (PEMP ≤ .05) but no modules were sig-

nificantly associated with BC after FDR correction (Table 3). Top

ACSN modules were all involved in cell survival (WNT noncanonical,

PI3K/AKT/MTOR, MAPK, extracellular matrix).

With the family-based association test, corresponding numbers

were 63 KEGG pathways with PEMP ≤ .05 (of which 29 with

F IGURE 2 Physical interactions among proteins encoded by genes associated with breast cancer or genes in the associated intervals.
A, Protein-protein interaction (PPI) network obtained with genes located within the 18 loci from the single-nucleotide polymorphism (SNP)-level
analysis. B, PPI network obtained with the 112 top genes from the gene-level analysis. C, PPI network obtained with the input gene list
combining input lists from Figures 2A and 2B
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PFDR ≤ .05), and 23 ACSN modules with PEMP ≤ .05 (of which 7 with

PFDR ≤ .05). Results of these analyses are shown in Tables S8 and S9.

When reiterating the case-control and family-based association

tests after excluding SNPs tagging the top 112 genes from the gene-

level analysis, we found that association signals for a number of KEGG

and ACSN pathways were driven by genes FGFR2, MAP2K3, ADCY5

and CYP3A4 (Tables 2, 3, S8 and S9) which are part of the above

described 41-gene PPI network (Figure 2C). Hence, the pathway-level

approach support findings of the SNP- and gene-level analyses and

further identified new sets of functionally related genes pathways,

such as genes involved in the KEGG definitions “p53 signaling

pathway,” “apoptosis,” and “platinum drug resistance” and genes

involved in ACSN modules of the innate immune response (“markers

of the myeloid-derived suppressor cells [MDSC]” and “antigen pre-

sentation” modules), opening up new venues to explore in experimen-

tal studies.

3.4 | Pathway-derived PRS

The combined effect of SNPs related to genes in identified pathways

was expressed as pathway-derived PRS. These PRS were built using

summary statistics from the SNP-based analysis conducted in the

GENESIS “index case-control” data set. A total of 672 SNPs linked to

the 31 top KEGG pathways and 473 SNPs linked to the 13 top ACSN

modules (PEMP ≤ .05) were used to build two PRS, named PRSKEGG-672

and PRSACSN-473, respectively. We also built a PRS by restricting the

SNP selection to the 211 SNPs linked to the 4 KEGG-associated path-

ways with PFDR ≤ .05 (PRSKEGG-211) and for comparison, a 4-SNP-

derived PRS (PRS4-SNPs) corresponding to a polygene including only

the four SNPs associated with BC (PFDR ≤ .05) in the classical single-

SNP-level analysis conducted in the “index case-control” set (Table 1).

The complete list of SNPs used for each PRS is provided in Table S10.

Association of these PRS with BC and their performance were

assessed in two validation sets: the CECILE population (set I), which

includes 1019 BC cases and 999 controls also genotyped with the

iCOGS array,18,33 and set II which includes the affected sisters of

731 GENESIS index cases and the 999 CECILE controls. Because

affected sisters in set II are not genetically independent from the

cases of our discovery set (GENESIS index cases), we first evaluated

the degree of correlation between the PRSKEGG-672 of the siblings.

We found that the Pearson correlation between sisters was 0.46

when considering the 675 affected sib pairs for whom genotyping

data were available for both the index case and the sister, and 0.48

when considering the 448 sib pairs for whom genotyping data was

available for both the index case and an unaffected sister. This sug-

gests that the PRS correlation between two sisters is independent

from BC status.

Table 4 shows the associations between PRSKEGG-672, PRSKEGG-211,

PRSACSN-473 and PRS4-SNPs quintiles in the different validation sets. In

set I, women with a PRSKEGG-211 in the highest quintile had a significant

increased risk of BC as compared to women in the middle quintile used

as reference (OR = 1.33). This risk was even higher when restricting the

analysis to CECILE cases with at least one first-degree relative affected

with BC (OR = 1.84).

In set II, for each of the tested PRS we observed that women in

the lowest quintile had a reduced risk of BC (OR from 0.52 to 0.68),

and those in the highest quintile had an increased risk of BC (OR from

1.82 to 2.47) as compared to women in the middle quintile.

