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Estimating the in vivo absorption profile of a drug is essential when developing extended-
release medications. Such estimates can be obtained by measuring plasma concentra-
tions over time and inferring the absorption from a model of the drug’s pharmacokinetics.
Of particular interest is to predict the bioavailability—the fraction of the drug that is
absorbed and enters the systemic circulation. This paper presents a framework for
addressing this class of estimation problems and gives advice on the choice of method.
In parametric methods, a model is constructed for the absorption process, which can
be difficult when the absorption has a complicated profile. Here, we place emphasis on
non-parametric methods that avoid making strong assumptions about the absorption.
A modern estimation method that can address very general input-estimation problems
has previously been presented. In this method, the absorption profile is modeled as a
stochastic process, which is estimated using Markov chain Monte Carlo techniques. The
applicability of this method for extended-release formulation development is evaluated by
analyzing a dataset of Bydureon, an injectable extended-release suspension formulation
of exenatide, a GLP-1 receptor agonist for treating diabetes. This drug is known to have
non-linear pharmacokinetics. Its plasma concentration profile exhibits multiple peaks,
something that can make parametric modeling challenging, but poses nomajor difficulties
for non-parametric methods. The method is also validated on synthetic data, exploring
the effects of sampling and noise on the accuracy of the estimates.

Keywords: input estimation, deconvolution, Markov chain Monte Carlo, exenatide, extended release

1. INTRODUCTION

Extended-Release (ER) drug formulations are commonly used to improve the properties of drugs.
They can allow for less frequent dosing schedules, improving compliance and quality for the patient.
They can also improve safety by lowering the peak plasma concentration and enable the development
and use of drugs whose pharmacokinetic (PK) properties would otherwise be unacceptable. For ER
medications, the formulation design is specifically intended to provide a targeted release or input
rate that optimizes the compound PK. ER medications are typically administered orally (tablets and
capsules) or injected as intramuscular/subcutaneous depot formulations.
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Most types of oral ER technologies today are based on poly-
meric systems (Yang and Pierstorff, 2012; Arafat, 2015). The
oral formulations can be categorized into matrix, reservoir (or
membrane controlled), and osmotic systems (Ratnaparkhi and
Gupta Jyoti, 2013; Khalane et al., 2016). The drug release mech-
anisms involve drug diffusion, system swelling, or erosion and
dissolution, or osmotic pressure-induced release (Siepmann and
Göpferich, 2001; Arifin et al., 2006). Parenteral depot injections
are used to achieve extended drug release over a week or longer.
They include formulation types such as oil-based solutions, drug
suspensions, polymer-based microspheres and polymer-based or
lipid liquid crystal in situ formings (Rhee et al., 2010; Gulati and
Gupta, 2011; Schwendeman et al., 2014). Biodegradable micro-
sphere systems (e.g., made of PLGA copolymer) have proved
to be a successful approach to deliver macromolecular drugs
(Mitragotri et al., 2014).

In any ER-formulation development process, it is fundamental
to determine the in vivo drug release/absorption profile of each
candidate formulation. This is done routinely in drug discovery
and development. Measuring the absorption profile in vivo is
generally difficult and expensive. Typically, the data that are avail-
able are plasma concentration profiles following extravascular
administration. If a model of the PK is available, it is possible to
infer the absorption profile from plasma concentration data. The
total amount of drug absorbed, and therefore the bioavailability,
can be computed by integrating the absorption profile. Standard
methods exist for the case where the PK is linear (Verotta, 1996).
However, methods that are applicable to the non-linear case are
not widely available.

When predicted in vivo input profiles are available, it may be
possible to validate or invalidate the translatability of the in vitro
system. Given data for several candidate formulations, an in vitro
in vivo correlation (ivivc) can be established, relating the in vitro
drug dissolution or release to the in vivo drug absorption or
release (Lu et al., 2011; Cardot and Davit, 2012). Ideally, one
can then predict the in vivo performance based on the in vitro
release profile and optimize the formulation by in vitro testing
at low cost. In addition, knowledge of the absorption profile in
an animal model can help in predicting, and hence optimizing,
the human PK profile. To achieve this, a human intravenous PK
model is required, either from real data or predicted from cellular
or animal data. The absorption profile obtained from animal data
is fed to the human model, resulting in human PK trajectories.
This type of human predictions is always desired in drug discovery
to assess feasibility. Naturally, prediction reliability increases with
the amount and quality of data.

