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Abstract 

Background: Recent studies have reported improved diastolic function in patients administered sodium‑glucose 
cotransporter 2 inhibitors (SGLT2i). We aimed to investigate the effect of dapagliflozin on left ventricular (LV) diastolic 
function in a diabetic animal model and to determine the molecular and cellular mechanisms underlying its function.

Methods: A total of 30 male New Zealand white rabbits were randomized into control, diabetes, or 
diabetes+dapagliflozin groups (n = 10/per each group). Diabetes was induced by intravenous alloxan. Cardiac 
function was evaluated using echocardiography. Myocardial samples were obtained for histologic and molecular 
evaluation. For cellular evaluation, fibrosis‑induced cardiomyoblast (H9C2) cells were obtained, and transfection was 
performed for mechanism analysis (serum and glucocorticoid‑regulated kinase 1 (SGK1) signaling analysis).

Results: The diabetes+dapagliflozin group showed attenuation of diastolic dysfunction compared with the dia‑
betes group. Dapagliflozin inhibited myocardial fibrosis via inhibition of SGK1 and epithelial sodium channel (ENaC) 
protein, which was observed both in myocardial tissue and H9C2 cells. In addition, dapagliflozin showed an anti‑
inflammatory effect and ameliorated mitochondrial disruption. Inhibition of SGK1 expression by siRNA decreased and 
ENaC and Na+/H+ exchanger isoform 1 (NHE1) expression was confirmed as significantly reduced as siSGK1 in the 
diabetes+dapagliflozin group.

Conclusions: Dapagliflozin attenuated left ventricular diastolic dysfunction and cardiac fibrosis via regulation of 
SGK1 signaling. Dapagliflozin also reduced macrophages and inflammatory proteins and ameliorated mitochondrial 
disruption.
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Background
Sodium-glucose transporter-2 inhibitors (SGLT2is) reduce 
blood glucose by inhibiting glucose reabsorption in the 
proximal tubule and are approved for the treatment of 
type 2 diabetes mellitus (DM).

Recent large clinical trials reported a cardiovascular ben-
efit of SGLT2is in type 2 DM patients [1–4]. A meta-anal-
ysis of SGLT2is in cardiovascular outcome trials showed 
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that SGLT2is reduced the risk of heart failure (HF) hospi-
talization by 31%, which was consistent in patients with or 
without a history of HF [5]. The pathophysiological mech-
anism of the beneficial effect of SGLT2i is likely to be inde-
pendent of glucose-lowering. Both DAPA-HF (The Study 
to Evaluate the Effect of Dapagliflozin on the Incidence 
of Worsening Heart Failure or Cardiovascular Death in 
Patients With Chronic Heart Failure) and the EMPER-
OPR Reduced trial (The Empagliflozin Outcome Trial in 
Patients With Chronic Heart Failure With Reduced Ejec-
tion Fraction) showed significantly reduced HF hospitali-
zation or death rates in patients with HF, regardless of the 
absence of diabetes [6, 7]. In addition, emerging evidence 
of the cardioprotective effect of SGTL2i in doxorubicin-
induced cardiomyopathy suggests a potential role of 
SGTL2i in the cardio-oncology field [8, 9]. Meanwhile, 
the mechanisms underlying the cardiovascular benefits of 
SGTL2i remain elusive.

Progression of diastolic dysfunction is a risk factor 
for HF [10]. Diastolic dysfunction predicts mortality in 
HF, irrespective of left ventricular (LV) ejection fraction 
[11, 12]. LV diastolic dysfunction results from increased 
myocardial stiffness and interstitial myocardial fibrosis 
[13]. Previous studies suggest SGLT2is may inhibit car-
diac fibrosis and ameliorate diastolic dysfunction [14, 15]. 
However, the underlying cellular and molecular mecha-
nisms remain to be elucidated [16, 17].

In this study, we aimed to investigate the cellular and 
molecular mechanisms underpinning the effect of dapa-
gliflozin (a widely-used SGLT2i) on cardiac fibrosis and 
diastolic function.

