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Abstract: Climate change affects public health, and improving eco-efficiency means reducing the
various pollutants that are the result of economic activities. This study provided empirical evidence
of the quantitative impact analysis of climate change on the health conditions of residents across
China due to improvements that have been made to eco-efficiency. First, the indicators that were
collected present adequate graphical trends and regional differences with a priori evidence about
their relationships to each other; second, the present study applied Sensitivity Evaluation with
Support Vector Machines (SE-SVM) to Chinese provincial panel data, taking the Visits to Hospitals,
Outpatients with Emergency Treatment, and Number of Inpatients as proxy variables for the health
conditions of the residents in each area and temperature, humidity, precipitation, and sunshine as
the climate change variables, simultaneously incorporating the calculated eco-efficiency with six
controlling indicators; third, we compared in-sample forecasting to acquire the optimal model in order
to conduct elasticity analysis. The results showed that (1) temperature, humidity, precipitation, and
sunshine performed well in forecasting the health conditions of the residents and that climate change
was a good forecaster for resident health conditions; (2) from the national perspective, climate change
had a positive relationship with Visits to Hospitals and Outpatients with Emergency Treatment but a
negative relationship with the Number of Inpatients; (3) An increase in regional eco-efficiency of 1%
increase the need for Visits to Hospitals and Outpatients with Emergency Treatment by 0.2242% and
0.2688%, respectively, but decreased the Number of Inpatients by 0.6272%; (4) increasing the regional
eco-efficiency did not show any positive effects for any individual region because a variety of local
activities, resource endowment, and the level of medical technology available in each region played
different roles. The main findings of the present study are helpful for decision makers who are trying
to optimize policy formulation and implementation measures in the cross-domains of economic,
environmental, and public health.

Keywords: resident health conditions; climate change; eco-efficiency; empirical evidence; Sensitivity
Evaluation with Support Vector Machines

1. Introduction

Decision makers are constantly weighing the relationships between climate change,
public health, and economic development with environmental sustainability (Kan et al.
2012 [1]. The quantitative impact analysis of climate change on public health when con-
sidering the human initiatives to improve eco-efficiency in China is a hot and important
interdisciplinary topic. It is crucial to acquire empirical evidence in order for scholars,
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entrepreneurs, and local government to formulate relevant policies and to optimize safe-
guard measures. However, it is a challenging task to quantitatively obtain more accurate
calculation results on the basis of local original data. Resident health conditions (RHC) are
affected by both climate change (represented by the proxy variables temperature, precipi-
tation, humidity, and sunshine) and human economic activities and their corresponding
environmental changes (represented by regional eco-efficiency REE [2] and consider the
economic or resource cost and waste gas, wastewater, solid waste, etc., comprehensively).
Therefore, utilizing original data in China, this paper aims to provide a quantitative impact
analysis of climate change on the health conditions of the residents in each area of the
country as the result of improving the country’s eco-efficiency.

The literature review shows that the relevant research that can be referred to is very
rich but that research that is focused on these quantitative relationships from a spatial
provincial level is rare. Previously, scholars have devoted time to investigating climate
change and human health [1,3–6] and have maintained that climate change affects the
health status of residents from the perspective of the ecosystem [7,8]; living environment [9,
10]; agricultural production, trade [11], and food [12,13]; disease transmission [4,14,15];
and natural emergencies, among others. Meanwhile, due to limited data availability,
multiple factors, and the uncertainty relationship, multiple related research studies have
focused on the micro-level and theoretical analysis, and there is lack of a comprehensive
quantitative analysis removing of the unconsensual diversified representative indicators [1].
For example, climate change is able to impact public health through a range of pathways [5].
Patz et al. summarized and stated that a number of prevalent human diseases are related
to climate fluctuations, such as cardiovascular mortality and respiratory illnesses that
are affected by heat waves [4]. McMichael et al. indicated that there is epidemiological
evidence or trends and various health problems that are related to the impact of climate
variations [6]. Meanwhile, scholars have mostly paid attention to thermal stress, contagious
disease, or extreme weather and have limited attention to future food yields or hunger
prevalence.

This literature review also informed us that it is necessary to incorporate the role of
improving regional eco-efficiency when computing the quantitative impact analysis. Based
on the previous literature, REE refers to economic activities such as air pollution [16–18],
water pollution [19], heavy metal pollution [20–22], solid waste pollution [23], etc., which
impose great risk to resident health, achieving a low environmental cost. RHC can greatly
benefit from a sustainable and circular environment [24], as these environmental features
would allow the target of optimizing eco-efficiency to be maintained at a consistent pace.
Additionally, RHC can be used to judge and provide feedback regarding their subsequent,
far-reaching social benefits as they pertain to REE [25]. In general, considering that the
positive impact of increasing REE has been generally recognized [2], it is time to take
RHC as one ruler to further appraise REE performance quantitatively by means of existing
sample data [26].

To achieve the goal, this paper emphasized the following aspects:
Firstly, this paper selected and determined more recognized indicators for Climate

Change, Resident Health Conditions, and Regional Eco-efficiency and then collected
provincial panel data for the different regions across China. Specifically, we chose to
analyze the Visits to Hospitals (VTH), Outpatients with Emergency Treatment (OWT), and
Number of Inpatients (NOI) as proxy variables for RHC; adopted temperature, humidity,
precipitation, and sunshine for the climate change variables and calculated the REE; and
we then chose the six most important control variables to present regional characteristics,
such as local activities, resource endowment, and the level of medical technology in each
area.

Second, this paper preliminarily judged the change trends and the relationships
between the variables and analyzed the regional characteristics and spatial heterogeneity.
This paper made a relationship diagram; measured the correlation coefficient and judged
the cooperative relationship between the variables; and illustrated the current situation
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through descriptive statistical analysis (which mainly included the spatial characteristics
and trend analysis) of RHC as well as climate change and REE in China.

Third, this paper referred to the uncertainty of the relationship from the machine
learning perspective and built the SE-SVM vector machines by tackling uncertain mapping
with many factors and computation power levels [2,27]. This paper modified Least Square-
Support Vector Regression (LS-SVR) to tackle the limited data availability, multiple factors,
and the uncertain relationship.

Fourth, this paper applied the collected data to draw relevant empirical results, in-
cluding two parts: (1) Forecasting the resident health conditions using the effects of climate
change after the REE in China had been improved and (2) measuring how climate change
impacts resident health conditions when the REE in China is improved.

Finally, a discussion and summary of the main conclusions are presented, and policy
recommendations are made.

2. Materials and Methods
2.1. Data and Variables

The main indicators were selected through the following principles: The first principle
was data availability; high-quality and easy-to-access indicators were prioritized. The
second principle was the representativeness of the indicators, and priority was given to
statistical data that could reflect the true results of the indicators. The third is the descriptive
ability in multiple dimensions, wherein a comprehensive perspective could be used to
conduct an analysis. The fourth was the regional differences, which are able to reflect the
differences in different provinces or cities as much as possible.

Approximately 30 Chinese provinces and cities were chosen as samples. The period
represented by the data covers 1998 to 2017. The main variables for the form of a single
scalar called SBM (Slacks-Based Measure) to calculate the REE By DEA-SOLVER Pro 5.0 are
listed in Table 1 [2,28], and their main descriptive statistics are included. The REE become
much higher in the eastern areas than they do in the western areas, and in 2017, the whole
value level is 0.51. Additionally, the REE is shown to have improved stably from 1998 to
2017. Figure 2 provides its ranking and a comparison of 30 provinces and cities in China
from 1998–2017.

