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Detection of occluding targets in natural backgrounds
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Detection of target objects in the surrounding
environment is a common visual task. There is a vast
psychophysical and modeling literature concerning the
detection of targets in artificial and natural backgrounds.
Most studies involve detection of additive targets or of
some form of image distortion. Although much has been
learned from these studies, the targets that most often
occur under natural conditions are neither additive nor
distorting; rather, they are opaque targets that occlude
the backgrounds behind them. Here, we describe our
efforts to measure and model detection of occluding
targets in natural backgrounds. To systematically vary
the properties of the backgrounds, we used the
constrained sampling approach of Sebastian, Abrams,
and Geisler (2017). Specifically, millions of calibrated
gray-scale natural-image patches were sorted into a 3D
histogram along the dimensions of luminance, contrast,
and phase-invariant similarity to the target. Eccentricity
psychometric functions (accuracy as a function of retinal
eccentricity) were measured for four different occluding
targets and 15 different combinations of background
luminance, contrast, and similarity, with a different
randomly sampled background on each trial. The
complex pattern of results was consistent across the
three subjects, and was largely explained by a principled
model observer (with only a single efficiency parameter)
that combines three image cues (pattern, silhouette, and
edge) and four well-known properties of the human
visual system (optical blur, blurring and downsampling
by the ganglion cells, divisive normalization, intrinsic
position uncertainty). The model also explains the
thresholds for additive foveal targets in natural
backgrounds reported in Sebastian et al. (2017).

Introduction

Natural selection pushes perceptual mechanisms
to match the natural tasks an organism performs
in the environments where it evolved, and thus the
computational and experimental study of natural
tasks and stimuli is important for developing and
testing principled hypotheses (e.g., see Geisler 2008).
A fundamental and ubiquitous natural task is

identifying the presence or absence of specific target
objects in visual scenes. Most studies of identification
performance have been directed at the case where
targets are added to non-natural backgrounds,
including uniform backgrounds (König & Brodhun,
1889; Mueller, 1951; Hood, 1998), grating backgrounds
(Stromeyer & Julesz, 1972; Legge & Foley, 1980;Wilson,
McFarlane, & Phillips, 1983), and noise backgrounds
(Burgess, Wagner, Jennings, & Barlow, 1981). More
recently there have been studies directed at detection
of additive targets in natural backgrounds (Caelli &
Moraglia, 1986; Rohaly, Ahumada, & Watson, 1997;
Bex, Solomon, & Dakin, 2009; Alam, Vilankar, Field,
& Chandler, 2014; Bradley, Abrams, & Geisler, 2014;
Sebastian et al., 2017; Sebastian et al. 2020). There have
also been recent studies directed at the related task of
detecting specific kinds of distortions in natural images
(Nadenau, Reichel, & Kunt, 2002; Bex, 2010; Freeman
& Simoncelli, 2011).

Identification tasks with additive targets (and with
distortion targets) have the practical advantage that
it is relatively easy to measure detection thresholds
for any target, anywhere in the visual field, by varying
the target’s amplitude (or the level of distortion).
Another specific advantage of additive targets is that it
is relatively easy to develop formal models, including
ideal-observer models (for reviews see Geisler, 2011;
Burgess, 2018), which provide principled hypotheses for
neural computations and an appropriate benchmark
against which to compare the organism’s behavioral or
neural performance.

Although much has been learned from studies with
additive (and distortion) targets, they are relatively
rare under natural conditions. Most real-world targets
are composed of opaque surfaces that occlude the
background rather than add to the background.
Detection of occluding targets is fundamentally
different from additive targets because (i) occluding
targets almost always create a sharp boundary with
the background and this boundary is an important
part of the signal, (ii) most occluding targets are
trivially detectable in the center of the fovea (unless
they are extremely small) and only become difficult
to detect in the periphery, and (iii) there are currently
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Figure 1. Joint histograms of background patches sorted along the dimensions of luminance L, contrast C, and similarity S (see text for
definitions of these dimensions). The bin color represents the number of patches in the bin. Because similarity depends on the specific
target, there are separate histograms for each of the four targets in the study (vertical edge, horizontal edge, bowtie, and spot).

no well-developed ideal observer or other principled
models for the detection of occluding targets. It should
be noted that nonoverlapping opaque elements (e.g.
letters) on a uniform background (as in most search,
memory, and crowding studies) are mathematically
additive. It is only when the target occludes background
features (or is partially occluded by background
features) that additivity is violated.

There have been very few studies of detection of
occluding targets in natural backgrounds, although
Wallis and Bex (2012) studied detection of occluding
random textures (see Discussion). Here, we describe a
principled observer for detection of specific (known)
occluding targets in gray-scale natural backgrounds, and
compare its performance to that of human observers.
Our approach builds upon the “constrained-sampling”
approach recently described in Sebastian et al. (2017).
The logic of the approach is to identify, from the
existing literature, multiple stimulus dimensions known
to have a major effect on task performance, and then
bin natural stimuli jointly along those dimensions. The
effect of those dimensions on task performance can
then be determined by measuring performance for
natural stimuli randomly selected from a sparse subset
of the bins covering the space of natural stimuli.

Here, as in Sebastian et al., three dimensions of
natural backgrounds are considered: the luminance
(L), contrast (C), and the spatial similarity (defined
later) to the target (S). Natural target objects often
have sharp boundaries and contain one or a few
dominant orientations; therefore, we measured
detection performance in natural backgrounds for
four targets — vertical edge, horizontal edge, bowtie
(oriented to have only horizontal and vertical edges),
and spot (center-surround) — all having the same mean
luminance (see Figure 1).

For each target, eccentricity psychometric functions
were measured for natural backgrounds that varied
along each of the cardinal dimensions (L, C, and S),
while the other two dimensions were held at their
median values. An eccentricity psychometric function
describes accuracy (hits and false alarms) as a function
of the retinal eccentricity of the target. We chose
to measure eccentricity psychometric functions for
two reasons. First, for occluding targets it is often
not possible to measure thresholds by varying target
luminance or contrast, because performance is always
well above chance. Second, when looking for a target
under natural conditions, its detectability only varies
when the fixation location is varied. In other words,
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eccentricity psychometric functions are an appropriate
measure of detectability under natural conditions.

To interpret the results, we propose and evaluate a
principled model observer. This model observer uses
three cues that together are likely to capture most of
the available information for detecting fixed, known,
occluding targets: the response of a template matched to
the target pattern, the response of a template matched
to the silhouette of the target, and the response of an
edge-energy measure of the target boundary. The model
observer also includes four factors known to limit
human detection performance: the optics of the eye,
retinal ganglion-cell sampling, divisive normalization,
and intrinsic position uncertainty. These factors
were taken directly from existing optical, anatomic,
neurophysiological, and psychophysical measurements.
We find that this model observer predicts much of
the variance in the human data, with a single free
parameter: an overall efficiency scalar.