One way to estimate the absorption profile is to build a para-
metricmodel of the drug release and absorption processes. For the
drug release process, various models have been proposed, ranging
from simple empirical models to detailedmechanistic models that
account for various processes such as degradation and erosion
(Siepmann and Peppas, 2001; Versypt et al., 2013). However, if the
release profile is complicated, it may be difficult to create a model
that is able to capture the observed plasma concentration (Shen
and Burgess, 2015). One example is long acting biodegradable
particles for subcutaneous injection. The model may also need to
be tailored to the particular type of drug and formulation used.

For sparse data, suchmodelsmay also have practical identifiability
issues. An alternative is to use non-parametric methods. In these
methods, the release/absorption profile is allowed to take any
functional form as long as it matches the data and does not exhibit
any unrealistic behavior, such as taking negative values. Predic-
tions from such non-parametric methods are often sufficient for
compound/formulation selection in drug discovery.

This paper considers such non-parametric methods for esti-
mating the release/absorption profile and bioavailability of
extended-release formulations and gives advice on the choice of
methods, given the data and system knowledge that are available.
The choice of method depends on the characteristics of the PK
model:

• When the dynamics of the PK model are substantially faster
than the release/absorption profile, it is reasonable to assume
that the PK model is essentially in steady state over the
timescales of interest. The plasma concentration at any time-
point is a function of the absorption rate only at that timepoint,
regardless of previous history. For linear PK models, the rela-
tionship between plasma concentration and absorption rate is
linear.

• When the dynamics of the PK model are too slow to be ignored
in relation to the absorption profile, the plasma concentration
at any timepoint is a function of the complete absorption profile
up to that point. If the PK model is linear and time-invariant,
the relationship between the absorption rate u(t) and plasma
concentration C(t) is given by

C(t) = I(t) ∗ u(t), (1)

where I(t) is the impulse response of the system and ∗ is
the convolution operator. Estimating u(t) from C(t) is con-
sequently referred to as deconvolution (Verotta, 1996). The
impulse response can be derived from a model, if one is avail-
able, or may be determined empirically, e.g., from intravenous
data.

• The most general case is when the dynamics of the PK model
are non-linear. Here, the relationship between u(t) and C(t)
cannot be expressed by a convolution operation. Estimating the
absorption profile is still possible if a (non-linear) PK model
is available. In this case, the dynamics are represented by a
system of ordinary differential equations, which is integrated
numerically as part of the estimation procedure. Since this
operation is not related to convolution, we prefer the more
general term input estimation.

A decision tree summarizing these aspects is given in Figure 1.
In its most general form, input estimation is the technique

of estimating the input to a dynamical system, given measure-
ments of the system’s state. In the present case, the input is
the release/absorption profile of the drug, u(t), the dynamical
system is the PK model, and the measurements are of plasma
concentrationsC(t). Amethodology for performing such analyses
has been presented in Trägårdh et al. (2016). These methods do
not make any assumptions about stationarity or linearity and are
therefore applicable to the most general case presented above.
Previously, the methods have been applied to estimating the
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FIGURE 1 | Decision tree for the choice of method for predicting a release/absorption profile. If a suitable model for the release/absorption profile exists or
can be constructed, parametric methods are suitable. Otherwise, non-parametric methods can be used. The method presented in this paper addresses the most
general non-parametric case, with non-linear PK and without any steady-state assumptions. If linearity or steady-state conditions can be assumed, simplifications
can be made in order to reduce the computational requirements. IV= intravenous administration.

absorption profile of an immediate-release (IR) formulation of
the drug eflornithine as well as for estimating the energy intake
in bodyweight models. The purpose of this paper is to evaluate
the applicability of the method of Trägårdh et al. (2016) to ER-
formulation problems and to investigate what adaptations, if any,
are necessary in order to ensure good performance on this kind of
problem. Additionally, the accuracy of the method is evaluated on
simulated data for which the true input function is known. Esti-
mation of ER release/absorption profiles differs from estimation
of IR profiles in the following respects:

1. The timescales of ER absorption profiles can vary over large
ranges, potentially much larger than the time constants of the
PK model.

2. The absorption profile of ER formulations is typically con-
siderably more complicated than the absorption profile of IR
formulations.

Model dynamics that are fast compared to the timescales
of interest can cause stiffness issues. In general, an estimation
method that has previously been shown to perform well will
not necessarily perform well when applied to a problem with
substantially different data andmodel parameters. For this reason,
it is essential to evaluate themethodology in Trägårdh et al. (2016)
on a realistic ER estimation problem.