Methods
Experimental animal model
The study protocol was approved by the local Institutional 
Animal Care and Use Committee (IACUC) of Yonsei Uni-
versity Health System (YUHS-IACUC: 2016-0157) and 
complies with the ARRIVE reporting guidelines. Healthy 
New Zealand white rabbits were purchased from Dooyeol 
Biotech (Dooyeol Biotech, Seoul, Korea) and were main-
tained under the same standard laboratory conditions, 
housed at room temperature with a 12-h light cycle with 
free access to diet and water in each cage. All animals 
were submitted to daily health status monitoring including 
weight, food intake, and general activity. All protocols fol-
lowed the guidelines for the care and use of laboratory ani-
mals (National Research Council, USA). The main outcome 
variable was diastolic dysfunction assessed by echocardiog-
raphy. Based on a previous study [18], a case number esti-
mation had yielded a group size of n = 10 (8 animals + 2 
reserve animals). A total of 30 male rabbits (3.0–3.5 kg, 
22–24 weeks) were randomly allocated to three groups: 
control (n = 10), diabetes (n = 10), and diabetes + dapa 

(dapagliflozin, 1 mg/kg/day/P.O. for 8 weeks) (n = 10). Dia-
betic condition was induced by intravenous injection of 
Alloxan monohydrate (ALX, Sigma-Aldrich, St. Louis, MO, 
USA) at a dose of 150 mg/kg. Rabbits exhibiting a fasting 
blood glucose level above 200 mg/dl were diagnosed as dia-
betic. All rabbits were fed for a 1% cholesterol diet (Dooyeol 
Biotech) for 6 weeks and a normal diet for 2 weeks thereaf-
ter. After follow-up, echocardiography was performed in the 
prone position after anesthesia with an intramuscular injec-
tion of an appropriate mixture of Zoletil and Rompun. After 
echocardiography, the animals were euthanized to minimize 
the discomfort experienced by animals. The experimental 
protocol is shown in Additional file 1: Fig. S3 in detail.

Blood chemistry
Glucose and cholesterol levels were measured in blood 
samples at baseline, diabetes modeling, and follow-up 
after 8 weeks using a Blood Glucose Monitoring System 
(Osang healthcare, Anyang, Korea) and DRI-CHEM 
4000i (Fujifilm, Tokyo, Japan). Blood samples were drawn 
from the ear veins of the rabbits after they had been 
fasted overnight.

Conventional echocardiography
All images were obtained using a commercial ultra-
sound machine (Vivid 7 Dimension; GE Vingmed Ultra-
sound AS, Horten, Norway) with an S10 probe (2.5 
megahertz). Images were acquired from apical three-
chamber, four-chamber, and two-chamber views; and 
short-axis views of the mitral valves, papillary muscles, 
and apex [19].

The left atrial end-diastolic diameter (LVEDD), left atrial 
end-systolic diameter (LVESD), septal, LV posterior wall 
thicknesses, and left atrial diameter (LAD) were measured 
from standard planes. The LV ejection fraction (EF) was 
calculated using the Teicholz formula [19]. Pulsed Dop-
pler echocardiography of the transmitral flow was per-
formed. The sample volume was positioned at the level of 
the mitral tips in the apical four-chamber view. From the 
transmitral recording, the peak early (E) and late diastolic 
filling velocities were obtained. An apical four-chamber 
view was also used to obtain Doppler tissue imaging of the 
mitral annulus. Sample volumes were placed on the septal 
and lateral sides of the mitral annulus. Values for systolic 
(S′), early (e′), and late (a′) diastolic annular velocities were 
obtained. Echocardiography and analysis were performed 
in blind conditions.

Ultrastructure analysis using transmission electron 
microscopy (TEM)
The samples were cut into 1 mm squares and immedi-
ately placed in primary TEM fixation. After pretreat-
ment, specimens were embedded with a Poly/Bed 812 kit 
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(Polysciences, Warrington, USA) and then placed in resin 
and polymerized in an electron microscope oven (TD-
700, DOSAKA, Kyoto, Japan) at 65 °C for 12 h. Ultrathin 
sections (80 nm) were placed on copper grids and double 
stained with 3% uranyl acetate and 3% lead citrate for 30 
min and 7 min, respectively. The stained sections were 
then imaged using a transmission electron microscope 
(JEM-1011, JEOL, Tokyo, Japan) equipped with a Mega-View 
III CCD camera (Soft imaging system, Münster, Germany).