Methods

Natural background statistics: Luminance,
contrast and similarity

The natural background statistics were computed
from 1204 high-resolution calibrated natural images
taken around the Austin area. The image set excluded
human-made structures, such as buildings and roads.
Each image (4284 × 2844 pixels) was taken with a
calibrated camera that was linear in luminance and had
14-bit resolution per color channel. The calibration
procedure and natural-image database are available
online at natural-scenes.cps.utexas.edu. The RGB
images were converted to grayscale by transforming
the images to XYZ space and storing only the Y
(luminance) channel. The top 1% of pixels were
clipped to a maximum value, and then all pixels were
normalized by that maximum value.

Statistics were computed on approximately
150 million small natural-image patches (21 pixels
diameter) that were the size of the targets used in
the experiment. Patches were extracted from the
large natural images at a stride of 10 pixels (half the
patch width). Thus, the center of each patch was at a
minimum of 10 pixels from neighboring patches. For
each patch, three statistics were computed, the mean
luminance L of the patch, the root-mean-squared
(RMS) contrast C of the patch, and the cosine
similarity S between the amplitude spectrum of the
patch and that of the target. The cosine similarity is the
dot product of the normalized amplitude spectra of the
patch and target. This measure of similarity captures
similarity in orientation and spatial frequency and is

independent of the phase spectra of the patch and
target. Because the similarity measure depends on the
specific target, similarity was computed separately for
each of the four targets. The mathematical definitions
of the patch statistics are given in the Appendix.

The statistics measured from the natural scene
database were sorted into 3D histograms, one for
each target (see Figure 1). Each dimension of the
histogram contained 10 bins for a total of 1000 bins.
The definitions of the bins and a table of the bin centers
are given in the Appendix. Bin limits were defined after
excluding the lower and upper 5% of patches along
each dimension. Most bins in each histogram contain
hundreds to thousands of patches.

Figure 2 shows example patches for the vertical-edge
target when the luminance is at the median value. Note
that as the similarity increases the background patches
become more like vertical edges.

In the experiment, psychometric functions were
measured for a subset of bins in the 3D histogram
for the target being tested. In other words, the
background selected in a trial was characterized by the
statistics of a 21-pixel-diameter patch. However, the
background patch presented in the trial was larger; it
included the background pixels surrounding the central
21-pixel-diameter region where the target might appear.

Psychophysical detection task

The experiment was conducted on three experienced
psychophysical observers, including one of the authors.
The experimental procedures were approved by the
University of Texas Institutional Review Board and
informed consent was obtained from all participants.

Stimuli
For each target, eccentricity psychometric functions

were measured for 15 bins in the 3D histogram.
Specifically, these consisted of either five or six bins
along each of the cardinal dimensions passing through
the middle of histogram (see arrows in lower right
of Figure 1). Because the bin in the center of the
histogram is shared by all three dimensions there
were six bins along the dimensions of luminance
and similarity and five for contrast. The stimuli for
each target type, background bin, and eccentricity
were created in the following way. A background
was randomly drawn (without replacement) from the
bin. This background sample subtended 4 degrees
(241 × 241 pixels), and included both the central
region where the statistics for the bin were calculated
and the surrounding context region (see Figure 3).
The background outside the 4 degrees of natural
background, and the entire background between
trials, was set to the mean luminance of the bin being
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Figure 2. Example patches for the vertical target when the luminance is at the median value.

Figure 3. Stimulus and trial sequence. Natural backgrounds
were 4 degrees in diameter. Targets (here, vertical edge) were
0.33 degrees in diameter. Eccentricity was varied by moving the
fixation cross (+).

tested. On target present trials, the pixels in the central
region were replaced by the target, which subtended
0.35 degrees (21 pixels). Target definitions are provided
in the Appendix. For all conditions, the mean luminance
of the target was fixed at 17.8 cd/m2, and the contrast
at 33% RMS. On target absent trials, no change
was made to the background. The images were then
gamma-compressed based on the measured gamma
of the monitor (Sony GDM-FW900) and quantized

to 8-bit precision (maximum gray level = 97 cd/m2).
The images were presented at a display resolution of 60
pixels per degree (full display size 1920 × 1200 pixels).

Procedure
Stimulus presentation and response collection

were programmed in MATLAB using Psych Toolbox
(Brainard, 1997; Pelli, 1997). Occluding target detection
performance was measured in a yes-no task, with
bias correction. We used a yes-no task because it is
more similar to detection under natural conditions
than is a spatial or temporal two-interval task —
under natural conditions one does not get to see the
same scene location with and without the target.
The measurements were blocked by target type, bin,
and eccentricity. For each target type and bin tested,
detectability was measured at five eccentricities in the
right visual field. The specific eccentricities were picked
to span the accuracy range and varied somewhat across
the observers. For each eccentricity, 60 unique stimuli
were presented with 50% containing the target, for a
total of 300 trials, measured in two sessions (total trials
per observer = 4 targets × 15 bins × 5 eccentricities
× 60 trials = 18,000). The first session for every bin
and target was completed before running the second
sessions. In each session, the subject would complete
30 trials at the eccentricity closest to the fovea and
then proceed to conduct blocks at farther eccentricities
until all trials in that session were completed. Stimulus
eccentricity was modified by moving the fixation
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cross to a new location, while keeping the stimulus
position fixed (this method minimizes uncertainty
about target location). Eye position was monitored
using an EyeLink 1000 (SR Research). We found that
our practiced observers made only about 1% fixation
errors, and hence all trials were included in the data
analysis.

A practice trial, with target present, was run at the
beginning of each block and was not included in the
analysis. On each trial, after a delay period of 500 ms,
the stimulus appeared and remained on the screen for
200 ms (see Figure 3). The stimulus was then removed
and the subject was given 1000 ms to respond whether
the target was present or absent. Feedback was then
provided and another trial was initiated until all trials in
the block had been completed. Eccentricity thresholds
were defined to be the eccentricity at which detection
performance fell to a bias-corrected accuracy of 69%
correct (see below).

All subjects completed more than 1000 trials of
practice in the task prior to participating in the
experiment.

Analysis methods
Eccentricity psychometric functions were fit to the

responses in each bin. Commonly in a detection task,
a psychometric function relates target strength to a
measure of performance, such as percent correct. In the
present case, the target strength was held at a constant
value and the eccentricity of the stimulus from the
fovea was varied. To summarize the data and estimate
eccentricity thresholds, the hit and false-alarm rates
were fit simultaneously by the following descriptive
equations:

phit(e) = �
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d ′
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eβ

2

eβ + eβ
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where e is the eccentricity, d′
f is the detectability in

the center of the fovea, β is a steepness parameter,
γ is a bias parameter, e2 is the eccentricity at which
detectability reaches half max (d ′ = d ′

f /2), and �( · ) is
the standard normal integral function. An eccentricity
threshold was defined for each bin as the eccentricity
corresponding to a detectability of 1.0 (bias corrected
accuracy of 69%). The parameters of each fitted
psychometric function were obtained by maximizing
likelihood (see Appendix). Standard errors of the
thresholds were computed by bootstrap resampling.