Table 1. Variable name and abbreviation.

Names Abbreviation Proxy Variable

Climate Change CC Temperature, humidity, precipitation, and sunshine

Residents’ Health Condition RHC the Visits to Hospitals (VTH), Outpatients with Emergency
Treatment (OWT), and Number of Inpatients (NOI)

Regional eco-efficiency REE Computed by the specific method

GDP per capita GDPPC Computed by the specific method

Urbanization level UL Computed by the specific method

Population density PD Computed by the specific method

Medical Personnel MP Computed by the specific method

Licensed (Assistant) Doctors LAD Computed by the specific method

Number of health care institutions NHCI Computed by the specific method

Due to the limitations of the other variables, the eco-efficiency calculation period was
determined to be 2002–2016. To reflect the RHC as comprehensively as possible, this paper
tried to collect adequate data from various medical institutions (mainly from hospitals) from
three indicators, which were selected as the dependent variables for Sensitivity Evaluation
with Support Vector Machines (SE-SVM). Related indicators were the VTH, OWT, and
NOI for the years from 2002 to 2016 (see as in Figure 1). These variables originate from
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the beginning of the Chinese Medical Health Statistics Yearbook in 2013. To achieve our
goal, four aspects that are related to climate change (temperature, humidity, precipitation,
and sunshine) and REE are the main independents variables, with other six controlling
variables being considered in the following regression. The related data are from the China
Statistical Yearbook and the Chinese Medical Health Statistics Yearbook for the years from
2001 to 2018.
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2.2. Model Building
Sensitivity Evaluation with Support Vector Machines

Support Vector Machines (SVM) take the “Structural Risk Minimization Principle” as
their main principle, which is in contrast to other computational learning theories. Through
this method, it has been demonstrated that this method holds significantly improved
advantages in terms of excellent classification ability and computing power [29]. Moreover,
SVM-related methods are able to tackle practical problems that are easily affected by
multiple factors, nonlinear relationships, and more complex data patterns [2,30,31]. In
detail, Least Square-Support Vector Regression (LS-SVR) draws support from the kernel
function (nonlinear) to map the data into a different high-dimensional space [27]. Linear
learning machines learn linear relationships in a high-dimensional feature space [27], which
is determined by a parameter that is irrelevant to the spatial dimensionality [32]. Therefore,
LS-SVR is able to handle the multiple factors, regardless of whether they have a nonlinear
or complex relationship.

Similar to basic Support Vector Machines [33], LS-SVR can be expressed by the follow-
ing equation [32]:

f (x|w) = y(x) =
N

∑
k=1

αkK(x, xk) + b (1)

To achieve the goal, SE-SVM is used to combine LS-SVR-DS [34] with the Sensitivity
Evaluation through a quickly implemented computer program [32].

y(X; σ, γ) =
m

∑
i=1

αi(σ, γ)K
(

xj, xi
)
+ b(σ, γ) (2)

Then the optimal parameters that are needed to minimize the average of squared
errors are obtained [35] by the Equation (3). That is,

min
σ,γ

G(σ, γ) =
1
m

m

∑
j=1

[
yj − y

(
xj; σ, γ

)]2
=

1
m

m

∑
j=1

[
yj −

m

∑
i=1

αi(σ, γ)K
(
xj, xi

)
− b(σ, γ)

]2

(3)

α = A−1(y− blv) b =
lT
v A−1y

lT
v A−1lv

(4)

K(x, xk) = exp
(
− ‖ x− xk ‖2 /2σ2

)
(5)
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αk and b depend on γ and the kernels. A = Ω+γ−1 I, t is a positive definite symmetric
matrix for all γ > 0, and A−1 exists. SE-SVM adopts the RBF kernel to describe potential
uncertain nonlinearity [30]. To integrate direct search into the LS-SVR, we have illustrated
the search procedure below.

Step 1. Begin and initialize with a search point B0 = (σ0, γ0) and k = 1.
Step 2. Take the B1 = (σ0 + λσ, γ0 + λγ) as an alternative point; λσ and λγ are the

random step sizes originating from the uniform distribution of (0, 1).
Step 3. Compute G(σ0, γ0) and G(σ0 + λσ, γ0 + λγ) using (4) and (5).
Step 4. Update σ0 with σ0 + λσ and γ0 by γ0 + λγ if G(σ0 + λσ, γ0 + λγ) ≤ G(σ0, γ0).

Otherwise, σ0 = σ0 and γ0 = γ0.
Step 5. If G(σ0, γ0) ≤ ε or k ≥ N, stop the iteration. Otherwise, let k ≥ k + 1 and go to

Step 2. The iteration stops when either a desired accuracy is achieved or when the number
of iterations exceeds a prespecified limit N. After the algorithm stops, this paper obtained
the “optimal” pair of (σ0, γ0) for LS-SVR, which could be used to minimize training errors.
Together, all of the above steps for the SE-SVM are used for sample learning and compare
the prediction accuracy to judge the fit of the model by incorporating adequate information
from the original data.

On basis of the steps above, the elasticity analysis method is introduced into the above
algorithm. It can be considered that when the independent variable changes by one percent
then that is how many percentage points the dependent variable also changes by. This
new method is known as Sensitivity Evaluation with Support Vector Machines (SE-SVM).
Steps 6 to 9 are the main procedures and operating instructions that will be used in the
following empirical section:

Step 6. Learn and obtain the best parameters through the training samples and acquire
the optimal parameter pair (σ∗, γ∗) using the LS-SVR-DS.

Step 7. Predict ŷ(xα1), ŷ(xa2), ŷ(xα3) . . . , and ŷ(xαn) based on the optimal parameters
of the SE-SVM model, where xα1 = x1 ∗ (1 + 1%), xα2 = x2(1 + 1%), xα3 = x3(1 + 1%),
. . . , and xn(1 + 1%).

Step 8. Compare ŷ(xα1), ŷ(xα2), . . . , and ŷ(xαn) separately to obtain the quantitative
evidence of the change degree for the temperature parameter from the climate change
variable affecting the RHC when the REE increases in various regions across China.

Step 9. Then, repeat the step 6 to 8 for humidity, precipitation, and sunshine and
explain each specific condition.

Step 10. Considering the regional characteristics, repeat all of the above steps and
compute the related results for each spatial area until the corresponding model finds a
satisfactory result and then stop the procedure. At this stage, the SE-SVM has finished the
elastic analysis while using real data. This represents a novel way to analyze the interaction
between variables by fusing machine learning and elastic concepts.

2.3. Parameter Setting

During the empirical portion of the process, SE-SVM can be set as the following parts:
The empirical analysis comprises one main dependent variable and eight independent
variables. Take y as the symbol for RHC. VTH, OWT, and NOI, and their relationship
with RHC should be calculated separately. Meanwhile, x1, x2, x3, . . . , and x8 represent e
Temperature, Humidity, Precipitation, Sunshine, and REE and controlling indicators such
as GDPPC, UL, PD, MP, LAD, and NHCI (See as in Table 1) [32].