Overall, we found that these PRS had very little discriminative

capacity within CECILE (AUC ranging from 0.53 to 0.55), but they per-

formed slightly better to discriminate BC cases with a first degree rel-

ative affected with BC (AUC ranging from 0.55 to 0.58). Interestingly,

we found that performance of the pathway-derived PRS was

improved in Set II, with PRSKEGG-672 representing the best predictor

of BC risk (AUC = 0.66, 95% confidence interval [CI]: 0.63, 0.68;

Table 4).

Moreover, the difference in BC risk between women in the low-

est quintile and women in the highest quintile was bigger for

PRSKEGG-672 and PRSACSN-473 than for PRS4-SNPs in set II, showing that

our system biology-based strategy to identify genes and SNPs to pri-

oritize leads to relevant SNP selections in the high-risk population.

Overall, women in the highest quintile of each pathway-derived PRS

were at higher risk of BC than women in the highest quintile of

PRS4 SNPs (Table 4).

4 | DISCUSSION

For a better understanding of the genetic basis underlying familial BC

unexplained by BRCA1/2 pathogenic variants, we performed data

mining of GENESIS GWAS data using prior biological knowledge on

gene function, under the assumption that BC in high-risk families

could be caused by the joint effects of alterations in multiple function-

ally related genes.34-36 Since pathway-based methods strongly reduce

the number of association tests, such approaches may substantially

increase the power to identify new genetic variation compared to the

classical GWAS approach where a large number of markers are indi-

vidually tested for association and stringent significance thresholds

are applied.37 However, an important limitation of employing a gene-

or pathway-based approach is the omission of intergenic regions. In

the present study, we assigned variants that lie within 50 kb on either

side of a gene's coding sequence boundaries to compute its associa-

tion P value. With this gene definition, 17.9% of the iCOGS SNP were

not linked to a gene. This choice might have therefore ignored dis-

tantly located risk variants associated to key genes; however, we

chose to use this SNP selection criterion to strike a balance between

inclusions of possible cis-regulatory variants and maintaining specific-

ity of a gene.

One strength of the GENESIS population is that in addition to the

index cases of BRCA1/2 negative families, affected and unaffected sis-

ters had been also genotyped allowing to apply beyond to a classical

case-control study design, a family-based GWAS approach which

could be a more potent way of identifying rare variants involved in BC

susceptibility.14,38 Indeed, among the 18 identified loci, 14 of them

were found at PFDR < .05 only in the family-based approach (Table 1),
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and remarkably, risk alleles at these loci were quite rare in our control

population and were associated with a relatively high size effect

(OR > 2) in the case-control analysis. Moreover, in the family-based

association test, 6 of the 18 associated loci contain genes found to be

associated with BC risk in the gene-level analysis (SPINK1 at 5q32,

ALDH5A1 and KIAA0319 at 6p22.3, CYP3A7, CYP3A51P and CYP3A4

at 7q22.1, NR1H4 at 12q23.1, MAP2K3 at 17p11.2), supporting that

this approach can help identifying rare risk alleles for familial BC that

could be missed applying a classical case-control association study

design. However, we acknowledge that the new associations obtained

in the family-based analyses only should be interpreted with caution

as no additional set with genotyping data was available to replicate

them. Moreover, the top SNPs at these associated loci have a

MAF < 0.01 in the control population, and six of them were not

reported in the BCAC meta-analysis.19 Conversely, the family-based

approach failed to identify common SNPs at the well-known BC sus-

ceptibility 3p24.1 (NEK10, SLC4A7), 10q26 (FGFR2) and 16q12.1

(TOX3, CASC16).

The gene-level analyses identified additional signals among the

several loci that demonstrated suggestive but nonsignificant associa-

tion peaks in our single-SNP analyses, but for which no individual vari-

ant had achieved significance. Indeed, among the top 112 genes,

91 were located within 17 new loci (Table S4). Although none of the

proteins encoded by the 112 top genes had known experimentally

validated direct biological connections, 30 second-order neighbors

were identified, that is, two proteins from the input were connected

to each other via a common interactor protein (Figure 2B). Further-

more, the final PPI network built with proteins encoded by genes at

known or novel potential BC susceptibility loci involved 41 proteins

with indirect connectivity (Figure 2C). This suggests that although

proteins encoded by genes in the associated intervals do not interact

directly with each other, they may represent converging hubs of

BC-relevant protein networks.