Results

Human detection of occluding targets

Eccentricity detection thresholds were measured for
four different occluding targets in natural backgrounds
sampled from 15 bins in LCS space. The symbols
in Figure 4A show example eccentricity psychometric
functions (bias corrected) measured for the three
observers for the four targets. The curves show the fits
of Equations 1 and 2. As can be seen, the psychometric
functions are similar across observers. The black
symbols in Figures 4B–D show the average eccentricity
thresholds for the three observers along the dimensions
of luminance, contrast, and similarity, respectively.
The blue symbols (with different saturation) show the
thresholds for the individual observers. Note that low
thresholds correspond to conditions where the target is
less visible in the periphery (low sensitivity).

The subpanels plot the eccentricity thresholds for
the different targets separately. For all four targets, the
luminance dimension had a nonmonotonic effect on
threshold. Eccentricity thresholds increased away from
a minimum located in either the third (11 cd/m2) or
fourth (21.5 cd/m2) luminance bins. Both bins have a
background luminance that is near the mean luminance
of the target (17.8 cd/m2). Eccentricity thresholds
decreased monotonically with background RMS
contrast. Along the contrast dimension, eccentricity
thresholds were highest at low contrast and saturated
to a minimum by the highest contrast bin tested (.81
RMS). The dominant effect of similarity was a decrease
in eccentricity threshold with increasing similarity.

Model observer for detection of occluding
targets

The model observer incorporates three image cues
(pattern, silhouette, and edge) and four well-known
properties of the human visual system (optical
blur, blurring and downsampling by the ganglion
cells, divisive normalization, and intrinsic position
uncertainty). We also evaluated model observers that
excluded some of these well-known properties.

In simulating observer models, 2300 patches
including the surrounding context (241 × 241
pixels) were randomly selected from each LCS bin
tested in the behavioral experiment, and for each
of five retinal eccentricities (see below). The image
size was the same in the behavioral experiment
(4 degrees). A duplicate of the image was created and
a target was placed in the center of the image. The
cropping procedure was identical to the creation of the
experimental stimulus.
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Figure 4. Psychometric functions and eccentricity thresholds. (A) Example eccentricity psychometric functions for the four targets, for
the central bin (5, 5, and 5) in the histograms (see Figure 1) Different gray-level symbols and curves are for the three observers. (B, C)
Average eccentricity thresholds (black symbols) and for individual observers (blue symbols) as a function of background luminance L,
contrast C, and similarity S, respectively. The subpanels show the thresholds for the four different targets. In each subpanel, the two
other background dimensions were held fixed at the values indicated. Error bars are boot-strapped 95% confidence intervals.

In the experiment, the display resolution was
60 pixels/degree. Therefore, to match the image
resolution to the sampling rate of the photoreceptors
in the human fovea (120 receptors/degree), the image
patches were up-sampled in size to 482 × 482 pixels
using nearest-neighbor interpolation. (Note that
nearest-neighbor up-sampling simply replaces each

pixel by four pixels of the same gray level.) Finally, they
were padded to 512 × 512 pixels (pad gray level = mean
gray level of the patch).

In the human observers, and in the model observer,
target detectability (d′) varies continuously as a
function of retinal location. However, it is not practical
to compute the model observer’s detectability for
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every retinal eccentricity; therefore, we computed
detectability at the six retinal eccentricities where
ganglion-cell sampling decreased by successive factors
of two. We then fit the model observer’s detectabilities
with the same smooth function used to fit the human
observers’ detectabilities (see Equations 1 and 2):
d ′(e) = d ′

f e
β

2/(e
β + eβ

2 ). From these smooth functions
(which fit very well) we were then able to compute the
predicted detectabilities at all eccentricities, as well as
the predicted eccentricity thresholds.

Retinal image and ganglion-cell encoding
To model the effect of human optics, images were

first passed through an optical filter that approximates
the average foveal optical point-spread function, ho(x),
of the human eye when the pupil has a diameter of
4 mm (Watson & Yellot, 2012; Watson, 2013). We call
this blurred image the level-0 image:

I0 (x) = (h0 ∗ I ) (x) (3)

where x = (x, y) is a pixel location, and ∗ represents the
operation of convolution. (Note that here bold letters
represent vectors.)

To obtain the ganglion-cell sampled image in the
fovea, we blurred the level-0 image by the ganglion cell
center size in the fovea to obtain what we call the level-1
image:

I1 (x) = (h ∗ I0) (x) (4)

To obtain the sampled image at other retinal
locations, we computed a multiresolution Gaussian
pyramid obtained by successively blurring and
down-sampling the level-1 image by factors of two to
obtain a total of six images:

Ir (x) = (h ∗ Ir−1)↓2 (x) r = 2, · · · , 6 (5)

The standard deviation of the Gaussian kernel used
in computing the pyramid was based on the finding,
in macaque, that the RF centers (half-max regions)
form a complete tiling of the retinal image (Field &
Chichilnisky, 2007). We approximated this rule by
setting the standard deviation of the Gaussian kernel to
correspond to one pixel in level r-1; thus,

h(x) = exp
(−0.5‖x‖2) /

√
2π (6)

The six images in the pyramid represent ganglion-cell
responses at six discrete retinal distances from the
center of the fovea. The retinal locations corresponding
to these images were determined from a reanalysis of
anatomic data from six human retinas (Curcio, Sloan,

Kalina, & Hendrickson, 1990; Curcio & Allen, 1990)
described by Watson (2014). Specifically, we assumed
120 pairs of on and off midget ganglion cells per degree
(30 arc sec spacing) in the center of the fovea (one
pair for each cone), and then determined the retinal
location of each pyramid level using the formula for
on or off midget-ganglion-cell spacing in the binocular
visual field reported in Watson (2014). The retinal
locations corresponding to the six levels are 0 degrees,
1.12 degrees, 3.55 degrees, 9.41 degrees, 21.35 degrees,
and 40.4 degrees of eccentricity along the horizontal
meridian. We note that an earlier formula by Drasdo,
Millican, Katholi, and Curcio (2007) gives similar
values in the central 10 degrees, but deviates from
Watson’s formula at larger eccentricities.

The 2300 unique image patches for each stimulus
condition were filtered and down-sampled by the
procedure described above to create a database of
retina-processed images. To generate predictions, we
also applied the same filtering and down-sampling to
the pattern template t (x) and the silhouette template
s (x) for each target (see next two subsections).

It is important to keep in mind that the
multiresolution pyramid representation is not part of
the model observer, but is just a computational trick
for quickly computing model-observer performance at
arbitrary eccentricities.