With the help of Steps 1 to 5, the first part forecasts the RHC using climate change
data with the REE in China; in other words, SE-SVM is used along with the panel data
from 2002-2016 to find the optimal sample fitting for the models with different dependent
and independent variables. MPE (Prediction Error of Mean Percentage Error), MSE (Mean
Square of Prediction Error), and SDE (Standard Deviation of Prediction Error) measure the
prediction accuracy. That is, it is better to obtain a model with high forecasting accuracy or
lower prediction errors overall, which can be achieved by sample learning.
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With the assistance of Steps 6 to 9, the second part measures the impact of each variable
in China. That is to say, with the best fitting model as the basic model, this paper applied
the regional province-level data obtained China from 2002-2016 to the SE-SVM and then
conducted elastic analysis and results comparison, allowing relevant empirical results to
be drawn.

3. Results
3.1. Statistical Descriptive Analysis
3.1.1. Spatial Characteristics of Regional RHC in China

The spatial characteristics of the regional RHC in China are an important prereq-
uisite for further quantitative analysis, especially in China, which has a huge territory
area. Although regional RHC are affected by local geological conditions, natural resources,
customs, economic development, population density, cultural and educational background
factors, etc., it is important to compare the spatial characteristics that are subject to geo-
graphic location, and climate change demonstrates the same spatial differences, meaning
that these two aspects interact within a specific spatial range. China’s administrative divi-
sions the principles of geographic isolation (natural barriers such as rivers, mountains) and
geological geomorphology, which also determines the regional characteristics of climate
change, take into account. Local residents are also subject to the unique impact of climate
change in a specific location.

According to original data from the 30 provinces and cities in China tat were selected
for this study, Figure 2 provides three dimensions of VTH, OWT, and NOI to describe the
RHC for different regions in China. As we can see, the three three-dimensional spatial
distribution diagrams of VTH, OWT, and NOI exhibit almost the same characteristics as
those for regional distribution, showing similar trends. Guangdong, Jiangsu, Zhejiang,
Shandong, Henan, Sichuan, and Shaanxi are ranked at the forefront of China’s current
and more urgent medical conditions. No matter the VTH, OWT, and NOI, each of them
show a higher amplitude from 2002 to 2016. Some provinces show greater medical needs
and pressure on RHC. The changes in the relevant characteristics and trends are crucial
for formulating regional medical policies and for supplementing medical personnel and
supplies. In the face of sudden medical and health incidents, the above problems are more
urgent.

Furthermore, the spatial characteristics of the regional RHC in China force the pro-
posed model to be computed by actual local conditions, which were denoted by the six
control variables. Considering the regional differences and the implicit relationship be-
tween RHC and climate change, Figure 2 also shows the necessity of constructing a specific
model to compute how climate change affects RHC for the individual provincial and
municipal regions in China. It was shown that their trends were similar to each other and
that the curves of VTH, OWT, and NOI were quite consistent and regionally different.
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3.1.2. Trend Analysis of Indicators in China

It shown that the tendency curves between the RHC and REE and one of the temper-
ature, humidity, precipitation, and sunshine curves generally displayed a synchronous
development trend. These findings confirm those from previous research. These findings
also provided direct support for the empirical settings of SE-SVM. In detail, Figures 2–5
show the trends of RHC, climate change, and REE in China. The three indicators VTH,
OWT, and NOI and four different factors of climate change, temperature, humidity, pre-
cipitation, and sunshine, were compared in each graph in the following four figures. To
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reduce the impact of the size and dimension of the statistical units, the indicators were nor-
malized and standardized. Three linear or moving average tendency lines were depicted
above the real bar data. In each graph, the original values of the three RHC variables are
represented by dark, medium, and light black shading. Their corresponding trend lines are
represented by dotted, discrete, segmented, and straight lines. The following findings can
be drawn:
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First, temperature, humidity, precipitation, and sunshine experienced much larger
fluctuations than RHC did, while REE shows an increasing trend line. There is a turning
point for temperature in the years of 2007 and 2012, while sunshine displayed a sharp rising
trend from 2014 to 2016. Additionally, this brings challenges to the model construction and
quantitative calculations presented in this paper.

Second, REE and RHC remained relatively consistent and showed steady increases.
The increase in eco-efficiency seems to maintain a similar level as the growing need for
public health. This contradicts the idea that improving REE improves the energy use
efficiency and that it is more conducive for the sustainable development of the environment.
Therefore, this excellent correlation helps the interpretability of the model in this paper, but
it real data analysis needs to be used in order to specifically analyze the degree of influence
and the positive and negative directions of the two.

Third, there are significant differences in the nationwide change trends among the
three variables of climate change, resident health conditions, and the improving REE in
each figure. For each province and city in China, more attention should be paid to regional
heterogeneity. On the one hand, it is helpful to add regional-wide control variables; on the
one hand, it is necessary to construct specific impact measurement models for individual
provinces or cities.

In addition, more microscopic evidence suggests that regional heterogeneity requires
calculating the impact in each region in China. For example, by analyzing the data on visits
to different sub-departments (such as pediatrics, internal medicine, Chinese Medicine,
surgery, obstetrics and gynecology, and so on) in medical institutions, it is easier to de-
termine that the different health problems that are targeted by different departments are
closely related to climate change (see as Figure 6a,b). At the same time, social issues and
government policies such as labor employment, fertility policies, and aging phenomena in
the regional reality are important dimensions that can be used to explain such differences.
Many scholars have recognized and supported the above-mentioned idea that climate
change exhibits a crucial influence on the appearance of various diseases and that the
reduction of environmental pollution by implementing eco-efficiency has an impact on
public health.
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3.2. Sample Learning and Prediction Accuracy Comparison

Comparing sample learning and prediction accuracy is necessary to forecast RHC
using climate change data with the evidence of the improving REE in China. To gain a
full understanding of the performance of the proposed method and detailed information
regarding the basic variation that is the result of the effects of climate change on RHC,
each of the following sections apply average temperature, average relative humidity,
precipitation, and sunshine Hours separately and all of the above four indicators as the
proxy variables for climate change in sample learning and forecasting for each year from
2002 to 2016. Then, the results with the best prediction accuracy for all three parts will be
selected as the best model for elasticity analysis and will be used for further analysis.
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MPE =
∑T

t=1
yt−ŷt

yt
T . MSE = ∑T

t=1(yt−ŷt)
2

T , SDE =

√
∑T

t=1(yt−ŷt)
2

T . yT and yt denote the
given sample value of the last year and the t. year. ŷT and ŷt denote the forecasted sample
value for the last year and t year by LS-SVR. T = 1, 2, · · · , T. The combination of MPE,
MSE, and SDE together is helpful to prove the advantages of SE-SVM, in which yt and
ŷt were forecasted for each year from 2002 to 2016 followed by the acceptable in-sample
learning.

3.2.1. Forecasting RHC Using Temperature with Improving REE

Most scholars hold that temperature is a main leading climate change index because
the greenhouse gases that are generated by various human activities (especially economic
development) and environmental changes have always been the focus of attention. average
temperature is computed yearly and can represent average climate change directly as well
as the effects on health conditions, as described in the Background Section.