In this paper, these methods are applied to Bydureon (Buse
et al., 2010, 2013), an extended-release microsphere formulation
of the GLP-1 receptor agonist exenatide (Buse et al., 2004;

DeFronzo et al., 2005). The Bydureon formulation consists of
exenatide encapsulated within poly-(,-lactide-co-glycolide)
(PLG) microspheres that are designed to release exenatide over
an extended period of time which allows once-weekly patient-
administered subcutaneous injections (European Medicines
Agency, 2011). Typical in vitro release curves for Bydureon are
given in Figure 3 in DeYoung et al. (2011). Such curves can
be used, together with predicted input profiles from in vivo
data, to establish an ivivc. In humans, Bydureon exhibits
a multiphasic concentration–time profile over approximately
10weeks consistent with the proposed mechanism of release from
PLG microspheres. This is characterized by a limited initial rapid
release of loosely bound surface exenatide (<1% released in the
first few hours) followed by two additional phases corresponding
to diffusion and erosion release with peak plasma concentrations
at around week 2 and week 7 (DeYoung et al., 2011).

The reason for choosing Bydureon as an example is that it is
a drug that is already on the market, and data (Fineman et al.,
2011; Li et al., 2015) as well as PK models (Gao and Jusko, 2012)
are available in the literature. The complicated absorption profile
of exenatide (Figure 2) cannot be easily captured by a simple
parametric model. A compartmental model of the release and
absorption processes has been proposed (Li et al., 2015), where
the ER process is modeled by a cascade of transition compart-
ments, and the initial amount of several compartments is non-
zero. However, this model was designed to fit data from multiple-
dosing experiments, where the multiple absorption peaks are not
as noticeable.
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FIGURE 2 | Example plasma concentration profile of Bydureon, after a
single dose of 10mg. This is a mean prediction from data obtained from the
dose finding study by Fineman et al. (2011). Note that the clinical dose is
2mg, but the characteristics of the PK profile are most clearly seen for the
10mg dose. The profile shows multiple peaks, making the absorption rate
non-trivial to model using conventional compartmental models.

The outline of the paper is as follows:

1. As a first step, the input-estimation method is validated. For
this, it is necessary that the true input function is known.
Therefore, simulated data are used. Additionally, real data tend
to be sparse and noisy. Testing the method only on real data
makes it difficult to determine whether any estimation error
is due to problems with the method, or limitations on the
data themselves. For this reason, estimation is first performed
on ideal (densely sampled, noise-free) data. Only then is val-
idation performed on simulated data with realistic sampling
schedules and noise levels. The simulated data are generated by
applying an Erlang distribution function as an input to the PK
model, resulting in data similar to what is observed in actual
experiments. The estimation method itself does not make
any assumptions about the functional form of the absorption
profile.

2. Once the method is validated, it is applied to real data from a
dose-finding study.

2. MATERIALS AND METHODS

2.1. Model
The PK model of Gao and Jusko (2012) was used for the system
dynamics. The model includes non-linear target-mediated drug
disposition (TMDD) and is given by

dC(t)
dt =

u(t)
Vc

− (kel + kpt) · C(t) + ktp · AT(t)
Vc

− kon · (Rtot − RC(t)) · C(t) + koff · RC(t), (2)
dAT(t)

dt = kpt · C(t) · Vc − ktp · AT(t), (3)

dRC(t)
dt = kon · (Rtot − RC(t)) · C(t) − (koff + kint) · RC(t),

(4)

TABLE 1 | Pharmacokinetic parameters, from Gao and Jusko (2012).

Parameter Definition Value Unit

kel Elimination rate constant 0.013 min−1

kpt Intercompartmental rate constant 0.0685 min−1

ktp Intercompartmental rate constant 0.0846 min−1

Vc Central volume of distribution 111 ml·kg−1

kon Second-order binding constant 0.000411 pM−1·min−1

koff First-order dissociation constant 0.566 min−1

kint Internalization rate constant 0.00342 min−1

Rtot Total receptor concentration 1,240 pM

where C(t) is the drug concentration in the central compart-
ment, AT(t) is the drug amount in a peripheral compartment,
RC(t) is the concentration of the drug–receptor complex, and
u(t) is the unknown input. The parameter values reported in
Gao and Jusko (2012) were used (Table 1). The model structure
is similar to the PK model for eflornithine by Johansson et al.
(2013), which was used for evaluating the estimation method
on IR formulations in Trägårdh et al. (2016). The main differ-
ence between these model structures is that the model used here
has an additional elimination mechanism in the form of drug-
receptor complex internalization, represented by kint in equa-
tion (4). Additionally, the parameter values are substantially
different.