Pattern template response
Template matching is known to be the optimal

computation for detection of targets that are added
to backgrounds of Gaussian white noise (Peterson,
Birdsall, and Fox, 1954; Green & Swets, 1966; Burgess
et al., 1981). On each trial, the template-matching
observer multiplies the image by a template (receptive
field) having the shape of the target and compares
the sum of the values to a criterion (i.e. the observer
compares the dot product of the image and template
to a criterion). If the response (dot product) exceeds
the criterion, the observer reports that the target is
present, otherwise that it is absent. Template matching
is also known to perform well for additive targets in
structured noise backgrounds (e.g. 1/f noise). In the
present task, the backgrounds are natural scenes and
the signals occlude rather than add to the background;
therefore, template matching alone is not sufficient to
approach optimal performance, in large part because of
the sharp bound created between the occluding target
and the background. Here, we assume that the pattern
template response, when combined optimally with cues
representing the target’s silhouette and edge strength at
the boundary, is a good approximation to the optimal
computation.

Consider first the pattern template response. The
target can be described as having two components,
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Figure 5. Pattern, silhouette, and edge cues. The pattern template (left) is for the vertical edge target. The silhouette template (middle)
is the same for all four targets. Shown are the templates before optical blurring, and blurring and down-sampling by the ganglion cell
array. The edge cue is the sum of the squared luminance gradient in the direction normal to the boundary (arrow) at each boundary
location (white pixel), normalized by the local luminance and contrast at that boundary location. The sizes of the pattern and
silhouette templates decrease with retinal eccentricity, as does the number of boundary locations (ganglion cells on the boundary).

the mean luminance of the target l and the pattern of
luminance modulation about that mean t (x):

T (x) = t (x) + l (7)

where t(x) sums to zero (see Appendix).
The pattern template response to the stimulus at

pyramid level r is obtained by taking the dot product of
the blurred and down-sampled pattern template with
the blurred and down-sampled image on that trial:

RP = tr · Ir (8)

This pattern template response contains much of the
pattern information available for detecting whether the
target is present or absent. Without loss of generality
the pattern template can be scaled to have an energy
of 1.0, ‖tr‖ = 1. Figure 5 (left) illustrates the unscaled
pattern template for the vertical-edge target, before
blurring and down-sampling.

Silhouette template response
The pattern template response captures the

information created by the spatial pattern internal to the
target boundary, but it does not capture the information
created by the difference in luminance between the
target region and the surrounding background region.
Much of this information can be captured with a
silhouette template:

s (x) = 21T (x) − 1T ′ (x) (9)

where 1T (x) (an indicator function) is 1.0 in the target
region and is 0.0 elsewhere, and 1T′ (x) is 1.0 over an
expanded target region that preserves the shape of

the target as closely as possible, but contains exactly
twice as many pixels, and thus s (x) sums to 0.0. In
the present case, the silhouette template has a circular
center-minus-surround structure where the center,
1T (x), has the diameter of the target and the surround,
1T′ (x), a diameter that is

√
2 larger. The silhouette

template response to the stimulus at pyramid level r is
obtained by taking the dot product of the blurred and
down-sampled silhouette template with the blurred and
down-sampled image on that trial:

RS = sr · Ir (10)

Without loss of generality the silhouette template can
be scaled to have an energy of 1.0, ‖sr‖ = 1. Figure 5
(middle) illustrates the unscaled silhouette template for
all four targets, before blurring and down-sampling.

Edge-energy response
The silhouette template response captures

information about the mean luminance of the target
region relative to the surrounding background region,
and hence represents both the mean-luminance
information and some of the luminance boundary
information. However, background luminance may
modulate arbitrarily over space and the target
luminance may also modulate over space. These
luminance modulations tend to create local luminance
gradients that are perpendicular to the local orientation
of the target boundary and that often vary randomly
in sign and amplitude. Thus, even when the mean
luminance of the target and surrounding region are
identical there generally remains substantial boundary
information. This boundary information can be
captured with an edge-energy measure, which we define
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to be the sum, over the boundary pixels, of the square
the luminance-gradient amplitude perpendicular to the
target boundary normalized by the local luminance and
contrast at the boundary pixel location:

RE =
∑

x∈boundary

[∇Ir (x) · n⊥
r (x)

Lr (x)Cr (x)

]2

(11)

where ∇Ir (x) is the luminance gradient, and n⊥
r (x)

is the unit vector perpendicular to the boundary.
The boundary pixel locations are defined in the
Appendix. The gradients were computed using a pair
of orthogonally oriented derivative-of-Gaussian filters
with a standard deviation σ r matched to the center
size of ganglion cell RFs at that the given level of the
pyramid. Derivative-of-Gaussian filters are steerable
(Freeman & Adelson, 1991), whereby the same gradient
computation in any direction can be determined from
the output of the pair of orthogonal filters. Thus, the
gradient for each boundary pixel x was determined by
computing:

∇Ir (x) =
[(

∂gr
∂x

∗ Ir
)
(x) ,

(
∂gr
∂y

∗ Ir
)
(x)

]
(12)

with

∂gr
∂x

(x) = − x
σ 2
r
exp

(
−‖x‖2

2σ 2
r

)

and

∂gr
∂y

gr (x) = − y
σ 2
r
exp

(
−‖x‖2

2σ 2
r

)

where σr =
√
(σo/2r−1)2 + 1 and σ o is the standard

deviation of the Gaussian approximation to the
optical point-spread function (recall that the standard
deviation of the blur kernel at each pyramid level is
1). We defined the unit vector perpendicular to the
boundary to be the unit gradient vector calculated for
a uniform target on a uniform background. The local
luminance and RMS contrast was computed under a
Gaussian envelope having the same standard deviation
(σ r) used to compute the gradients. When the target
is present, the gradient will tend to be normal to the
boundary at location x and hence the magnitude of the
dot products in Equation 11 will tend to be larger when
the target is present. Figure 5 (right) shows an example
of the boundary pixels and a unit normal vector.