Tables S1–S3 present the prediction accuracy comparison separately for the 30 provinces
and regions that were considered in the present study. Additionally, the results in the
tables show temperature as one of the four proxy variables of climate change and that
it is a good forecaster or leading indicator that can be used to acquire information as it
pertains to resident health conditions in advance, regardless of VTH, OWT, and NOI. At
the level of the entire country, the MPE, MSE, and SDE of temperature to forecast VTH is
as low as 0.000296, 0.005300, and 0.072800, respectively, and the averages of those values
for the 30 provinces and cities are about 0.000616, 0.000298, and 0.009507, which is a quite
high prediction accuracy, especially when considering the statistical unit of the predicted
variable. the MPE, MSE, and SDE of temperature to forecast OWT is much lower, with
values of about 0.000252, 0.004488, and 0.066990, the average level of those values for the
30 provinces and cities that were considered in the present study are very close, demon-
strating values of about 0.000646, 0.000264, and 0.009109. However, when utilizing the
temperature to forecast Number of Inpatients, the corresponding forecasting error became
a little bigger than the former, with the MSE and SDE showing values of about 1970.296095
and 44.388017, although MPE is the lowest one, achieving a value of 0.000044.

MSE and SDE were better able to display the volatility and stability characteristics of
the forecasting process when using SE-SVM in China. The tables show that the largest one
appears when a utilizing the temperature to forecast Number of Inpatients, and this may
be due to the fact that the influencing factors and functional relationships of hospitalized
patients are more complicated. Considering climate change and the improvement of eco-
efficiency and other regional characteristic variables is one aspect, and other potential
factors (long-term living habits and impact accumulation) also need to be considered
further in order to heighten the forecasting robustness. In additions, incorporating REE
and various control variables in SE-SVM improved the interpretability and ensured the
ability of the sample to be learned as well as its prediction accuracy.

3.2.2. Forecasting RHC Using Humidity with Improving REE

The most beneficial humidity range for human health is 45% to 60%. If the air
humidity is less than 45%, then it will cause indoor dryness, resulting in dry skin, throat,
and respiratory tract, which may lead to asthma and other respiratory diseases. When the
air humidity is higher than 60%, the human body will feel sluggish and uncomfortable.
When the air humidity is higher than 80%, then the humidity is too high, making it difficult
for the body to dissipate heat, resulting in symptoms such as increased body temperature,
rapid heartbeat, dizziness, and nausea. Correspondingly, RHC will be affected by humidity.
The average relative humidity is calculated yearly and can represent climate change directly
and can also affect health conditions, as described in the literature review in Section 2.

Tables S4–S6 present the prediction accuracy comparison with sample learning data
that were used for the SE-SVM for China as a whole as well as for the 30 selected provinces
and cities that were used in this analysis. Additionally, the results in the tables show that
humidity is one of the four proxy variables of climate change and that it is a good forecaster
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and leading indicator that can be used to acquire information regarding resident health
conditions in advance, regardless of the Visits to Hospitals, OWT, and Number of Inpatients.
For the whole country, the MPE, MSE, and SDE of humidity to forecast VTH are as low as
0.000259, 0.004053, and 0.063664, the average levels of those variables for the 30 provinces
and cities that were included in this study were about 0.000495, 0.000208, and 0.008522,
demonstrating a prediction accuracy that is quite high, especially when considering the
statistical unit of the predicted variable. The MPE and MSE of the humidity to forecast
OWT is much bigger, with values of about 0.003374 and 0.058088, and a lower SDE of
0.003374; the average level for the 30 provinces and cities that were selected for analysis
in this study is much lower, with the MPE being 0.000219 and the SDE being 0.000219;
however, a larger MSE of 0.008612 is also observed. However, when utilizing the humidity
to forecast the Number of Inpatients, the corresponding forecasting error became a little
bigger than the former results, with the MSE and SDE being shown to be 110.953421 and
6.908155, respectively, although the MPE is quite low, with a value of about 0.001227 being
observed.

When using the temperature to forecast the Number of Inpatients, it demonstrated
there was the best volatility and stability characteristics of the forecasting process of SE-
SVM in China, it shown that humidity was the best variable to forecast the Number of
Inpatients and that there is a similar explanation. Similarly, incorporating REE and various
control variables improves the interpretability of the model and ensures learning and the
prediction accuracy within the sample. The powerful learning ability and the effective
support vectors help to describe the most suitable functional relationship through the
kernel functions along with the addition of the regional heterogeneity for a single province
or city in China.

3.2.3. Forecasting RHC Using Precipitation with Improving REE

More varied precipitation from rainfall patterns may affect freshwater supply. A lack
of safe water affects personal hygiene and increases the risk of diarrhea. The frequency and
severity of floods are also rising. Floods contaminate the fresh water supply, increasing the
risk of water-borne diseases and forming breeding grounds for disease-carrying insects
such as mosquitoes. Floods can also cause drowning and bodily harm, destroy homes,
and disrupt the supply of medical and health services. Average precipitation is calculated
yearly and can represent climate change and affect health conditions directly, as described
in the literature review in Section 2.

Tables S7–S9 present the prediction accuracy comparison with of the sample learning
data for the SE-SVM for China as a whole and for each of the selected 30 provinces and
cities. Additionally, the results in the tables show that precipitation is appropriate for use as
one of the four proxy variables of climate change because it is a good forecaster and leading
indicator that can be used to acquire the information regarding resident health conditions in
advance, regardless of the number of Visits to Hospitals, OWT, and Number of Inpatients.
From the whole country level, the MPE, MSE, and SDE of precipitation to forecast VTH
are as low as 0.000296, 0.004604, and 0.067855; the average level of these values for the 30
provinces and cities is about 0.000638, 0.000273, and 0.010273, respectively, demonstrating
a prediction accuracy that is quite high, especially when considering the statistical unit of
the predicted variable. The MPE, MSE, and SDE of precipitation to forecast OWT is much
lower, with values of 0.000252, 0.003812, and 0.061742 being obtained; the average level of
these values for the 30 provinces and cities is also much lower, demonstrating values of
about 0.000492, 0.000219, and 0.008830. However, similar to the ability of the temperature
and humidity to forecast the Number of Inpatients and considering the characteristics of
the volatility and stability of the forecasting process of the SE-SVM in China, it shown that
the largest prediction errors appear when utilizing the humidity to forecast Number of
Inpatients, which can be explained in a similar fashion as before.
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3.2.4. Forecasting RHC Using Sunshine with Improving REE

It is well-known that practitioners and researchers have reached a consensus on the
influence of sunshine on people’s mood, brain, sleep, bones, and other aspects. Tables
S10–S12 present the prediction accuracy comparison with the sample learning data from
the SE-SVM for China as a nation and each of the 30 provinces and cities. Additionally,
the results in the tables show that sunshine is appropriate for use as one of the four proxy
variables of climate change because it is a good forecaster and leading indicator that can be
used to for acquire information about resident health conditions in advance, regardless of
the Visits to Hospitals, OWT, and Number of Inpatients. From the perspective of the whole
country, the MPE, MSE, and SDE of sunshine to forecast VTH are as low as 0.000165,
0.001513, and 0.038903, and the average level of those values for the 30 provinces and cities
is about 0.000461, 0.000158, and 0.007917, demonstrating a prediction accuracy that is quite
high, especially when considering the statistical unit of the predicted variable. the MPE,
MSE, and SDE of sunshine to forecast OWT is much lower, showing values of 0.000146,
0.001499, and 0.038719, with the average level of these values for the 30 provinces or cities
is also much lower, showing values of about 0.000513(bigger than 0.000461), 0.000141, and
0.007565. These main findings are all acceptable.