Quantification of interstitial fibrosis and immunostaining
Heart tissue was fixed in 10% normal buffered forma-
lin, embedded in paraffin, sectioned at 4μm thickness, 
cut on a microtome RM2235 (Leica, Wetzlar, Germany), 
then deparaffinized through the dewatering process. 
Masson’s Trichrome and Sirius Red were used to stain 
for collagens. Immunohistochemistry (IHC) and immu-
nofluorescence (IF) were used to evaluate fibrosis, mac-
rophage, or inflammation expression. Tissue sections 
were immunostained at 4°C overnight with antibody. 
IHC was used to detect α-SMA (Abcam, Cambridge, 
UK, ab-7817), Fibronectin (Abcam, ab-6328), TGF-β1 
(Abbkine, Wuhan, China, ABP52598), 3-nitrotyrosine 
(Abcam, ab-61392), Receptor for advanced glycation end 
products (RAGE) (LifeSpan Biosciences, Seattle, USA, 
LS-C122375), RAM11 (DAKO, CA, USA, M0633), tumor 
necrosis factor-α (TNF-α) (Abcam, ab6671), NHE1 
(Santa Cruz Biotechnologies, CA, USA, sc-136239), 
SGLT1 (Millipore, Overijse, Belgium, 07-1417), SGLT2 
(Abcam, ab85626), Fis1 (Santa Cruz Biotechnologies, 
CA, USA, sc-376447), and Mfn1/Mitofusin1 (Santa Cruz 
Biotechnologies, CA, USA, sc-166644). The primary anti-
body was detected using a peroxidase-based kit (DAKO, 
Glostrup, Denmark) and visualized using DAB substrate 
with enhancer (DAKO). The sections were subsequently 
counterstained with hematoxylin (DAKO). The IHC 
staining was performed as previously described [20]. Dig-
ital images of the heart tissue were scanned using a SCN 
400 scanner (Leica, Wetzlar, Germany), and histomor-
phometry was performed using LAS 4.2 software (Leica). 
Ten random images from 10 heart tissues per group were 
analyzed in a blinded procedure.

IF staining of the heart tissue to detect serum and 
glucocorticoid-regulated kinase 1 (SGK1) (ABCAM, 
ab43606) and epithelial sodium channel (ENaC) (Biorbyt, 
Cambridge, UK, orb100662) was performed following a 
published protocol [21]. The sections were washed for 10 
min in 1% PBS and then incubated with FITC-conjugated 
secondary antibodies (Santa Cruz Biotechnologies) for 
1 h in the dark at room temperature. The sections were 
washed in PBS for 10 min, mounted with Fluoroshield 
containing DAPI (ImmunoBioscience, Mukilteo, WA, 
USA), and stored in the dark at 4°C. Confocal microscopy 

was performed with an LSM 700 system (Carl Zeiss, 
Oberkochen, Germany).

Cell culture and transfection
Cells of the rat cardiomyoblast cell line H9C2 were cul-
tured in DMEM containing 10% fetal bovine serum (both 
from Biowest, MO, USA) supplemented with 10% non-
essential amino acids, 1% 2-mercaptoethanol, and 10% 
penicillin (all from Gibco, Carlsbad, CA, USA). Cells 
were maintained at 37°C in humidified air with 5% carbon 
dioxide. Before treatment, the cells were washed twice 
with pH 7.4 phosphate-buffered saline (PBS, Gibco). The 
cells were incubated in 500 μM palmitate (diluted in 5% 
bovine serum albumin [BSA]) with or without 35mM 
high glucose (HG) for 24 h and then treated with 0.4 μM 
dapagliflozin with 10 μg/ml lipopolysaccharide (LPS) for 
24 h (all from Sigma-Aldrich).

siRNA targeting rat siSGK1 (5′- AGG AGA ACA UCG 
AGC ACA ATT -3′) and siControl (5′-UUC UCC GAA CGU 
GUC ACG UTT-3′) were synthesized (Bioneer, Daejeon, 
Korea). H9C2 cells were then transfected with the siRNAs 
using  LipofectamineTM RNAiMAX (Invitrogen, Carlsbad, 
CA, USA) according to a previously described method [22].

Reverse transcription (RT)‑PCR and real‑time PCR
The heart tissues and H9C2 cells of total RNA were isolated 
using a published procedure [23]. cDNA was synthesized 
using Quantitect Reverse Transcription Kit (QIAGEN, 
Hilden, Germany), then the cDNA was amplified using 
AccuPower PCR Premix (Bioneer, Daejeon, Korea) and 
the SYBR Green kit of the 2X Fast Q-PCR Master Mix 
(SMOBIO, Hsinchu City, Taiwan). Relative mRNA levels 
were determined by comparison with GAPDH or β-actin. 
The rabbit and H9C2 primers used for the target genes are 
shown in Additional file 1: Table S1 and S2.

