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We report here the draft genome sequence of the Bacillus subtilis strain B-1, a strain known to form biofilms. The biofilm matrix
mainly consists of the biopolymer �-polyglutamate (�-PGA). The sequence of the genome of this strain allows the study of spe-
cific genes involved in biofilm formation.
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Biofilm research has become a very important field in microbi-
ology. Due to their high mechanical resilience and resistance

to antibiotic treatment, biofilms constitute a significant problem
in both industry and health care (1). However, the molecular rea-
son for this outstanding sturdiness of bacterial biofilms is not
understood. Several wild-type strains of the Gram-positive model
organism Bacillus subtilis are known to form biofilms, but they
differ in the compositions of the biofilm matrix (2–4). The
biofilm-producing B. subtilis strain B-1, isolated from an oil field
(5), forms thick biofilms, with a biofilm matrix mainly consisting
of �-polyglutamate. Those biofilms have been shown to efficiently
absorb multivalent ions from their environment, and this ion ab-
sorption in turn leads to an increased stability of those biofilms
toward mechanical erosion (6).

The draft genome of B. subtilis B-1 was sequenced via Euro-
fins Genomics (Eurofins MWG GmbH, Ebersburg, Germany).
An Illumina standard shotgun library was constructed and se-
quenced with the Illumina MiSeq platform (Illumina, Inc., San
Diego, CA), which produced 120,000 paired-end reads totaling
85 Mbp. The reads were then further processed by de novo
assembly using the programs Velvet (7) and Newbler (454 se-
quencing; Roche, Branford, CT), resulting in a scaffold of
3.9 Mbp comprising 68 contigs and a G�C content of 47%.
This represents approximately 90% of the whole B. subtilis B-1
genome. Subsequent genome analysis was then performed us-
ing the programs LAST (8) and BLAST (9).

The newly sequenced genome of B. subtilis B-1 was compared
to that of the laboratory strain B. subtilis 168 (GenBank accession
no. AL009126), which resulted in an overall sequence homology
of approximately 50%. A direct sequence comparison of several
genes important for biofilm formation, namely, ywsC (�-
polyglutamate synthesis) (5), bslA (surface layer protein) (10),
tasA (amyloid fiber forming protein) (11), pel (structural matrix
polysaccharide) (12), and the whole epsA-O operon (exopolysac-
charide synthesis) (13) was performed. While the gene sequence
comparison of epsH revealed only a 71% sequence homology, a
more significant sequence homology of 82% was found for ywsC.

Nucleotide sequence accession number. This draft sequence
has been deposited at GenBank/DDBJ/EMBL under the accession
no. CP009684.
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