Divisive normalization
There is a long history of evidence showing that

neural responses measured along the visual pathway
are consistent with local divisive normalization by
luminance (for review see Hood, 1998) and by contrast
(Albrecht & Geisler, 1991; Heeger, 1991; Heeger, 1992,
for review see Carandini & Heeger, 2012). Indeed,
responses measured in many brain areas and in
many tasks are consistent with divisive normalization
(Carandini & Heeger, 2012). Recently, Sebastian et
al. (2017) showed that human detection thresholds
for additive sine wave and plaid targets in natural
backgrounds are proportional to the product of
the background luminance, contrast, and similarity
(as defined in the current Appendix), and that this
separableWeber’s law is consistent with pattern template
matching (the relevant cue for their additive targets)
and with divisive normalization by luminance, contrast,
and similarity. They show that divisive normalization
is particularly valuable under real-world conditions,
where there is almost always high uncertainty about
background properties and target amplitude, and where
there is low prior probability of the target being present
at any given location in the background. The benefit
of multidimensional normalization is that it makes it
possible to obtain near optimal performance with a
simple decision rule (a single fixed decision criterion).
We incorporate divisive normalization into the model
by computing on each trial, for every level of the
pyramid, the luminance, contrast, and similarity within
the pattern template region and the silhouette template
region, using the definitions in the Appendix. The
responses given by Equations 8 and 10 are then divided
by the product of the estimated luminance, contrast,
and similarity (see Figure 6). Divisive normalization by
local luminance and contrast is also incorporated into
the edge energy measure (Equation 11); however, in this
case, the normalization is at a smaller scale and does
not include normalization by similarity (which is not
practical to compute at this smaller scale).

Intrinsic position uncertainty
The final known property of the visual system we

incorporate into the model observer is intrinsic position
uncertainty (Swensson & Judy, 1981; Pelli, 1985).
Intrinsic position uncertainty (internal uncertainty
about target location even when the actual location
is the same on every trial) has been found to increase
approximately linearly with retinal eccentricity
(Michel & Geisler, 2011), which is consistent with
the hypothesis that the intrinsic uncertainty radius is
proportional to the spacing between midget ganglion
cells at any given retinal location. Given that the
midget-ganglion-cell magnification factor is similar
to (a little less than) the cortical magnification factor
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Figure 6. Processing steps for a single cue at the retinal eccentricity corresponding a single level of the multiresolution-pyramid
representation. This figure is accurate for the pattern and silhouette cues (Equations 8 and 10). For the edge energy cue (Equation 11)
the normalization is in luminance and contrast at the scale of the receptive fields that measure the local luminance gradients.

(Wässle, Grunert, & Rohrenbeck, 1989), our hypothesis
is that there is a roughly fixed retinotopic uncertainty
when reading out V1. To model the effects of intrinsic
position uncertainty, we use a recent analysis of
position uncertainty in template-matching observers
(Geisler, 2018) that found that detectability under
position uncertainty is given by

d ′ = ln
(
exp [d ′

0] + u
1 + u

)
(13)

where d′
0 is the detectability without uncertainty,

and u is the uncertainty constant. This formula is
an approximation that holds quite accurately for all
the cases we have simulated so far. Assuming that
the uncertainty standard deviation is proportional
to ganglion cell spacing, we used the measurements
of errors in target localization as function of retinal
location from Michel & Geisler (2011) to estimate
that the uncertainty standard deviation in the center

of the fovea is approximately 5 arc minutes (10 times
the foveal ganglion-cell spacing). We then assumed
that the standard deviation was the same number of
ganglion cells at each level of the pyramid (i.e. 10 times
the ganglion-cell spacing corresponding to that level
of the pyramid). Finally, we then measured simulated
psychometric functions (for detection of additive
targets in 1/f noise) for each pyramid level, and fit the
psychometric function with Equation 13 to estimate the
value of the uncertainty constant. The estimated values
of u for levels 1 through 6 are: 3.64, 6.96, 12.86, 25.11,
39.63, and 50.01.

Predictions for individual cue responses
The model observer combines the pattern template,

silhouette template, and edge energy responses when
deciding whether the target is present or absent,
but it is informative to first consider the three cues
individually. Figure 6 shows the processing for a single
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cue at the eccentricity corresponding to level r in the
pyramid representation.

The input is the blurred and down-sampled image
on a trial. The cue response and the normalization
signals are computed from the input image, and then
combined to obtain the normalized cue response. The
cue response R represents either the pattern-template
response RP (Equation 8), the silhouette template
response RS (Equation 10) or the edge energy response
RE (Equation 11). However, we note that for the
edge energy response the normalization is only by
local luminance and contrast. The optimal decision
variable is the log likelihood ratio of the normalized
response given the response means and standard
deviations estimated from thousands of target present
and absent trials, in the given background bin. The
distributions are approximately Gaussian distributed,
but with different means and standard deviations
for target present and target absent. Thus, on both
target-present and target-absent trials, the decision
variable has (approximately) a generalized chi-squared
distribution. To determine the detectability without
intrinsic position uncertainty, d′

0, we integrate the
generalized chi-squared distributions on those sides of
the optimal decision criterion (bound) corresponding
to errors to obtain the error rate pe, which is then
converted to detectability using the standard formula:
d′

0 = 2�−1(1 − pe), where �−1 is the inverse of
the standard normal integral function. (Code for
integrating generalized chi-squared distributions is
available at https://github.com/abhranildas/classify.)
Finally, we include the effect of intrinsic position
uncertainty at the eccentricity corresponding the
given level of the pyramid to obtain the predicted
detectability d′

r.
Figure 7 shows the detectability of the vertical edge

target without uncertainty, d′
0, as a function of the

three background dimensions (rows), at three different
eccentricities (columns), for each cue (colors). For all
three cues and eccentricities, detectability decreases
monotonically with background contrast and similarity.
However, as a function of background luminance,
detectability values for the edge and silhouette cue
decrease to a minimum at approximately the luminance
of the target and then increase. When the background
luminance is near the target luminance, the pattern cue
tends to provide the most useful information. When the
background luminance is very different from the target
luminance, then the edge and silhouette cues tend to
provide the most information.

In addition, for all three cues and background
dimensions, detectability decreases monotonically with
retinal eccentricity. The effect of eccentricity is different
for the three cues. At near eccentricities, detectability is
generally higher for the pattern and edge cues, but at
farther eccentricities, relative detectability increases for
the silhouette cue, in agreement with intuition.

Predictions for joint cue responses
To generate predictions for the joint cue responses

we first compute the detectability for the joint responses
without intrinsic position uncertainty. We have
computed the joint-response detectability in two
different ways. The most general is to use a decision
variable based on the multivariate normal distributions
of the cue responses for target present and target
absent.

Z = ln
p
(
Rν

∣∣up, �p
)

p (Rν |ua, �a )
(14)

where up, ua, �p, and �a are the mean vectors
and covariance matrices of the target-present and
target-absent distributions. This decision variable,
for both target present and target absent, is also
a generalized chi-squared distribution and hence
detectabilities can be computed in the same way as
for the single cues. The drawback of this approach is
that the covariance matrices must be estimated for all
conditions. In addition, one might wonder whether
such a representation and computation is biologically
plausible. However, we note that it is not implausible
that the visual system has at least some implicit
knowledge of the approximate correlations of the three
cues at different retinal locations.

The other way we have computed the joint-response
detectability is to assume statistical independence
of the cue responses. Specifically, we compute the
detectabilities for the three cues separately using
the procedure in Figure 6, and then compute the
combined detectability using the standard formula for
independent cues from signal detection theory (Green
& Swets, 1966):

d ′
0 =

√
d ′2
P + d ′2

S + d ′2
E (15)

We note that this formula gives the detectability for
reliability-weighted cue combination when the cues are
statistically independent.