Western blot analysis
The heart tissues and H9C2 cells were lysed with RIPA 
buffer (Biosesang, Seongnam, Korea) containing Com-
plete Mini and EDTA-free protease inhibitor cocktail 
(Roche, Basel, Switzerland). The protein samples were 
resolved by SDS-PAGE and then electrotransferred to 
an Immuno-Blot PVDF membrane (Bio-Rad, Hercules, 
CA, USA). Membranes were blocked with 5% skim milk 
(Noble Bio, Hwaseong, Korea) in 10% TBS-T for 1 h at 
room temperature. Membranes were incubated with pri-
mary antibodies against Fibronectin (Abcam, ab-6328), 
TGF-β1 (Abbkine, Wuhan, China, ABP52598), SGK1 
(Abcam, ab43606), ENaC Gamma (Biorbyt, Cambridge, 
UK, orb100662), NHE1 (Santa Cruz Biotechnologies, 
CA, USA, sc-136239), TNF-α (Abcam, ab6671), IL-6 
(Santa Cruz Biotechnologies), NF-kB (p65, Enzo life  
sciences, Farmingdale, NY, USA), and pNF-kB (p65, Santa 
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Cruz Biotechnologies) at 4°C overnight and washed with 
TBS-T. They were incubated with horseradish peroxi-
dase-conjugated secondary antibody for 1 h room tem-
perature and then subjected to ECL (GE Healthcare, 
Chicago, USA) detection. GAPDH was detected on the 
same membrane to serve as a loading control. Densi-
tometry analysis was performed using Image J software 
(National Institutes of Health, Bethesda, MD, USA).

Statistical analysis
All data are expressed as mean ± SEM. Statistical analy-
ses were performed using SPSS v26 (SPSS Inc., Chicago, 
IL, USA) and dots graphs were created using the Graph-
Pad Prism 8.4 (GraphPad Inc., San Diego, CA, USA). 
When our data follow normal distribution, parametric 
tests otherwise nonparametric methods are used to com-
pare the groups. P-values less than 0.05 were considered 
statistically significant.

Results
Metabolic parameters of animal models at baseline and 8 
weeks follow‑up
Baseline characteristics were comparable among the 
three groups; however, the fasting blood glucose level 
was significantly higher in the diabetes groups compared 
with the control group (P < 0.001, Table  1). At 8 weeks 
follow-up, body weights did not differ among the three 
groups, but total cholesterol, triglyceride, low-density 
lipoprotein, and fasting blood glucose were significantly 
higher in the diabetes group compared to those in the 
control and diabetes+dapa groups (P < 0.001, P < 0.01,  
P < 0.05, Table 1).

Attenuation of LV diastolic dysfunction in diabetes+dapa 
group
Baseline echocardiographic parameters were similar 
among the three groups. Table  2 shows comparisons 
of echocardiographic parameters at 8 weeks follow-up 
among the three groups. In the diabetes+dapa group, 
septal e′ and lateral e′ velocities were significantly higher 
than that of the diabetes group (P < 0.05). The E/septal e′ 
ratio was significantly lower in the diabetes+dapa group 
compared with that in the diabetes groups (P < 0.05).

Table 1 Parameters at baseline and at the 8 weeks follow‑up

Values are means ± SEM (n = 10 per group)

FBG fasting blood glucose
* p < 0.05, ***p < 0.001 compared to control group, †p < 0.05, ††p < 0.01, †††p < 0.001 compared to diabetes group