In addition to the model presented in Gao and Jusko (2012),
similar models have been developed by Li et al. (2015) and
Chen et al. (2013). These models differ from that of Gao and
Jusko in that the total receptor concentration is described by
a turnover model, instead of a fixed amount. Additionally, the
Li et al. model was estimated using data from an ER formu-
lation, using a linear 5-compartment model to represent the
combined release and absorption process, while the Chen et al.
model was estimated using data from an IR formulation and
applying a Michaelis–Menten absorption function. As the input-
estimationmethods considered here provide non-parametric esti-
mates of the release/absorption profiles, no parametric model
was used in this paper for the release or absorption process.
Instead, only the part of the PK model that describes the sys-
tem dynamics following absorption was used, as detailed in
equations (2)–(4).

To ensure the validity of the reported parameter values of
these PK models, the structural identifiability was analyzed using
the Exact Arithmetic Rank approach (Karlsson et al., 2012). The
analysis showed that the PK models in Li et al. (2015) and
Gao and Jusko (2012) are structurally identifiable. This result
holds for intravenous (IV) administration, either bolus or con-
tinuous, as well as for subcutaneous (SC) administration. Since
the model in Chen et al. (2013) shares the model structure of
the PK after absorption with Li et al. (2015), it follows that
this too is identifiable for IV administration. To summarize,
any of these models could have been used in the subsequent
analysis.

Once the PK parameters were shown to be identifiable, the next
step was to ensure that the absorption profile can be estimated
from plasma concentration data, given known PK parameters.
An analysis of the identifiability of the input signal in the PK
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model in Gao and Jusko (2012) was performed using a Taylor
series approach (Pohjanpalo, 1978). The analysis found that the
input function is identifiable, given that the PK parameters are
known. Details of the structural identifiability analysis of the PK
models and the input function can be found in Section 1 in the
Supplementary Material.

2.2. Estimation Method
The analysis in this paper uses the methods described in Trägårdh
et al. (2016). In order to ensure that the methods were suitable
for the ER estimation problem at hand, the following adaptations
were performed:

1. This dataset posed a potential challenge for the input-
estimation method: during the initial 48 h after the start of
treatment, the plasma concentration was sampled relatively
densely. Following this initial part, sampling was performed
approximately once a week for 12weeks. A very large number
of basis functions may be required in order to capture the
fast initial dynamics and at the same time cover the full 12-
week period. This was solved by performing input estimation
separately on the initial 48 h (short timescale) and on the full
12-week study (long timescale).

2. Two models for the likelihood were tested: one with a Gaus-
sian and one with a Student’s t-distribution. The Student’s t-
distribution with a small number of degrees of freedom is often
suggested as an alternative to the Gaussian distribution, as it
is less sensitive to outliers and therefore can result in a more
robust inference (Gelman et al., 2014). This was found to be
helpful for this dataset, as a Gaussian likelihood proved to be
very sensitive to outliers in the data.

As described in Trägårdh et al. (2016), these input-estimation
methods model the absorption profile as a stochastic process,
which is equipped with a prior whose role is to discourage solu-
tions that have unrealistically large oscillations (Verotta, 1996; De
Nicolao et al., 1997). In any given estimation problem, a choice
has to be made for

1. Choice of prior: for this analysis, a prior penalizing the L2

norm of the second derivative of the input function was
chosen [equation (7) in Trägårdh et al. (2016)]. This choice
enforces a relatively large degree of smoothness. To impose
non-negativity constraints, the functionwasmodeled in the log
domain (Pillonetto et al., 2002).

2. Choice of functional representation: the input function
was discretized into 20 basis functions based on the
Karhunen–Loève expansion (Levy, 2008), as this was
deemed to be sufficient to capture reasonable absorption
profiles, while keeping the dimensionality of the estimation
problem low.

3. Desired statistical quantities: for this analysis, it was desired
to recover the full posterior distribution, in order to provide
estimates of the uncertainty.