However, it seems that similar to the temperature, humidity, and precipitation, the
largest prediction errors appear when utilizing the humidity to forecast the Number of
Inpatients, especially when considering the characteristics of the volatility and stability of
the SE-SVM forecasting process in China. Therefore, forecasting the Number of Inpatients
for the RHC does not perform as well as any of the other variables, but the individual
and average forecasting accuracy for China as a whole and for each province and city is
acceptable, while the fluctuations seen in the prediction accuracy are relatively large.

3.2.5. Forecasting RHC Using Four Factors with Improving REE

In fact, the four climate change indicators generally affect the health of residents at
the same time, together with the economic and environmental changes that are caused by
promoting higher regional eco-efficiency. Therefore, it became more realistic to consider
corresponding specific comprehensive impacts simultaneously. Tables S13–S15 present
the prediction accuracy comparison with the sample learning data for the SE-SVM for
China as a whole and for each of the 30 provinces and cities. Additionally, the results in the
tables show that in terms of the four climate change factors together, they represent good
forecasters and leading indicators that can be used to acquire resident health condition
information in advance, regardless of the Visits to Hospitals, OWT, and Number of Inpa-
tients. Additionally, the largest prediction errors appear when utilizing the humidity to
forecast Number of Inpatients when considering the volatility and stability characteristics
of the SE-SVM forecasting process in China.

Together, Tables 2–4 summarize the findings and show that the forecasting difference
for each of the three RHC indicators using different model settings and four different
indicators: SE-SVM with temperature, SE-SVM with humidity, SE-SVM with precipita-
tion, and SE-SVM with sunshine and SE-SVM. These results demonstrate results that are
similar to those that have been obtained in the past: (1) Climate change is a good predictor
for predicting resident health, as it takes into account improved REE and other control
variables that reflect regional heterogeneity; (2) better model settings can be found by com-
paring the average MPE, MSE, and SDE for temperature, humidity, precipitation, sunshine
together; (3) considering the real situation where temperature, humidity, precipitation,
and sunshine interact, we chose the SE-SVM with four indicators to be the basic model
for elastic analysis and also incorporated the improving eco-efficiency and other control
variables.
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Table 2. Forecasting the VTH using different model settings.

Model with Different
Variables

MPE MSE SDE
Average Value

SE-SVM with temperature 0.000616 0.000298 0.009507
SE-SVM with humidity 0.000461 0.000158 0.007917

SE-SVM with precipitation 0.000638 0.000273 0.010273
SE-SVM with sunshine 0.000495 0.000208 0.008522

SE-SVM with four indicators 0.000585 0.000564 0.011054

Table 3. Forecasting OWT using different model settings.

Model with Different
Variables

MPE MSE SDE
Average Value

SE-SVM with temperature 0.000646 0.000264 0.009109
SE-SVM with humidity 0.000513 0.000141 0.007565

SE-SVM with precipitation 0.000492 0.000219 0.008830
SE-SVM with sunshine 0.000584 0.000219 0.008612

SE-SVM with four indicators 0.000652 0.000520 0.009997

Table 4. Forecasting NOH using different model settings.

Model with Different
Variables

MPE MSE SDE
Average Value

SE-SVM with temperature 0.000657 107.4898 6.287633
SE-SVM with humidity 0.001420 60.32005 5.895260

SE-SVM with precipitation 0.001214 96.56187 6.108994
SE-SVM with sunshine 0.001227 110.9534 6.908155

SE-SVM with four indicators 0.001610 41.50525 4.463848

3.3. Findings and Explanations

Based on the SE-SVM using the four indicators, this section measured the specific
impact of climate change on resident health conditions by considering the improving REE
in China. Tables 5–7 present how the visits change when each of the independent variables
increases by 1% as each of the 11 dependent variables increase by 1%, with the phenomenon
being denoted as X × (1 + 0.01).

When observing the nation as a whole, it can be concluded that temperature, humidity,
precipitation, and sunshine have a positive relationship with VTH or OWT but a negative
one with the NOH. In other words, when each indicator of change occurred or increased
by 1%, then the VTH increased by 0.004451, 0.006776, 0.000462, and 0.001071 and the OWT
increased by 0.004674, 0.006668, 0.001324, and 0.001614. Meanwhile, the NOH decreased
by 0.006938, 0.002041, 0.001168, and 0.000561. The positive change relationship confirms
the conclusion that climate change affects the health status of residents; that is, it increases
the incidence of various diseases and the medical needs of the residents in all aspects. The
negative change relationship shows that climate change has reduced some of the resident
medical needs under certain conditions, which is contrary to our intuitive perception and
requires more in-depth research in the future.

Further, it is obvious that when REE increases by 1%, then the rate of climate change
will decrease by that same percentage, increasing the needs of VTH and OWT by 0.002242
and 0.002688 but decreasing the needs of NOH. The reason for this is that reducing the
impact of polluted gas, water, and solid waste as a result of improved eco-efficiency on
the health of residents is a long-term process, and most hospitalized patients are cases that
have accumulated over a long period of time and are in serious condition. One reason for
the negative impact of improving eco-efficiency on short-term outpatient and emergency
services is that the environmental changes that can be made to eco-efficiency mostly affect
public health through the climate change effects of four proxy factors. For example, carbon
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dioxide in waste gas is a greenhouse gas, and wastewater affects drinking water, food
safety, and agricultural irrigation. It is worth paying attention to this aspect in the future
longer-term research.

In addition, controlling variables such as GDPPC, UL, PD, MP, LAD, and NHCI have
explained the corresponding changes in resident health conditions in terms of affordability,
population impact, medical supply, quality of service, technical conditions, etc. The
improvement of the above factors has increased the need for the diagnosis and treatment of
resident health conditions to a certain extent. This is because the scale medical institution
and service development in China is far from being able to meet the growing needs of the
country. At the same time, the aging society and the second-child policy have created new,
more, and diversified medical needs, regardless of type, amount, and quality.

At the provincial level, there are indications that there are large differences among
the 30 Chinese provinces and cities that were selected for the current analysis . Applying
SE-SVM to various regions by means of actual data, it was found that the quantitative
impact of the four proxy factors of climate change on RHC varies greatly, and the signs
or values of eco-efficiency and other control variables are different too. However, roughly
60% of the provinces, cities, and regions agree with the nationwide conclusions. The model
settings for the controlling variables reflected regional heterogeneity, which cannot be
displayed in the model of the national-level data in China. The differences in the industrial
structure, resource endowments, and related medical insurance policies in the development
of regional economies are also one of the reasons for the above. Economically developed
regions rely on high-tech industries with lower resource consumption and greater added
value. The living environment is continuing to improve, the medical facilities are becoming
more complete, and medical standards are higher. The values of the control variables are
larger. Climate change combined with REE and GDPPC, UL, PD, MP, LAD, and NHCI
are helpful to explain specific effects. Therefore, the main findings further emphasize
the necessity of differentiating research in various regions in China. Each province or
city should formulate a reasonable sustainable development strategy and medical policy
based on its own real conditions to reduce the adverse aspects of climate change on local
inhabitants.

Table 5. How the VTH change when each of variables increases by 1% as X × (1 + 0.01).