Control Diabetes Diabetes+dapa

Baseline
 Body weight, kg 3.3 ± 0.1 3.3 ± 0.1 3.4 ± 0.1

 Total cholesterol (mg/dL) 29.8 ± 3.1 32.3 ± 4.1 27.9 ± 2.5

 Triglyceride (mg/dL) 42.3 ± 5.9 38.2 ± 4.6 36.9 ± 5.9

 High‑density lipoprotein (mg/dL) 13.9 ± 2.2 14.8 ± 2.5 12.9 ± 1.9

 Low‑density lipoprotein (mg/dL) 7.4 ± 1.5 9.9 ± 3.0 7.6 ± 1.1

 FBG (mg/dL) 133 ± 8 427 ±  36*** 441 ±  38***

At 8 week follow‑up
 Body weight, kg 3.6 ± 0.1 3.5 ± 0.2 3.8 ± 0.1

 Total cholesterol (mg/dL) 268 ± 42 645 ±  34*** 266 ±  27†††

 Triglyceride (mg/dL) 91.4 ± 32.6 669 ±  161*** 138 ±  35††

 High‑density lipoprotein (mg/dL) 40.6 ± 2.5 26.1 ± 2.4*** 25.7 ± 2.9***

 Low‑density lipoprotein (mg/dL) 209 ± 36 486 ±  34*** 213 ±  21†††

 FBG (mg/dL) 136 ± 4 445 ±  48*** 251 ±  36*,†

Table 2 Echocardiographic parameters at 8 weeks follow‑up

Values are means ± SEM (n = 10 per group)

SGLT2i sodium-glucose cotransporter 2 inhibitor, LAD left atrial diameter, 
LVEDD left ventricular end-diastolic diameter, LVESD left ventricular end systolic 
diameter, IVSd interventricular septal end diastole thickness, PWd posterior 
wall thickness, end diastole, LVEF left ventricular ejection fraction, LVFS left 
ventricular fractional shortening
* p < 0.05 compared to control group, †p < 0.05 compared to diabetes group

Control Diabetes Diabetes+dapa

LAD, mm 8.8 ± 0.3 9.9 ± 0.4 9.4 ± 0.3

LVEDD, mm 14.4 ± 0.7 14.6 ± 0.7 14.3 ± 0.8

LVESD, mm 9.2 ± 0.6 9.3 ± 0.4 9.4 ± 0.3

IVSd, mm 3.6 ± 0.2 3.5 ± 0.3 3.6 ± 0.3

PWd, mm 3.2 ± 0.1 3.5 ± 0.3 3.7 ± 0.2

LVEF (%) 69 ± 2 72 ± 1 73 ± 1.6

LVFS (%) 36 ± 2 38 ± 1 39 ± 1.3

E, cm/s 61 ± 4 69 ± 10 67 ± 5.1

A, cm/s 34 ± 3 59 ± 7 45 ± 5.7

Septal e′, cm/s 9.6 ± 0.4 5.6 ± 0.7* 9.6 ± 0.6†

Lateral e′, cm/s 13.2 ± 1.0 8.2 ± 1.9* 13.1 ± 0.5†

E/septal e′ 6.6 ± 0.6 12.9 ± 1.6* 7.2 ± 0.6†
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Dapagliflozin attenuates myocardial fibrosis
A qualitative assessment by Masson’s trichrome stain 
revealed prominent fibrosis in the myocardium of the 
diabetes group (Fig.  1A). Sirius red staining revealed 
that the Diabetes group exhibited significantly increased 
myocardial fibrosis compared with the control and 
diabetes+dapa groups (P < 0.001, Fig.  1A, B), reflect-
ing increased collagen deposition. Extracellular remod-
eling was assessed by immunostaining for α-SMA, 
fibronectin, and TGF-β1 protein levels (Fig.  1C–E). The 
diabetes+dapa group showed significantly decreased 

fibronectin and TGF-β1 compared with the diabetes 
group (P < 0.01, P < 0.001). Dapagliflozin significantly 
reduced expression of fibronectin and TGF-b1 based on 
RT-PCR and Western blot findings (P < 0.001, P < 0.01, 
P < 0.05, Fig. 1I, J). This finding provides visual evidence 
that dapagliflozin can influence the extracellular remod-
eling of rabbit myocardium.

To further investigate the mechanism of dapagliflozin in 
the attenuation of cardiac fibrosis and extracellular remod-
eling, we compared the expression of myocardial SGK1 
protein and its downstream proteins, ENaC and NHE1.