4. Choice of estimation algorithm: as a full posterior distribu-
tion was desired, estimation was performed using Markov
chainMonte Carlo (MCMC) sampling (Metropolis et al., 1953;
Hastings, 1970; Brooks et al., 2011).

Here, the regularization parameter, which determines the
trade-off between the data fit and the smoothness conditions,
was treated as a parameter to be estimated, being assigned
a Gamma prior distribution with parameters α=β = 10−3.
MCMC Samples were drawn by alternately updating the basis
function coefficients using the Simplified Manifold Metropolis-
adjusted Langevin algorithm (SMMALA) (Girolami and Calder-
head, 2011), and updating the regularization parameter using
Gibbs sampling (Geman and Geman, 1984). The Raftery–Lewis
method (Raftery and Lewis, 1992) was used to assess the num-
ber of samples required, estimating the quantiles q= [0.025 0.25
0.5 0.75 0.975] with precision r= [0.02 0.05 0.06 0.05 0.02] and
probability s= 0.95, as defined in Raftery and Lewis (1992).

It can be noted that on timescales of weeks, the system can be
considered to be in a steady state. This means that the plasma con-
centration depends only on the current absorption rate, and the
dynamical ODE model can be simplified to an algebraic model.
This is done by setting all derivatives to zero, and solving for the
measured quantity. This gives

C(t) =
1

2Vckelkon

(
− RtotVckintkon − Vckelkint − Vckelkoff

+ u(t)kon +
(
R2
totV2

ck2
intk2

on + 2RtotV2
ckelk2

intkon

+ 2RtotV2
ckelkintkoffkon − 2RtotVcu(t)kintk2

on

+ V2
ck2

elk2
int + 2V2

ck2
elkintkoff + V2

ck2
elk2

off

+ 2Vcu(t)kelkintkon + 2Vcu(t)kelkoffkon + u(t)2k2
on

) 1
2

)
.

(5)

Large computational savings can be achieved by utilizing this
result instead of integrating the system of ODEs. This is especially
valuable when using MCMC methods, which need to perform
these computations a large number of times, potentially thou-
sands. Figure 3 shows that for long timescales, the predictions
from the dynamic and algebraic models are virtually identical,
with relative differences of the order of 1%.

2.3. Simulated Data
A suitable synthetic input function was chosen based on the
following criteria:

• It should result in data similar to those that were actually
observed (see Section 2.4).

• It should have a simple functional form.
• It should ideally be the solution to a system of ODEs repre-

senting a compartmental model. The reason for this is that
parametric PK models are usually compartmental models, and
functions generated this way should therefore be able to capture
realistic absorption behavior. This also makes it possible to give
the function a model structure interpretation.

It can be noted that a compartmental model for the
release/absorption process has been reported (Li et al., 2015).
However, this model was not able to capture the peaks present
from a single dose. Instead, it was found that datasets similar to
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FIGURE 3 | Comparison of algebraic and dynamic models for short timescales (top) and long timescales (bottom). For a given release/absorption profile
(left), the plasma concentration predicted by the algebraic and dynamic models is shown on the right. On short timescales, the predictions differ substantially. In this
case, the steady-state approximation is not valid, and the “Input estimation” options in Figure 1 should be used. On longer timescales, the predictions are identical,
suggesting that the computationally cheaper algebraic model can be used. This is the “Analytical or numerical steady-state solution” option in Figure 1.

the real data by Fineman et al. (Section 2.4) could be created by
the following function:

• Each of the two peaks at longer timescales could be modeled as
an Erlang distribution:

ui(t) = ai
knitri · t

ni−1 · e−ktri t

(ni − 1)!
, i = {1, 2}, (6)

where ktri is a rate constant that controls the rise and fall time
of the peak, while ni largely controls the time delay.

• The initial absorption rate over short timescales was modeled
as a bi-exponential function:

u3(t) = r1e−k1t + r2e−k2t. (7)

• The final input function u(t) was given by:

u(t) = u1(t) + u2(t) + u3(t). (8)

This function can be interpreted as the output of a com-
partmental model, as commonly used in PK modeling. This
is explained in greater detail in Section 2 of the Supplemen-
tary Material. This methodology of evaluating a non-parametric
method using parametric test functions is similar to that presented
by Madden et al. (1996), the main difference being that the test
function here was specifically designed to mimic the Bydureon
profile, with initial fast dynamics followed by multiple peaks at
longer timescales.