Regions Temperature Humidity Precipitation Sunshine REE GDPPC UL PD MP LAD NHCI

China 0.004451 0.006776 0.000462 0.001071 0.002242 0.002969 0.003596 0.003265 0.003350 0.004602 0.000805
Beijing 0.001283 0.004197 0.000860 −0.007015 0.002101 0.002258 0.005336 0.003885 0.003301 0.003762 0.000832
Tianjin 0.002517 −0.001033 −0.000725 −0.010497 0.002187 0.000887 0.002094 0.003399 0.002424 0.004436 0.000504
Hebei 0.003451 −0.003348 −0.006325 −0.007646 −0.005947 −0.005510 −0.006628 0.008791 −0.004094 −0.001067 −0.007339
Shanxi −0.007094 −0.001168 0.001367 −0.001913 −0.002430 0.004894 0.004166 0.008154 0.000552 0.008288 −0.001949
Inner

Mongolia 0.000125 −0.003873 0.001058 −0.000213 −0.000002 0.002085 −0.000077 0.017445 0.017826 −0.002580 −0.004218

Liaoning −0.002413 −0.007565 −0.004315 −0.003603 −0.004651 −0.004278 −0.000512 0.012959 −0.000632 0.000995 −0.004862
Jilin −0.000749 −0.009097 0.000515 −0.003592 0.001879 0.001629 0.015148 0.041778 0.002624 0.003510 0.000678

Heilongjiang −0.001493 −0.006132 0.000519 −0.000007 −0.000963 0.001690 0.018419 −0.009811 0.002846 0.003307 −0.000397
Shanghai −0.023734 −0.003612 0.001341 0.004557 −0.000120 0.002950 0.003422 0.006900 0.002418 0.004339 0.000893
Jiangsu 0.020299 0.025642 0.021769 0.022824 0.022343 0.024143 0.024239 0.034792 0.026035 0.028391 0.022610

Zhejiang 0.000705 0.000266 0.005769 0.003770 0.007134 0.007221 0.009330 0.009098 0.007629 0.007634 0.006364
Anhui −0.003214 0.004309 −0.001023 −0.002827 0.001341 0.002022 0.003393 −0.000016 0.001895 0.003397 0.000037
Fujian −0.015584 −0.008090 0.001076 0.001022 −0.000495 0.004805 0.004830 −0.011098 0.003831 0.000417 −0.000543
Jiangxi −0.010566 −0.010538 −0.013728 −0.014058 −0.012981 −0.011313 −0.010511 −0.005173 −0.011778 −0.008679 −0.013417

Shandong −0.000641 −0.006621 −0.006215 −0.006554 −0.007207 −0.002889 −0.006825 0.017850 −0.003590 −0.003145 −0.007306
Henan −0.002355 0.002674 −0.001243 0.001189 0.000539 0.002652 0.004119 −0.013767 0.002607 0.003349 −0.000468
Hubei 0.003503 −0.000548 −0.002005 −0.001008 0.001365 0.001798 −0.000829 0.019420 0.000692 0.001838 −0.000281
Hunan 0.003824 −0.003003 −0.002315 −0.004271 −0.000950 −0.001206 0.001620 −0.002697 −0.000659 0.000239 −0.002680

Guangdong −0.008089 −0.003668 −0.000830 −0.001291 −0.001233 0.005320 0.000544 0.003087 0.007437 0.005590 −0.000805
Guangxi 0.005726 0.000785 0.000107 −0.001048 0.001212 0.001240 0.004103 0.005328 0.001429 0.002027 −0.000299
Hainan 0.005771 −0.004605 0.000211 −0.000009 0.001314 0.003484 0.000371 0.020602 0.003911 −0.000786 −0.000069

Chongqing 0.001143 −0.007133 −0.003717 −0.006084 −0.004602 −0.004155 −0.002879 0.011133 −0.003888 −0.003079 −0.005319
Sichuan −0.003345 0.000084 −0.003471 −0.003232 −0.002882 −0.000874 −0.001889 0.019777 0.000034 0.001637 −0.003929
Guizhou 0.002775 −0.003198 0.000140 0.000468 0.002288 0.002423 0.002809 0.001113 0.002763 0.003174 0.000317
Yunnan 0.000476 0.001216 0.000405 −0.001650 0.000322 0.002494 0.009080 −0.008375 0.002955 −0.000429 0.000063
Shaanxi −0.010195 −0.012365 −0.011844 −0.013620 −0.011054 −0.010285 −0.008617 0.026870 −0.009776 −0.007611 −0.011866
Gansu −0.006756 −0.007688 −0.007109 −0.006825 −0.008234 −0.006450 −0.006203 0.031037 −0.005365 −0.002544 −0.007013

Qinghai 0.008481 0.008258 −0.000506 −0.000608 0.000214 0.001290 0.008204 0.018339 0.001777 −0.001900 0.000823
Ningxia −0.007574 −0.011093 −0.009466 −0.010137 −0.008768 −0.008628 −0.006822 −0.002711 −0.007689 −0.006139 −0.009665
Xinjiang −0.009132 −0.009686 −0.008010 −0.007312 −0.009156 −0.004829 −0.015593 0.003507 −0.004000 −0.003490 −0.009480
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Table 6. How OWT change when each of variables increases by 1% X × (1 + 0.01).

Regions Temperature Humidity Precipitation Sunshine REE GDPPC UL PD MP LAD NHCI

China 0.004674 0.006668 0.001324 0.001614 0.002688 0.003637 0.003903 0.003481 0.004095 0.005531 0.001218
Beijing 0.001201 0.003708 0.000201 −0.006614 0.001639 0.001729 0.005730 0.003198 0.002621 0.003057 0.000308
Tianjin 0.003158 −0.001127 −0.000610 −0.010642 0.002320 0.000882 0.002243 0.003537 0.002516 0.004336 0.000492
Hebei 0.002469 −0.004974 −0.007605 −0.008777 −0.006956 −0.006806 −0.007342 0.007331 −0.005513 −0.002740 −0.008415
Shanxi −0.007090 −0.000260 0.001159 −0.001523 −0.002161 0.004727 0.005975 −0.000515 0.000389 0.008415 −0.001875
Inner

Mongolia 0.000347 −0.003903 0.000857 −0.000757 −0.000123 0.001730 0.004797 0.005273 0.016834 −0.002339 −0.004267

Liaoning −0.000047 −0.005065 −0.002237 −0.000901 −0.002542 −0.002202 0.001845 0.013767 0.001423 0.003224 −0.002795
Jilin −0.002937 −0.010688 −0.001947 −0.003870 −0.000584 −0.000890 0.004504 0.010607 0.001089 0.000539 −0.001842

Heilongjiang −0.002070 −0.006521 0.000236 −0.000002 −0.000915 0.001859 0.020543 −0.002407 0.002550 0.002930 −0.000380
Shanghai −0.023560 −0.003453 0.001402 0.004552 −0.000096 0.002997 0.003338 0.007003 0.002366 0.004319 0.000889
Jiangsu 0.001003 0.001621 0.002217 0.002865 −0.003814 0.004013 −0.001140 0.064399 0.023800 0.000919 −0.000639

Zhejiang 0.002085 0.001685 0.006717 0.004781 0.008158 0.008198 0.010475 0.010401 0.008621 0.008651 0.007324
Anhui −0.002322 0.004500 −0.001126 −0.002775 0.001410 0.002073 0.003657 0.000926 0.001577 0.003213 −0.000101
Fujian −0.018382 −0.008644 0.001232 0.001205 −0.000461 0.003680 0.004510 0.002424 0.003138 0.001191 −0.000502
Jiangxi 0.007092 0.006016 −0.000260 −0.001584 0.000254 0.001011 0.002903 0.012770 0.001212 0.002394 −0.000208