The limitation to using PPI data or pathway data from curated

databases such as KEGG and ACSN is that proteins for which no high-

confidence interactions exist will be left out of the analysis. As such,

our analysis is limited to proteins present in the databases. On the

other hand, pathway-level analyses using such databases allow to

confidently highlight relevant biological pathways and may help to

identify the best candidate in these pathways for therapeutic inter-

vention. For instance, targeting p53 signaling pathway and apoptosis

pathway as described in the KEGG “cell growth death” group or in

modules “WNT noncanonical,” “MAPK” and “EMT regulators” from

the ACSN cell survival map might also have clinical implications for

finding additional drug targets. Similarly, gene products involved in

the “Toll-like receptor signaling pathway” and “chemokine signaling

pathway” from the KEGG immune system group or in ACSN modules

“TH1” (adaptive immune response map), “Antigen presentation” and

“markers MDSC” (innate immune response map) may be good candi-

dates to target.

In addition to the identification of potential drug targets, these

observations may also be used for prevention. Under the assump-

tion that proteins interacting with multiple associated pathway

members and encoded elsewhere in the genome themselves carry

an excess of association to BC, we built weighted pathway-derived

PRS and explored the potential for using them as predictors for BC

in the general population and in a population with familial predispo-

sition. We found that each of the pathway-derived PRS had very lit-

tle discriminative capacity within the general population, which may

be due to overfitting of the model. This could be explained by the

number of pathways (and of SNPs) which are considered to build

the PRS. PRSKEGG-672 and PRSACSN-473 were built using 672 and

473 SNPs, respectively, considering SNPs of pathways associated

with BC with PEMP ≤ .05, while PRSKEGG-211 was built restricting the

number of pathways to those after applying FDR correction

(PFDR ≤ .05). However, the three pathway-derived PRS performed

better in CECILE than the 4-SNPs PRS constructed using significant

SNPs of the single-marker analysis, and they also performed better

to discriminate affected women with a family history of BC. Besides,

the performance of our pathway-derived PRS in the high-risk GENE-

SIS population is close to that of the PRS recently published by

BCAC based on 313 BC associated SNPs developed on a data set

comprising over 170 000 subjects of European ancestry from

69 studies.39

GENESIS cases are from HBOC families who received genetic

counseling and who were tested negative for BRCA1/2 mutations.

Despite ascertainment of GENESIS families, investigated cases were

not specifically early onset cases (mean age at BC diagnosis was

50.6 years in GENESIS index cases and 54.4 years in CECILE cases;

Table S1). Eighty-four percent of GENESIS index cases with verified

pathology data and 85% of CECILE cases have developed estrogen

receptor positive (ER+) breast tumors. Therefore, the GENESIS popu-

lation has a tumor type's distribution more comparable to that of the

general population than has the BRCA1/2 carriers' population (BRCA1

mutation carriers developing mainly ER− tumors). In order to get as

much power as possible and because cases with an ER− tumor were

few, we chose to build pathway-derived PRS for our entire popula-

tion. It is also important to note that only six SNPs of our pathway-

derived PRS are included or are strongly correlated with a SNP of the

313-SNP PRS developed by Mavaddat et al.39 (Table S10). Hence our

strategy to select SNPs to be included in PRS for prediction of BC

might pave the way for future research in subpopulations for which

the classical approach will never be powerful enough.

To conclude with, our findings also further underline the need for

developing new strategies to analyze family-based genetic data, as

well as methodological approaches to identify altered biological mech-

anisms due to genetic variants and nongenetic factors which both

may underline the predisposition. Analyzing genome-wide data

through gene sets defined by functional pathways offers the potential

of greater power discovery and natural connections to biological

mechanisms. The identification of new BC susceptibility genes and

biological mechanisms in which they are involved may help formulate

new hypotheses or substantiate existing hypotheses regarding BC

etiology,40 and genes that rank high in these pathways can serve as

candidates for further genetic and functional studies. In turn, this may

open new therapeutic avenues. Furthermore, our data confirm that
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strategies employed to construct population specific PRS need to be

improved and that the joined effect of these PRS and family history

needs to be considered in risk prediction models to improve surveil-

lance and medical management of women at higher risk.
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