We have computed detectabilities both ways, but,
interestingly, the predictions are quite similar even
though there are some substantial correlations when
the target is present. Presumably this occurs because
cue variances are much larger in target absent trials
and hence detectability is largely determined by the
covariance matrix for the target-absent trials, which
is nearly a diagonal matrix (consistent with statistical
independence).

Once the joint detectabilities are computed, we
include the effect of intrinsic position uncertainty
(final step in Figure 6). Finally, we estimate the model
observer’s psychometric functions using the same

https://github.com/abhranildas/classify


Journal of Vision (2020) 20(13):14, 1–20 Walshe & Geisler 12

Figure 7. Single cue predictions. Predicted detectability without intrinsic position uncertainty (d′
0) a function of the three background

dimensions (rows), at three retinal eccentricities (columns), for the three different cues (colors). The larger symbols indicate the
values along the background dimensions that were fixed in the experimental conditions, when the value along one of the other
background dimensions was varied (e.g. the big symbols in the contrast and luminance plots indicate the fixed values of luminance
and contrast when similarity was varied).

procedure used to estimate the human observers’
psychometric functions.

To compare the predicted thresholds of the model
observer with those of the human observers shown
in Figure 4, we introduce a single overall efficiency
parameter η that is less than 1.0 and that multiplies
all of the model observer’s values of d′

0. The black
symbols and curves in Figures 8A–C show the
predicted thresholds for independent cue combination
(Equation 15, η = 0.73), and the blue symbols (and error
bars) show the thresholds (and confidence intervals) of
each subject in each condition (from Figures 4B–D).

The predicted thresholds capture much the variance
in the data, although there are some systematic
differences. The most obvious differences are that the
model observer is relatively less sensitive (eccentricity
thresholds are lower) for the spot target and relatively
more sensitive for the bowtie target in panels B and
C. Nonetheless, the results suggest that many aspects
of human ability to detect known occluding targets
in natural backgrounds, at known locations across
the visual field, are predicted from first principles by
a near-optimal observer with only a single overall
efficiency parameter.
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Figure 8. Comparison of human and model performance. (A–C) Threshold as a function of each background dimension, for each of
the four targets. Thresholds for the model observer (black symbols and solid curves). Thresholds for three human observers (blue
symbols); error bars are boot strapped confidence intervals. (D) Histograms of the magnitude of the differences in thresholds
between model and human observers. Baseline cues: threshold differences without intrinsic uncertainty and divisive normalization.
Uncertainty: threshold differences when intrinsic uncertainty is included. All factors: threshold differences for full model.

The model observer contains four known biological
factors, blurring by the optics of the eye, blurring
and down-sampling by midget ganglion cells, divisive
normalization, and intrinsic position uncertainty.
The model observer predictions are substantially
worse if any of these factors are left out. For
example, Figure 8D summarizes the effect of leaving
out intrinsic uncertainty and divisive normalization.

The lower panel shows the histogram of the magnitude
of the difference in model and human thresholds for all
conditions, when both intrinsic uncertainty and divisive
normalization are excluded (mean difference = 6.81
degrees). The middle panel shows the histogram when
intrinsic uncertainty is included (mean difference =
4.85 degrees). Finally, the upper panel is with all factors
included (mean difference = 3.9 degrees; R2 = 0.59).
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The efficiency parameter was estimated separately to
obtain the best fit for each version of the model.

Discussion

Most research in the areas of visual masking, visual
search, and visual memory involves identification of
target objects that can be described mathematically
as added to the background image, and thus some
information about the background is available at each
pixel location. However, under natural conditions,
target objects are often opaque, and hence they occlude
or partially occlude the features or objects in the
background. The result is that target objects have a
particular internal spatial pattern that contains no
background information, they create a sharp boundary
in luminance and texture, and they create T-junctions
from any occluded contours (e.g. Marr, 1982). Relatively
little is known about human detection of occluding
targets.

In this study, wemeasured psychometric functions for
detection of occluding targets in natural backgrounds
that were varied along the dimensions of luminance,
contrast, and similarity to the target. The psychometric
functions for four occluding targets (vertical edge,
horizontal edge, bowtie, and spot) were measured by
varying the targets’ retinal eccentricity. The eccentricity
psychometric functions and thresholds were similar
across the three subjects tested. For all four targets,
threshold decreased monotonically with background
contrast and similarity and was u-shaped with
background luminance (recall that lower thresholds are
lower sensitivity).

To interpret the results, we developed a model of
occluding-target detection that was based on three
image cues: the internal spatial pattern of the target, the
silhouette of target, and the edge energy created at the
target boundary. The model also includes four major
factors known to affect detectability: the optics of the
eye, the blurring and down-sampling of the midget
ganglion cell array, divisive normalization, and intrinsic
position uncertainty (which increases with retinal
eccentricity). These four parameter-free factors were
taken directly from previous anatomy, physiology, and
psychophysical measurements reported in the literature.
The only free parameter was a single overall efficiency
parameter. We found that the three cues and these
well-known factors account for much of the variance in
the measured psychometric functions and thresholds,
although there were some systematic deviations from
the predictions.

We emphasize that our aim here was to implement
a minimal model that represents the main principles
and factors underlying detection of known occluding
targets in natural backgrounds. There should exist

more biologically plausible versions of the model that
incorporate essentially the same principles and factors,
and hence make similar predictions.

Occluding versus additive targets

An important difference between occluding and
additive (or distortion) targets is that when the
target is present there is no background signal in
the ganglion-cell responses from the target region
except what encroaches into the target region due to
optical blur and due to blurring and down-sampling
by the ganglion cell array. This causes the background
properties, especially background luminance, to have
different effects on detectability for occluding targets
than they do for additive targets. For additive targets,
detectability declines monotonically as background
luminance increases (i.e. Weber’s law); whereas for
occluding targets, detectability is u-shaped, reaching
a minimum when the luminance of the background
matches that of the target (Figures 7 and 8).

Given that there is relatively little background signal
from the ganglion cells in the target region, it may
at first seem surprising that background luminance,
contrast, and similarity have substantial effects on
the detectabilities and eccentricity thresholds of
occluding targets. There are several reasons for these
effects. One is the encroachment of the background
signals into the target region due to blurring and
downsampling. The luminance, contrast, and similarity
of the background in the target region it strongly
correlated with luminance, contrast, and similarity in
the immediately surrounding region that is encroaching
into the target region.

Another reason is that detectability is determined
by the variability of the cue responses in both target
present and target absent trials. On target absent trials
the unnormalized response standard deviations for the
pattern and silhouette templates increase in proportion
to the product of the background luminance, contrast,
and similarity (Sebastian et al., 2017): σ ∝ L × C × S.
Detectability goes down as the standard deviation of
the cue responses on target-absent trials increases.