2.4. Real Data
The data for this analysis are from a study by Fineman et al. (2011).
In the study, 54 subjects in 5 dose groups were given a single
dose of exenatide. The plasma concentration was measured at 12
timepoints during the first 48 h, and subsequently once per week
for a total duration of 12weeks.

TABLE 2 | Parameter values for the generated test data.

Parameter Value Unit Parameter Value Unit

n1 10 – r1 0.12 pmol·min−1

a1 2,700 pmol r2 0.02 pmol·min−4

ktr1 1.5×10−4 min−1 k1 7.64×10−3 min−1

n2 4 – k2 4.76×10−4 min−1

a2 800 pmol
ktr2 1.8×10−4 min−1

3. RESULTS

3.1. Method Validation Using Simulated
Data
To test the input-estimation method on simulated data, the test
input function described in Section 2.3 was used, with the param-
eter values shown in Table 2. The parameters were selected to
generate plasma concentrations similar to those observed in real
data for the 10mg dose.

Test data were generated by applying this input function to the
dynamical system, and extracting the plasma concentration values
at a set of timepoints. For each of the long and short timescales,
two sampling schedules were used: one very dense, with 100
equally spaced points between t= 0 and the last timepoint (48 h
for short timescales, 12weeks for long), and one sparse using the
same timepoints as in the real datasets. Additionally, two noise
models were used: no noise and 10% proportional Student’s t-
distributed noise with four degrees of freedom. The noise model
was chosen to be equal to that assumed for the real datasets (see
Section 3.2). This resulted in eight combinations of timescale,
sampling schedule and noise levels. The number of MCMC sam-
ples was determined by the Raftery–Lewis diagnostics, which
showed that all parameters for all datasets could be determined
using 10,000 samples.
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FIGURE 4 | Estimation results for the synthetic data. Solid lines are mean predictions, while shaded areas are 95% credible intervals. It can be seen that the
sizes of the credible intervals are affected strongly by the sparsity of the data, while noise has a considerably smaller effect. In all cases, the credible intervals mostly
cover the true functions.

Figure 4 shows the plots for the long timescale response.
From the figure, it can be seen that the method performs
accurately on dense noise-free data. The exception is at the very
first timepoint, which has a large contribution from the initial fast
peak from u3(t). The performance was assessed by computing the
root mean square error (RMSE) of the input function (Table 3).
One RMSE value was computed for each trajectory sampled by
the MCMC sampler, and the results were averaged. This way, the
performance criterion accounts for the variance of the estimated
input functions—an estimate where most of the posterior density

TABLE 3 | RMSE (root mean square error) for the test datasets.

Timescale Measurement type RMSE Unit

Short timescale Dense sampling, no noise 0.069 pmol/h
Dense sampling, 10% noise 0.10 pmol/h
Sparse sampling, no noise 0.14 pmol/h
Sparse sampling, 10% noise 0.16 pmol/h

Long timescale Dense sampling, no noise 14 pmol/week
Dense sampling, 10% noise 23 pmol/week
Sparse sampling, no noise 48 pmol/week
Sparse sampling, 10% noise 50 pmol/week
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FIGURE 5 | Estimation results for the initial 48 h of the real exenatide data. For most doses, the credible intervals are narrow. The main exception is the
7.0mg dose. For this dose, the estimation method sets the regularization parameter to a low value in order to account for the large variations in the data. This
increases the uncertainty of the estimate.

is concentrated close to the true function will yield a lower mean
RMSE than an estimate with a large variance.

3.2. Input Estimation on Real Data
We now turn to the analysis of real Bydureon data from Fine-
man et al. (2011). From now on, the input will be shown as the
fraction absorbed rather than the absorption rate, as this is the
most common way to present such results. In contrast, when
validating against test data, the absorption rate is more useful,
since it shows features in the estimated absorption profile more
clearly. Figure 5 shows the data and estimates for the initial
48 h. On this timescale, a dynamic model is necessary. Figure 6
shows the data and estimates over longer timescales. All plots
are produced using a Student’s t-distribution with four degrees
of freedom for the residual model. To assess the sensitivity to
the number of degrees of freedom, inference was also performed
using six degrees of freedom, which resulted in only marginal

differences. The Raftery–Lewis diagnostics showed that 10,000
MCMC samples were enough for all datasets except for the 7mg
dose, which required 25,000 samples for short timescales and
40,000 for long timescales.