Fig. 1 Reduction of fibrosis by dapagliflozin and morphologic changes by histological analysis. A Myocardial tissue was stained with Masson’s 
trichrome. B Collagen fiber deposition of the plaques is represented using Sirius Red staining. Sirius Red percentage for myocardial tissue in each 
group. C–F The plaques were shown using immunohistochemistry staining of α‑SMA, Fibronectin, TGF‑β1, and 3‑nitrotyrosine. G, H The expression 
of SGLT1 and SGLT2 and direct effects of dapagliflozin on immunohistochemistry analysis in myocardial tissue. Scale bar = 200μm. I RT‑PCR 
analyses of indicated genes in myocardial tissue. J Western blot analyses of indicated genes in myocardial tissue (n = 4 per group). K Real‑time PCR 
expressions of SGLT1 and SGLT2 in myocardial tissue. Values are means ± SEM (n = 10 per group). *p < 0.05, **p < 0.01, ***p < 0.001 compared to 
control group, †p < 0.05, ††p < 0.01, †††p < 0.001 compared to diabetes group
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Myocardial SGK1 and ENaC proteins were significantly 
decreased in the diabetes+dapa group compared with 
the diabetes group, and comparable to the control group, 
when assessed by immunofluorescence techniques (P < 
0.001, P < 0.01, Fig. 2A, B). Similarly, NHE1 was signifi-
cantly decreased in the Diabetes+Dapa group compared 
with the Diabetes group (P < 0.01, Fig. 2C). The RT-PCR 
showed a significant reduction in SGK1, ENaC, and 
NHE1 levels in the diabetes + dapa group compared to 
that in the diabetes group (P < 0.01, P < 0.05, Fig. 2D) and 
similarly tend to decreased expression level in Western 
blot (Fig. 2E).

To confirm the effect of dapagliflozin at the cellu-
lar level, hyperglycemic fibrosis was induced in car-
diomyoblast H9C2 cells using RT-PCR and Western 
blot (Fig.  3A, B). Fibronection and TGF-β1 mRNA 
and protein levels were significantly lower in the 
H9C2 cells in the high glucose group treated with 
dapagliflozin than in those in the high glucose group 
without dapagliflozin treatment (P < 0.001, P < 0.01). 
SGK1, ENaC, and NHE1 mRNA and protein levels 
were significantly lower in the dapagliflozin-treated 
group compared with those in the high glucose group 
(P < 0.001, P < 0.01, P < 0.05).

To test whether SGK1 was directly inhibited by dapa-
gliflozin, we assessed SGK1 expression in dapagliflozin-
treated H9C2 cells. SGK1 siRNA (20 nM) effectively 
suppressed the transcriptional and translational level of 
SGK1 (P < 0.001, P < 0.01, P < 0.05, Fig.  4A, B). Dapa-
gliflozin suppressed the SGK1 level and subsequently 
suppressed ENaC and NHE1, similar to SGK1 downregu-
lated cells (P < 0.001, P < 0.01, P < 0.05, Fig 4C, D).

Dapagliflozin reduces inflammation and ameliorates 
mitochondrial disruption
To explore other possible mechanisms for the cardiovas-
cular benefit of dapagliflozin, 3-nitrotyrosine (an oxida-
tive stress marker) expression was compared between the 
three groups. 3-nitrotyrosine expression was significantly 
lower in the diabetes+dapa group than in the Diabetes 
group, and comparable to the control group (P < 0.05, 
Fig.  1F). In the expression of macrophage and inflam-
mation protein markers, including RAM11, RAGE, and 
TNF-α, using immunohistochemistry analysis. RAM11, 
RAGE, and TNF-α expression were significantly lower in 
the Diabetes+Dapa group compared with the Diabetes 
group, and comparable to the Control group (Additional 
file 1: Fig. S1 A-C). Decreased expression of inflammatory 

Fig. 2 Dapagliflozin inhibits the expression of profibrotic proteins SGK1 and ENaC assessed by confocal immunofluorescence microscopy. 
A Comparison of SGK1 (green) expression in myocardial tissue. B Comparison of ENaC (green) expression in myocardial tissue. Relative area 
measurements were determined using a Zeiss LSM 700. Scale bar = 50μm. n = 3 each slide of 3 sections. C The direct effects of dapagliflozin on 
immunohistochemistry analysis of NHE1 in myocardial tissue (n = 10 per group). Scale bar = 200μm. D RT‑PCR analyses of indicated genes in 
myocardial tissue (n = 10 per group). E Western blot analyses of indicated genes in myocardial tissue (n = 4 per group). Values are means ± SEM. *p 
< 0.05, **p < 0.01, ***p < 0.001 compared to control group, †p < 0.05, ††p < 0.01 compared to diabetes group
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markers, TNF-α, IL-6, and NF-kB, was observed in dapa-
gliflozin-treated H9C2 cells compared with the high glu-
cose group. (Additional file 1: Fig. S2 A-B).