Shandong −0.001178 −0.007573 −0.005624 −0.005833 −0.007772 −0.001222 −0.006793 0.017512 −0.002567 −0.002525 −0.007231
Henan −0.001659 0.003409 −0.001077 0.001603 0.000309 0.002797 0.004323 −0.008589 0.002794 0.003738 −0.000644
Hubei 0.003915 −0.000319 −0.001985 −0.000938 0.001465 0.001862 −0.002454 0.018168 0.001392 0.001443 −0.000418
Hunan 0.003894 −0.002936 −0.002054 −0.004032 −0.000701 −0.000945 0.001883 −0.002835 −0.000453 0.000339 −0.002443

Guangdong −0.008472 −0.004059 −0.000857 −0.001445 −0.001096 0.005009 0.000297 0.001865 0.007394 0.006364 −0.000844
Guangxi 0.004430 0.000280 −0.000267 −0.001015 0.000734 0.000877 0.004902 0.003418 0.001252 0.001864 −0.000661
Hainan −0.003015 −0.002534 −0.004858 −0.004893 −0.003830 −0.002409 −0.004592 0.007739 −0.001979 −0.002292 −0.004966

Chongqing −0.000850 −0.007312 −0.004859 −0.007261 −0.005652 −0.005306 −0.003901 0.009229 −0.005036 −0.004245 −0.006472
Sichuan −0.003727 −0.000189 −0.004070 −0.003960 −0.003262 −0.001676 −0.001928 0.020370 −0.001043 0.000356 −0.004372
Guizhou 0.004351 −0.001200 0.000321 0.000822 0.002359 0.002379 0.002926 −0.003810 0.002602 0.003088 0.000533
Yunnan 0.002103 0.002381 0.000590 −0.001367 0.000439 0.002931 0.007184 −0.001700 0.003835 −0.000951 0.000256
Shaanxi −0.007703 −0.009974 −0.009624 −0.011401 −0.008786 −0.008077 −0.006291 0.032971 −0.007624 −0.005661 −0.009663
Gansu −0.012006 −0.013069 −0.012174 −0.012346 −0.012984 −0.011571 −0.010535 0.029066 −0.010650 −0.008114 −0.011958

Qinghai −0.029506 −0.027637 −0.033198 −0.030915 −0.031876 −0.031590 −0.029141 −0.020822 −0.031371 −0.030953 −0.032269
Ningxia −0.007340 −0.010092 −0.008647 −0.009447 −0.008338 −0.007787 −0.006188 −0.002111 −0.006699 −0.004845 −0.008923
Xinjiang −0.007802 −0.005777 −0.006053 −0.005065 −0.007182 −0.002259 −0.014325 0.012056 −0.002263 −0.004293 −0.007364

Table 7. How NOH change when each of variables increases by 1% as X × (1 + 0.01).

Regions Temperature Humidity Precipitation Sunshine REE GDPPC UL PD MP LAD NHCI

China −0.006938 −0.002041 −0.001168 −0.000561 −0.006272 0.004420 −0.001231 0.011291 0.008106 0.007393 −0.002325
Beijing −0.007270 −0.010300 −0.010287 −0.008262 −0.006638 −0.007318 −0.010236 −0.007331 −0.006247 −0.005261 −0.010062
Tianjin −0.009590 −0.014090 −0.012060 −0.012262 −0.011122 −0.010921 −0.009989 −0.009076 −0.008865 −0.008397 −0.012164
Hebei −0.010210 −0.014472 −0.015701 −0.017101 −0.014527 −0.014553 −0.015717 −0.001216 −0.013776 −0.011240 −0.016344
Shanxi −0.013030 −0.001747 −0.001872 −0.003113 −0.004805 0.000019 0.005479 0.010150 −0.001561 0.003628 −0.005537
Inner

Mongolia −0.001643 −0.001959 0.001582 −0.001329 −0.001110 0.005029 0.005594 0.025706 0.008492 0.001653 −0.002389

Liaoning 0.004100 −0.002911 0.001248 0.002624 0.000303 0.001253 0.008056 0.021466 0.006757 0.008906 0.000405
Jilin −0.000194 −0.006381 0.000683 0.000076 0.002329 0.002326 0.012399 0.038181 0.005236 0.001987 0.000587

Heilongjiang −0.002021 −0.004442 −0.000469 −0.000052 −0.001379 0.003801 0.023983 −0.031683 0.002878 0.005545 −0.000826
Shanghai −0.007078 0.003055 0.002357 0.002537 0.002201 0.002900 0.005000 0.004302 0.002329 0.003563 0.000848
Jiangsu −0.000340 0.008708 0.004004 0.004921 0.005081 0.006638 0.006976 0.014416 0.007750 0.010294 0.004385

Zhejiang −0.000407 −0.001082 −0.000746 0.000619 −0.002026 0.001393 0.000359 −0.000997 0.024487 −0.011894 −0.001601
Anhui −0.003063 0.000756 −0.002532 −0.003611 0.000084 0.000725 0.002307 0.001878 −0.000048 0.001799 −0.002012
Fujian 0.000763 0.010818 0.008843 0.009652 0.009503 0.012912 0.013735 0.019929 0.012659 0.012889 0.009804
Jiangxi −0.014116 0.005288 −0.001032 −0.001441 0.000527 0.001287 0.003268 0.006610 0.001185 0.003235 0.000179

Shandong −0.005908 −0.011717 −0.009656 −0.010409 −0.011700 −0.005725 −0.010247 0.023214 −0.005644 −0.007830 −0.011045
Henan −0.003040 0.000028 −0.001667 0.002091 0.000525 0.003172 0.005048 −0.013862 0.003112 0.003872 −0.000479
Hubei 0.006674 0.008180 0.005239 0.006109 0.007677 0.007470 0.008380 0.042928 0.008395 0.009715 0.006356
Hunan 0.002323 −0.001690 0.000800 −0.001109 0.002248 0.002145 0.004854 0.005926 0.002195 0.002100 0.000361

Guangdong −0.000842 0.002137 −0.001038 0.002476 0.000640 0.001513 0.000527 0.001799 0.001524 0.001752 −0.000204
Guangxi −0.009355 0.005425 −0.000342 −0.001270 0.001092 0.001076 0.002802 −0.000304 0.001280 0.001714 −0.000300
Hainan −0.007454 0.000029 −0.009655 −0.009444 −0.008473 −0.007034 −0.008790 0.002794 −0.006228 −0.005478 −0.009443

Chongqing 0.010658 −0.002033 0.002373 −0.000397 0.000233 0.002647 0.007342 0.021538 0.002083 0.004000 −0.000045
Sichuan −0.002749 0.001979 −0.002787 −0.001945 −0.001796 0.000007 −0.000878 0.013451 0.001108 0.003624 −0.003425
Guizhou −0.001220 0.001875 0.000462 0.001401 0.001021 0.000807 0.000445 −0.003049 0.001143 0.001442 0.000605
Yunnan −0.014332 −0.009768 −0.010508 −0.010440 −0.010063 −0.009341 −0.007497 −0.000388 −0.008753 −0.007916 −0.010445
Shaanxi −0.002168 −0.000935 0.000113 −0.001778 0.000397 0.002751 0.005545 0.001810 0.003655 0.007311 −0.001383
Gansu 0.000051 −0.001946 0.000551 0.000655 −0.000054 0.001987 0.002605 0.059090 0.002654 0.005858 0.000569