Using the estimated profiles, the total absorbed amount of the
drug, and hence the bioavailability F, was estimated. The amount
absorbed during the first 48 h was determined to be insignifi-
cant compared to the total amount. Therefore, only the longer
timescale was used. Figure 7 shows kernel density estimates for F
for each dose group, where clearly F appears to be dose dependent.
In all cases, the results are lower than the previously reported
values of 22–25% (European Medicines Agency, 2011).

4. DISCUSSION

The validation results confirm that, given a known PK model and
dense, noise-free data, the absorption profile can be accurately

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2017 | Volume 5 | Article 248

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Trägårdh et al. Input Estimation for Extended-Release Formulations

FIGURE 6 | Estimation results for the whole 12-week period of the real exenatide data. Solid lines are mean predictions, while shaded areas are 95%
credible intervals. At these timescales, the system is essentially at steady state. Note that the very large plasma concentration value in the first week for the 7.0mg
dose is treated as an outlier by the estimation method. This is a consequence of using an error model based on the Student’s t-distribution.

FIGURE 7 | Estimated bioavailability for the long-term release/absorption profiles. The contribution from the initial peak is very small in comparison to the
long-term release. The calculations assume 90 kg bodyweight, according to the data in Fineman et al. (2011). Solid lines are means, and dashed lines contain the
95% credible interval. Most noteworthy is the fact that the bioavailability drops for the highest doses.

estimated (Figure 4). The exception is the failure to capture the
large initial peak in the long timescale data, which is only visible at
the first data point (Figure 4, upper right). The method assumes

that the data are noisy and considers that data point an outlier.
Given that the function does not otherwise show any sharp peaks,
this decision seems reasonable. In principle, this peak could be
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captured by even denser sampling, or by assuming a lower noise
level. While such dense data are never obtained from real exper-
iments, it is important to make sure that the method can handle
this case before testing it on more realistic datasets.

When noise is added to the measurements, or more real-
istic sampling schedules are introduced, estimation accuracy
decreases. Notably, in this problem, sparsity of sampling has a
larger impact than noise for long timescales, while this is not the
case for shorter timescales. This may partially be explained by
the fact that at short timescales, the plasma concentration at any
timepoint depends on the complete absorption rate profile up to
that time. In that sense, the measurements provide information
about the absorption rate between measurements. In contrast,
over long timescales the plasma concentration essentially only
provides information about the current absorption rate. Any
inference on the absorption between measurements relies solely
on the assumption that the function is smooth.

Input estimation of synthetic data could also be useful when
designing future experiments. Using such simulations, it is possi-
ble to determine how the sampling affects the estimation accuracy,
and one can then design a suitable sampling schedule accordingly.

The bioavailabilities obtained are substantially lower than pre-
viously reported values. However, the previous values refer to
the bioavailability relative to a subcutaneous administration of
an immediate-release formulation, making a direct comparison
difficult to make. The differences may also partly be explained
by uncertainty in the PK model. At least three PK models of
exenatide have been published (Gao and Jusko, 2012; Chen et al.,
2013; Li et al., 2015). These models are structurally similar but
have substantially different parameter values. These parameters
clearly influence estimated bioavailability—a drug with higher
clearance requires higher absorption rates in order to maintain a
specific plasma concentration. Also, in the Gao and Jusko model,
the bioavailability of subcutaneous administration was fixed to
1, while the true bioavailability might be lower. In that case, the
computed bioavailability would have to be rescaled to obtain the
bioavailability relative to subcutaneous administration, in order to
compare to previously reported values.

The estimation results demonstrate the extended and com-
plex combined release/absorption kinetics of exenatide from PLG
microspheres after subcutaneous injection. This is most clearly
seen when the profiles are shown as absorption rate over time
(Figures S2 and S3 in Supplementary Material) rather than as
fraction absorbed over time (Figures 5 and 6). Immediately after
injection, during the first couple of hours, a limited amount of exe-
natide is rapidly absorbed, corresponding to the release of freely
available drug. It should be noted that the individualmicrospheres
hydrate after injection and thereby tend to agglomerate to form
an amalgam which will affect the release properties (DeYoung
et al., 2011). The initial release is followed by an extended-release
period of approximately 10weeks where the polymer matrix of
the PLG microspheres is slowly hydrolyzed to smaller fragments.
The drug release rate is controlled by the diffusional transport of
the drug through the polymer matrix and the erosion of the PLG
depot system. The absorption rate over time profiles show two
distinct peaks in the absorption rate, one at approximately 2weeks
and another at about 6–7weeks after which the absorption rate

declines until the PLG polymer is fully hydrolyzed and all the drug
is released.