To address possible mechanisms for decreased 3-nitro-
tyrosine expression in the diabetes+dapa group, mito-
chondria structures were analyzed. In the diabetes group, 
mitochondria showed a disrupted cristae structure with 
diminution of matrix electron density, loss and fusion 
of cristae, and mitochondrial fragmentation compared 
with the control group (Fig.  5A). In the diabetes+dapa 
group, the cristae structure in the mitochondria was 
preserved and a lesser degree of the diabetes-induced 
ultrastructural anomalies of the mitochondria was noted. 

Additionally, to further investigate the impact of dapa-
gliflozin on mitochondrial dysfunction, we analyzed the 
expression levels of mitofission or mitofusion proteins, 
Fis1 and Mfn1. Levels of Fis-1 land Mfn-1 were signifi-
cantly reduced in the Diabetes+Dapa group compared 
with the diabetes group (P < 0.05, Fig. 5B). RT-PCR and 
Western blot analysis also showed similar results (P < 
0.05, Fig. 5C, D).

In the expression levels of SGLT1 and SGLT2 in heart 
tissue, both SGLT1 and SGLT2 were significantly higher 
expressions in the diabetes group when compared to 
those in the control group (P < 0.001, P < 0.01, P < 0.05, 
Fig. 1G–H and K).

Fig. 3 The anti‑fibrotic effect of dapagliflozin in H9C2. A RT‑PCR expression of Fibronectin, TGF‑β1, SGK1, ENaC, and NHE1. B Western blot 
expression of Fibronectin, TGF‑β1, SGK1, ENaC, and NHE1. Values are means ± SEM (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001 compared to Control, †p 
< 0.05, ††p < 0.01 compared to DMSO, §p < 0.05, §§p < 0.01, §§§p < 0.001 compared to HG
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Discussion
In the present study, we demonstrated attenuation of LV 
diastolic dysfunction using a diabetic rabbit model and 
evaluated the underlying mechanisms. Our results showed 
that dapagliflozin (1) attenuated myocardial fibrosis through 
SGK1/ENaC/NHE1 signaling and (2) reduced myocardial 
inflammation, and ameliorated mitochondrial disruption.

The most important finding of our study is that we 
identified the potential mechanisms underlying the car-
diovascular benefit of dapagliflozin. In our study, dapa-
gliflozin attenuated LV diastolic dysfunction in a diabetic 
rabbit model. This finding is consistent with previous 
clinical and animal studies, which reported improved 
diastolic function with SGLT2i [16, 17, 24, 25]. The 

dapagliflozin-treated group showed attenuation of myo-
cardial fibrosis with reduction of SGK1/ENaC/NHE1 
proteins in myocardial tissue and H2C2 cells. SGK1 is 
an emerging mediator of cardiac fibrosis, which activates 
the ENaC proteins responsible for promoting fibrosis and 
upregulating NHE1 activity, which are key factors in car-
diac remodeling [18, 26]. A previous study using a murine 
model reported activation of SGK1-induced adverse ven-
tricular remodeling, fibrosis, and increased size of car-
diomyocytes, suggesting that SGK1 is a key mediator of 
cardiac remodeling [27–29].

In addition to inhibition of fibrosis, our results also 
demonstrate that dapagliflozin reduces inflammation 
and ameliorates mitochondrial disruption attenuation. 

Fig. 4 Dapagliflozin for suppression of fibrosis via SGK1, ENaC, and NHE1. A Representative RT‑PCR bands of SGK1 in H9C2 transfected with SGK1 
10‑30 nM siRNA. B Representative Western blot bands of SGK1 in H9C2 transfected with SGK1 10‑30 nM siRNA. Values are means ± SEM (n = 4). *p < 
0.05, **p < 0.01, ***p < 0.001 compared to the siCon group. C RT‑PCR analyses of indicated genes in H9C2. D Western blot analyses of indicated genes 
in H9C2. Values are means ± SEM (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001 compared to the siCon group, †p < 0.05, ††p < 0.01, †††p < 0.001 compared 
to palmitic acid + LPS siCon, ∥p < 0.05 compared to palmitic acid + LPS siSGK + dapa, §p < 0.05, §§p < 0.01, §§§p < 0.001 compared to palmitic acid 
+ LPS HG + siCon, ¶p < 0.05 compared to palmitic acid + LPS HG + siSGK + dapa