Another reason is the divisive normalization.
Sebastian et al. (2017) note that normalization has
benefits for decision making under conditions of
high background and target uncertainty, and because
real-world detection is almost always under high degrees
of uncertainty, the normalization mechanisms evolved
to operate automatically in the early levels of the visual
system. Normalizing by the estimated values of the
background properties results in template responses
that, in target absent trials, have a fixed standard
deviation (like a z score), independent of the values
of the background properties. This makes it possible
to reach near optimal performance with a single fixed
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decision criterion on the log-likelihood-ratio decision
variables. This is particularly useful under conditions
where the prior probability of a target being present at
a given location is low, as it generally is when looking
for a target in a natural scene (the target is absent
in most image locations). Without normalization,
obtaining good performance requires setting a different
criterion value for every background location, which is a
computational disaster for efficient parallel processing.
The downside of normalization is that it involves
effectively dividing by estimated quantities, which
injects some variability into the decision variables.
However, we note that if the decision criterion had
to be estimated for every background location those
estimates would also effectively inject variability into the
decision variables. It should also be mentioned that the
edge-energy cue already includes local normalization
and we find that leaving out the local normalization
reduces the usefulness (reliability) of the cue.

A somewhat surprising conclusion from the present
study is that the mechanisms that predict detectability
of localized occluding targets in natural backgrounds
also predict the detectability of additive localized
targets in natural backgrounds. These mechanisms
undoubtedly evolved primarily to support detection
of occluding targets, but they are also appropriate
for additive targets. Sebastian et al. (2017) found that
foveal thresholds for additive sine wave and plaid
targets follow the separable multidimensional Weber’s
law, at ∝ L × C × S, and that this behavior was
accurately predicted with only the pattern-template cue
together with divisive normalization by the product
of background luminance, contrast, and similarity.
This result is consistent with the present study because
in the Sebastian et al. experiment the silhouette and
edge cues provide no information (and hence could be
down-weighted in the model observer), and because
intrinsic position uncertainty has a minimal effect in the
fovea. In addition, it is easy to show, using Equation 13,
that position uncertainty only affects overall efficiency,
not the prediction of separable multidimensional
Weber’s law (see Appendix). In short, the Sebastian
model for additive targets is a special case of the current
model observer for occluding targets.

Crowding effects in natural backgrounds

There is much evidence that in certain kinds of
cluttered backgrounds the falloff in identification
performance with eccentricity is more rapid than
the falloff in visual acuity measured on uniform
backgrounds (Bouma, 1970; for reviews see Levi, 2008;
Pelli & Tillman, 2008; Whitney & Levi, 2011). These
“crowding” effects are strongest when there is high
similarity between target and background features
(Whitney & Levi, 2011). The observer model described

here includes some factors that may contribute to the
crowding effects reported in the literature, including
blurring and down-sampling by the midget ganglion
cells array and intrinsic position uncertainty. Crowding
effects are known to be more consistent with the
increase in cortical-cell spacing (cortical magnification)
than with the increase in cone-photoreceptor spacing.
The midget-ganglion-cell RF spacing increases more
rapidly than that of cone photoreceptors, and only
slightly less rapidly than cortical-cell RF spacing
in V1 (Wässle et al., 1989). Thus, intrinsic position
uncertainty also increases approximately in proportion
to cortical-cell RF spacing. Nonetheless, it is unlikely
that these factors alone can account for the magnitude
of the crowding effects often reported.

This raises the question of why the simple principled
model described here is able to predict, fairly
well, human identification performance in natural
backgrounds, which are highly complex and cluttered.
A plausible hypothesis is that in our experiments
the similarity between the target and background
features (luminance, contrast, orientation, and shape)
is on average relatively low, which is just the situation
where crowding effects are known to be weaker. In all
the conditions of our experiment, there was at least
some difference in luminance and contrast with the
background. This is undoubtedly representative of
most real-world conditions, where arbitrary target
objects are viewed from an arbitrary direction.

There is evidence of crowding effects in natural
backgrounds when the features of the target and
background are similar. For example, Freeman and
Simoncelli (2011) find that human ability to discriminate
distorted from undistorted natural image patches
decreases with eccentricity in a fashion consistent
with classic crowding effects and with the sizes of
receptive fields in macaque V2. Similarly, Wallis and
Bex (2012) find that human ability to detect occluding
“dead-leaves” textures (having the same luminance
and contrast as the natural background against which
they appear) also decreases with eccentricity at a rate
consistent with crowding effects and with the findings
of Freeman and Simoncelli (2011).

Edge-energy cue and detection of camouflaged
objects

An important special case, where the similarity
of target and background features is high, is when
the target objects are organisms that have evolved
camouflage that mimics the backgrounds against which
they normally appear (Stevens & Merilaita, 2011).
Recently, Das and Geisler (2018) considered the limiting
(maximally camouflaged) case where the target and
background texture are random samples of the same
texture. In this case, both the pattern and the silhouette
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cues provide little or no information. Das and Geisler
find that human detection accuracy as a function of
edge energy is the same for both 1/f noise and synthetic
bark textures, supporting the appropriateness of the
edge-energy cue in modeling occluding target detection.
A future direction will be to measure how detection
of maximally camouflaged targets varies with retinal
eccentricity. This is an important case where crowding
mechanisms may play a particularly strong role.

Silhouette cue

Most target objects in natural scenes differ in
mean luminance from the background that surrounds
them, and thus the silhouette cue provides useful
identification information. For our small targets, the
silhouette information tends to be most useful at
larger eccentricities (see Figure 7). Although as yet
unexplored, it is intuitive that the relative value of the
silhouette cue will increase when the target is larger and
the target’s surface texture is finer or of lower contrast.
The silhouette template needs a center-surround
structure in order to be useful for identification in
scenes where the target location is not known. For
example, a template that is constant in the target region
and zero elsewhere will produce the same response
at every location in a large uniform field that it does
to a uniform patch that just fills the template. The
results from classification-image experiments (Eckstein,
Beutter, Pham, Shimozaki, & Stone, 2007) and from
visual search optimization (Zhang, Abbey, & Eckstein,
2009) are consistent with center-surround templates.
Finally, we note that the luminance normalization in the
model observer, makes all three cue responses invariant
to scaling the overall illumination of a natural scene.

Conclusion

Eccentricity thresholds were measured in three
subjects for four different occluding targets as function
the luminance, contrast, and phase-invariant similarity
of the background to the target. The complex pattern
of results was consistent across subjects and was largely
explained by a principled model observer (with only a
single efficiency parameter) that combines three image
cues and four well-known properties of the human
visual system. The model observer is a generalization
of an earlier model for foveal detection of additive
targets in natural backgrounds. The results and model
observer should help to lay a foundation for a more
general theory of visual search and object identification
in natural and other complex backgrounds.