Qinghai −0.033183 −0.028336 −0.035169 −0.034304 −0.034650 −0.033041 −0.029750 −0.018180 −0.032793 −0.031032 −0.034561
Ningxia −0.005458 −0.009181 −0.006332 −0.009642 −0.005175 −0.005154 −0.003519 0.001524 −0.004093 −0.003344 −0.006417
Xinjiang −0.008918 −0.010938 −0.008448 −0.007401 −0.008492 −0.006859 −0.005167 −0.002456 −0.005916 −0.005223 −0.007028

4. Discussion

Climate change is closely associated with a variety of disease, and humans ask for
professional assistance from local clinics, hospitals, or medical institutions to alleviate the
negative effects that climate change has on their health. The pathways through which
climate change affect health have been widely investigated [5]. The WHO has reported
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that the global temperature and precipitation have increased over past 30 years, and more
than 150,000 lives have been lost because of the anthropogenic changes that are caused by
climate change year after year. Moreover, the effects of climate change-induced trauma
has also been investigated [15]. As a whole, it has been shown that climate change can be
taken as one important explanation for the main RHC problems.

There is no doubt that humans need suitable living conditions that consist of clean
air, safe drinking water, healthy and sufficient food, secure shelter, among other qualities,
and climate change poses a threat to many of these things. Meanwhile, sustainability
development has forced humans to continue to improve REE [36], the main task of which
is to minimize greenhouse gases as well as to reduce the amount of polluted air and water
and solid waste [28]; in times, this process should also have a positive impact on public
health. In the above context, it is an interesting issue to investigate how climate change is
able to impact resident health conditions as the REE improves in China.

From another perspective, REE represents the results of short-term economic behavior
and environmental changes, and climate change shows the long-term implicit variation
trends for basic climate factors. Therefore, REE and climate change together are important
leading and inseparable indicators, and it is necessary to discuss the specific impact of these
two variables on RHC. This study provided empirical quantitative evidence for decision
makers. The findings that were discussed here can serve as a basis for assessing the
relationship between high-quality of economic development, environmental sustainability,
and public health.

(1) The quantitative conclusions of the effects of climate change and health are of great
help to human beings in mitigating the various negative effects of ongoing climate change
and in improving public health. Additionally, they can enlighten scholars or decision
makers to pay attention to the implicit changes and mechanisms of temperature, humidity,
precipitation, and sunshine on public health from the wider perspective of biomedicine
and life science. It is necessary to understand the relationship between climate change,
public health, and sustainable activities, and it is very important for the government to
understand the current status of the medical system and to improve the allocation of
medical resources, especially when considering climate change and the improving REE in
China.

(2) Obtaining effective data on public health and its existing problems in advance can
result in manpower, space, equipment, and time being more flexible and can improve the
existing foundation, especially when there is a medical emergency, as this effect is more
significant.

Forecasting the RHC by means of SE-SMM has created the possibility of improving
the quality of medical services and the effects of these improvements on the health of
residents. For instance, when a large-scale influenza pandemic (such as the 2020 COVID-
19 pandemic) spreads, the number of outpatients in hospitals surges, with masks and
disinfectants becoming important resources for the protection of the health of residents,
and the coordination between provinces and cities and the shortage of epidemic areas
have become the primary problems that remain to be solved. Without prior judgment and
preparation, such diseases will therefore likely affect the lives of residents as governments
attempt to control epidemic spread before an effective vaccine is successfully developed.
In addition, in the daily operation of medical institutions and the daily maintenance of
resident health, the prediction of short-term demand changes and long-term demand
trends for different sub-department’s helps doctors’ work arrangements, the safety of the
technical equipment supply chains, and the reasonable allocation of medical resources.

(3) From another perspective, the elastic analysis findings as well as the regional
characteristics and existing factor endowments (represent by GDPPC, UL, PD, MP, LAD,
and NHCI) help to understand public health problems in more depth. Variables such as
basic medical level directly inform us of the medical gap between regions and the complex
needs that are caused by climate change. Tables 5–7 gave the specific magnitude and
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direction of other aspects caused by changes in the control variables, allowing decision
makers in different regions to specify differentiated response measures.

5. Conclusions

Research on the relationship between climate, health, and economic activity is one
of the most popular areas of interdisciplinary research, but research rarely focus on their
quantitative relationship from a spatial provincial level. Therefore, according to the reality
and previous literature on the relationship between public health, climate change, and
the economic activities that promote sustainability, this article aimed to obtain the macro-
effects of climate change on resident health, including eco-efficiency (representing economic
activities that emphasize environmental sustainability) and regional differences. At the
same time, selecting machine learning methods to construct SE-SVM helped to obtain
more accurate empirical results. During the empirical process, the SE-SVM was applied to
Chinese provincial panel data, taking the Visits to Hospitals, Outpatients with Emergency
Treatment, and Number of Inpatients as proxy variables for resident health conditions, and
temperature, humidity, precipitation, and sunshine were used as climate change variables,
simultaneously incorporating the calculated eco-efficiency with six controlling indicators.

The main empirical findings can be summarized as the following three aspects:
First, climate change could serve as a forecaster for resident health conditions, it was

shown that (1) each climate change indicator–temperature, humidity, precipitation, and
sunshine—was a good predictor for resident health, especially when taking improved REE
and other control variables into account; (2) the four climate change indictors together
served to be a good predictor; (3) the variation of the NOH prediction error was much
bigger than the prediction errors for the VTH and OWT in all of the forecasting models,
regardless of whether temperature, humidity, precipitation, sunshine or the four indicators
together were being used; (4) incorporating REE and various control variables reflecting
regional heterogeneity improved the interpretability of the model and ensured learning
within the sample and the prediction accuracy; (5) SE-SVM was helpful to describe the
functional relationship through kernel functions, especially when regional heterogeneity
was added for a single province and city, the results of which were better than those that
were obtained the China as an entire nation.

Second, climate change affected the resident health conditions, indicating that (1)
at a nation level, it could be concluded that temperature, humidity, precipitation, and
sunshine had a positive relationship with VTH or OWT but a negative one with the NOH.
(2) When the REE increased by 1%, then climate change reduced by that same percentage,
causing the needs of VTH OWT to increase by 0.002242 and 0.002688 but decreasing the
needs of NOH; (3) the impact of climate change on RHC varied greatly, and the effects of
eco-efficiency and the control variables were also inconsistent.

Third, regional heterogeneity was present for both individual provinces and individual
cities, but the increasing regional eco-efficiency did not always demonstrate positive effects
in different regions, and a variety of local activities and regional natural resource factors
were potentially important explanatory factors for this.

Quantitative impact analysis is helpful for optimizing policy formulation and imple-
mentation measures for economic, environmental, and public health cross domains. For
example, such analyses can act as a reference for detecting the impact of climate change on
health, optimizing medical resources in advance to meet the needs of different regions and
rationally evaluating the effects that an improved eco-efficiency has on humans, etc.

In future research, improvements in the following areas will be conducive to the
deepening of the research in this article. First, it will be important to analyze the effects of
climate change on different types of health problems. Second, considering the influence of
variables such as the psychological conditions of residents as well as their living habits is
another direction for future research. Third, attention should be paid as to how to obtain
more bigger and micro real-time data and appropriate methods to portray climate change
and public health.
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