Fig. 5 Protective effect of dapagliflozin for mitochondrial cristae in myocardial tissue. Comparison of mitochondrion changes. A Transmission 
electron microscopy images of myocardial tissue treated with dapagliflozin. Scale bar = 5μm, 2μm, and 500nm from low to high magnification. B 
Immunohistochemistry analysis of Fis‑1 and Mfn‑1 expression and quantification of myocardial tissue cross‑sectional area. Scale bar = 200μm. C 
RT‑PCR analyses of indicated genes in myocardial tissue. D Western blot analyses of indicated genes in myocardial tissue (n = 4 per group). Values 
are means ± SEM (n = 10 per group). *p < 0.05, **p < 0.01, ***p < 0.001 compared to the Control group, †p < 0.05 compared to the diabetes group

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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This finding could contribute to the attenuation of LV 
diastolic dysfunction. Decreased mitochondrial func-
tion, increased reactive oxygen species production, and 
inflammation are hallmarks of a diabetic heart [30]. A 
previous report demonstrated that SGTL2i prevents 
mitochondrial dysfunction, reflected by reduced  H2O2 
release and increased ATP synthesis, which supports our 
finding on mitochondria structure [31].

The anti-inflammatory effect of SGLT2 inhibitors, 
including dapagliflozin, has been reported by reduc-
ing the expression of the NLRP3 inflammasome, IL-1β, 
IL-6, and TNF-α [3, 32–34]. In an angiotensin II stressed 
diabetic mouse model, dapagliflozin decreased intracel-
lular calcium transients, thereby reducing production of 
reactive oxygen species and inflammation [35]. Similarly, 
a recent study reported attenuation of diastolic dysfunc-
tion in a diabetic model with nutraceuticals like querce-
tin and boswellic acid through NLRP3 inflammasome 
and cytokines, which showed a potential effect against 
cancer cell survival and chemoresistance [36].

The possible anti-inflammatory mechanism of dapa-
gliflozin is activation of adenosine mono-phosphate 
kinase (AMPK) with downstream inhibition of the Na+ 
/H+ Exchanger-1 (NHE-1) for the attenuation of NLRP3 

inflammasome activation [37]. Furthermore, a recent 
study suggested that dapagliflozin may activate mTORC2, 
leading to the activation of Akt and FOXO3 [36] and 
depends on AMPK and mTOR activation. Similar to pre-
vious studies, our results showed an anti-inflammatory 
effect of dapagliflozin in diabetic cardiomyopathy. Inflam-
matory markers, RAM11, RAGE, and TNF-α were signifi-
cantly reduced in the Diabetes+Dapa group compared to 
those in the Diabetes group (Additional file 1: Fig. S1-S2).

This study is meaningful in demonstrating the favora-
ble effect of dapagliflozin and elucidates the mechanism 
underlying SGLT2 inhibition in diastolic heart failure 
using a diabetic rabbit model. Dapagliflozin is a known 
selective SGTL2 inhibitor, but also has a relatively weak 
inhibitory activity for SGLT1 [38, 39]. We tested the 
expression of SGLT1 and SGLT2 by immunostaining rab-
bit myocardial tissue (Fig. 1G, H). In the Diabetes+Dapa 
group, expression of SGLT1 and SGLT2 were signifi-
cantly reduced compared with the diabetes group. This 
finding is consistent with the inhibitory mechanism of 
dapagliflozin in an in-vivo model.

There are several limitations to our study. First, our 
study lacks data on the effect of dapagliflozin on myo-
cardial metabolism and mitochondrial function. Second, 

Fig. 6 Summary of pathways contributing to suppressed cardiac fiberization in a diabetes rabbit model
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the present study did not include the long-term effect of 
dapagliflozin. Third, we assessed the effect of dapagli-
flozin on a diabetic model; whether dapagliflozin exerts 
a cardioprotective effect via the same mechanisms in a 
non-diabetic model needs to be explored. Despite these 
limitations, our study is valuable in demonstrating that 
dapagliflozin attenuates cardiac fibrosis via SGK1 sign-
aling and ameliorates diastolic dysfunction in a diabetic 
rabbit model. Our results convey important therapeutic 
benefits beyond lowering blood glucose and simple intra-
vascular volume loss by increasing the urinary excretion 
of glucose and sodium (Fig. 6).

Conclusion
In conclusion, dapagliflozin attenuated left ventricular 
diastolic dysfunction and cardiac fibrosis via regulation 
of SGK1 signaling in a rabbit diabetic model. In addition, 
dapagliflozin reduced inflammation and ameliorated mito-
chondrial disruption in the myocardium. Our study may 
contribute to broadening the scopes of understanding the 
mechanism of cardiovascular benefit of SGLT2 inhibitor.
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