Keywords: natural scene statistics, peripheral vision,
normalization, uncertainty, computational modeling
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Appendix

Target definitions

The vertical edge target pattern was defined by

t (x) =
⎧⎨
⎩
1 if x < 0
−1 if x> 0
0 if ( x= 0) or

√
x2 + y2 > ρ

(A1)

The horizontal edge target pattern was defined by

t (x) =
⎧⎨
⎩
1 if y >0
−1 if y < 0
0 if (y = 0) or

√
x2 + y2 > ρ

(A2)

The bowtie target pattern was defined by

t (x) =
⎧⎨
⎩
1 if (y >0 ∧ x > 0) ∨ (y < 0 ∧ x < 0)
−1 if (y < 0 ∧ x > 0) ∨ (y > 0 ∧ x < 0)
0 if (x = 0) ∨ (y = 0) ∨

√
x2 + y2 > ρ

(A3)

The spot target pattern was defined by

t (x) =
⎧⎨
⎩
1 if δ <

√
x2 + y2 ≤ ρ

−1 if
√
x2 + y2 ≤ δ

0 if
√
x2 + y2 > ρ

(A4)

In these definitions x = (x, y), ρ defines the radius
of the target region and was set as 10 pixels (at
60 pixels/deg), and δ defines the radius of the interior
circular region of the target. The radius for the interior
region of the spot was seven pixels. All the target
patterns satisfied the property that

∑
x
t(x) = 0.

The displayed target was obtained by adding a mean
luminance l: T (x) = t (x) + l.

Definitions of background properties

The local mean luminance of each patch was defined
as:

L = 1
n

n∑
i=1

I (xi) (A5)

where n specifies the number of pixels in the patch, xi
are the coordinates of pixel i, and I (xi) is the luminance
of pixel i.

The root-mean-squared (RMS) contrast was defined
as:

C =
√√√√1

n

n∑
i=1

(I (xi ) − L)2

L2 (A6)

The phase-invariant similarity was defined as the
cosine of the angle between the Fourier amplitude
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spectrum of the target AT (u,v) and the Fourier
amplitude spectrum of the patch AI (u,v),

S = AT · AI

‖AT‖ ‖AI‖ (A7)

where u and v are the horizontal and vertical spatial
frequency. In other words, S is the dot product of the
amplitude spectra, represented as vectors normalized
to a length of 1.0. To prevent artifacts in the Fourier
transform, the amplitude spectrum of the target was
obtained by first windowing the target with a circular
aperture having a raised cosine ramp width at the edge
of two pixels:

w (x) =

⎧⎪⎪⎨
⎪⎪⎩
1.0 if ‖x − xc‖ < r1
0.5 + 0.5 cos (π (‖x − xc‖ − r1 )/(r0 − r1 )) if r1< ‖x − xc‖ < r0
0.0 if ‖x − xc‖ > r0

(A8)

Then a fast Fourier transform (FFT) was applied
and the complex absolute value of the Fourier spectrum
was taken. To obtain the amplitude spectrum of the
patch, the patch was first windowed in the same way
and then the complex absolute value of the FFT was
taken, after subtracting the mean.

Definition of boundary pixels

Here we define the boundary pixels for each pyramid
level. Let the center of the target region at level 1 of
the pyramid be (x1, y1) and the radius (in pixels) of
the target region be ρ1, then the center and the radius
at level r are given by (xr, yr) = (x1/2r−1, y1/2r−1), and
ρr = ρ1/2r−1. For each image pixel location (xi, yi) the
direction of the pixel from the center is θ i = atan 2
(yi − yr, xi − xr) and the real-valued location on the
boundary (x, y) is given by x = ρr cos θ i + xr, and y =
ρr sin θ i + yr. An image pixel location is defined to be a
boundary location if

√
(y − yi)2 + (x − xi)2 < 0.5.

Luminance, contrast, and similarity
bins

The widths of the bins were determined by a
geometric spacing rule:

a = (xmax/xmin)1/n

where n defines the number of bins and xmin and xmax
define the minimum and maximum of the lower and

upper bins. The bin boundaries are determined from
the spacing rule

xi = xminai

where and i is the index for the ith bin. The values for
xmin and xmax were determined as the 5th and 95th
percentile of the scene statistics distributions for each
dimension. The Table 1 shows the center values of the
bins.

Maximum likelihood estimation of
psychometric function parameters

The parameters of the psychometric functions were
estimated via maximum likelihood estimation. The
log-likelihood function was defined as,

lnL(θ= (e2, β, γ )|e) =
n∑

i=1

Nh(e) lnPh(e|θ)

+
n∑

i=1

Nfa(e) lnPfa(e|θ)

+
n∑

i=1

Nm(e) ln[1 − Ph(e|θ)]

+
n∑

i=1

Ncr(e) ln[1 − Pfa(e|θ)]

where N· (e) are the number of hits, false alarms, misses
and correct rejections and θ is the vector of parameters
with the maximum log likelihood:

θ̂max = argmax
θ∈

[lnL(θ|e)]

Effect of Intrinsic Position Uncertainty on
Separable Weber’s Law

Sebastian et al. (2017) found that the detectability of
the pattern template observer without intrinsic position
uncertainty, for additive targets in natural backgrounds,
is given approximately by:

d ′
0 ∝ a

L ×C × S

where a is the target amplitude, and L, C, and S are
the background luminance, contrast, and similarity.
Setting the detectability to 1.0 shows that the model
observer’s threshold satisfies separable Weber’s law:
at ∝ L × C × S. Text Equation 13 shows that the effect
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Similarity

Bin Luminance, % max Contrast, RMS Vertical Horizontal Bowtie Spot

1 2.96 0.0247 0.4255 0.4454 0.5394 0.6973
2 4.1447 0.0364 0.4577 0.4774 0.5584 0.712
3 5.7984 0.0536 0.4923 0.5117 0.5781 0.727
4 8.1117 0.079 0.5295 0.5484 0.5986 0.7423
5 11.348 0.1163 0.5696 0.5878 0.6197 0.7579
6 15.8755 0.1713 0.6127 0.6299 0.6416 0.7739
7 22.2093 0.2523 0.659 0.6751 0.6643 0.7902
8 31.07 0.3716 0.7088 0.7236 0.6877 0.8069
9 43.4659 0.5472 0.7625 0.7755 0.712 0.8239
10 60.8073 0.8059 0.8201 0.8312 0.7372 0.8412

Table 1. Bin centers.

of intrinsic position uncertainty on detectability is
given by:

d ′ = ln
(
exp [d ′

0] + u
1 + u

)

Substituting into this equation and setting to 1.0
shows that:

at
L ×C × S

= ln [e + eu − u]

Thus, given that e and u are constants, we still have
separable Weber’s law: at ∝ L × C × S.