The choice ofmeasurement noisemodel canhave a large impact
on the resulting estimates. An obvious default choice is to use a
Gaussian noise model. However, as this model is log-quadratic, it
will assign low probabilities to any candidate input function that
disagrees significantly with even a single data point, making this
model sensitive to outliers. Forcing the function to agree closely
with every data point can drive the estimate of the regularization
parameter to very low values. As a result, the method will assign
high probabilities even to unrealistic, oscillatory functions, caus-
ing the reported uncertainty to be very high. Robust noise models
using the Student’s t-distribution with a small number of degrees
of freedom can decrease the sensitivity to outliers.

The methods that have been presented here are very general
in that no mechanistic assumptions need to be made about the
dissolution or absorption process. Still, some assumptions always
have to be made when inferring a continuous-time function from
a sparsely sampled and noisy dataset. In the input-estimation
approach, these assumptions are encoded in the prior distribution
of the stochastic process representing the input function. The prior
chosen here, based on the norm of the second derivative, is only
one of many possible choices. Previously, penalization of the first
derivative (Verotta, 1996) and the use of entropic priors (Hatters-
ley et al., 2008) have been suggested. The form of penalization of
derivatives described here can also be viewed as a special case of
the application of Gaussian processes, a rich class of probabilistic
models for stochastic processes (Rasmussen and Williams, 2006).
Depending on the application, other Gaussian processes may be
more appropriate.

The number of MCMC samples required can be highly depen-
dent on the data, even when the model remains unchanged. For
the 7mg dose, amuch larger number of samples was required than
for other doses, for both timescales. It can be noted that the 7mg
dataset contains possible outliers, suggesting that the presence of
outliers could be an important factor in determining sampling
efficiency. For most doses, a relatively modest number of MCMC
samples was sufficient to obtain a high-quality estimate. This
increases confidence in the applicability of these kinds of methods
to ER-formulation research.

A strength of the methods presented here is that they are
applicable even when the PK model is non-linear, but this obvi-
ously assumes that a model is available or can be constructed.
In contrast, linear systems are completely characterized by their
impulse response. The impulse response can be derived from a
PK model, but it can also be estimated empirically from data. In
that regard, non-linear systems require stronger assumptions to
be made.

InFigure 1, all non-parametricmodeling options can be viewed
as special cases of input estimation. In that regard, anymethod that
can handle the input-estimation case should be able to handle the
other cases too. Itmay still be advantageous to use special-purpose
methods for other cases. As an example, making a steady-state
approximation removes the need to perform expensive numerical
integration for each MCMC sample.

Input-estimation methods provide an attractive alternative
to building a model of the release and absorption processes.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2017 | Volume 5 | Article 2410

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Trägårdh et al. Input Estimation for Extended-Release Formulations

Building such a model is non-trivial, and highly dependent
on factors such as the type of delivery system and its geome-
try. In contrast, input-estimation methods strive to make min-
imal assumptions about these processes, requiring only that an
intravenous PK model is available, which is independent of the
formulation. In addition, these methods typically allow for more
rapid analysis compared to building a mechanistic model. In this
way, input estimation is a useful complement to model-based
approaches.

In summary, this paper presents a framework for address-
ing input-estimation problems for drug-formulation develop-
ment. It first gives an overview of what methods are avail-
able in various situations (Figure 1) and then puts emphasis
on the most complicated case—non-parametric methods applied
to dynamical systems with non-linear PK. The method pre-
sented in Trägårdh et al. (2016) is demonstrated to work robustly
for a challenging ER test case with multiple peaks on various
time scales, from hours to weeks, subject to the modifications
required to cater for ER-formulation scenarios. The method pro-
vides estimates of the uncertainty, given the assumptions used
in the statistical model. This has not previously been avail-
able. This helps increase confidence in the prediction of release
and absorption rates. The predicted profiles make it possible to
rank candidate formulations, predict the human PK, and estab-
lish an ivivc in order to minimize the need for in vivo stud-
ies. Additionally, we believe this approach has great potential
from a practical perspective in supporting dose scheduling and

regimens to yield optimal responses at the required times. Another
possible application is to infer the release profile from data
when a parametric model for the absorption of an immediate-
release formulation is available, which could allow for a direct
in vitro to in vivo comparison. This will be the topic of future
work.
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