
Send Orders for Reprints to reprints@benthamscience.ae  

 Current Computer-Aided Drug Design, 2015, 11, 21-31 21 

 

Antiprotozoal Nitazoxanide Derivatives: Synthesis, Bioassays and QSAR 
Study Combined with Docking for Mechanistic Insight 

Thomas Scior*,1, Jorge Lozano-Aponte1, Subhash Ajmani2, Eduardo Hernández-Montero3,  
Fabiola Chávez-Silva4, Emanuel Hernández-Núñez4, Rosa Moo-Puc5, Andres Fraguela-Collar3  

and Gabriel Navarrete-Vázquez4 

1Laboratorio de Simulaciones Moleculares Computacionales, Facultad de Ciencias Químicas, BUAP, 
Puebla, Puebla 72000, México 
2Department of Computational Chemistry, Jubilant Biosys Limited, #96, Industrial Suburb, 2nd Stage, 
Yeshwanthpur, Bangalore - 560 022, India 

3Posgrado en Matemáticas, Facultad de Ciencias Físico Matemáticas, BUAP, Puebla, Puebla 72000, 
México 
4Laboratorio de Química Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de 
Morelos, Cuernavaca, Morelos 62209, México 
5Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad del Centro Médico Nacional Ignacio 
García Téllez, IMSS Mérida, Yucatán 97000, México 

Abstract: In view of the serious health problems concerning infectious diseases in heavily populated areas, we followed 
the strategy of lead compound diversification to evaluate the near-by chemical space for new organic compounds. To this 
end, twenty derivatives of nitazoxanide (NTZ) were synthesized and tested for activity against Entamoeba histolytica 
parasites. To ensure drug-likeliness and activity relatedness of the new compounds, the synthetic work was assisted by a 
quantitative structure-activity relationships study (QSAR). Many of the inherent downsides – well-known to QSAR 
practitioners – we circumvented thanks to workarounds which we proposed in prior QSAR publication. To gain further 
mechanistic insight on a molecular level, ligand-enzyme docking simulations were carried out since NTZ is known to 
inhibit the protozoal pyruvate ferredoxin oxidoreductase (PFOR) enzyme as its biomolecular target. 
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I. INTRODUCTION 

 In the 1930s, chemists were beginning to explore the 
effects of structural modifications on the kinetic processes of 
chemical reactions, resulting in the birth of physical organic 
chemistry [1]. Decades before, other scientists observed 
structure-activity relationships, e.g. ethers or alcohols (Cros, 
“Action de l'alcohol amylique sur l'organisme”, University 
of Strasbourg, France, 1863) showed a correlation between 
lipo-solubility and toxicity. Around 1900, Meyer and 
Overton, independently, established the linear dependency 
between the narcotic action and water / oil partitioning 
(Meyer, 1899; Overton, 1901 in [2]). One of the seminal 
works at an early stage of Quantitative Structure-Activity 
Relationships (QSAR) was the study on electronic effects of 
benzoic acids substituents and the descriptors were named 
after its inventor Hammet σ constants (Hammet, 1937; 
Hammet, 1940 in [2]). After the 1960s, QSAR modeling was 
carried out using multiple linear regression (MLR) on  
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numeric independent variables describing structural features 
(descriptors) by Hansch and Fujita (Hansch, Fujita, 1964 in 
[2]) under the assumption that an “inherent association 
between chemical structure and biological activity” exists 
[3]. Not more than twenty physicochemical descriptors are 
commonly used in QSAR studies descriptors [4], like 
octanol/water partition coefficient (log P), the Hammet σ 
constant, and the fragmental lipophilicity parameter π. 
Others were derived from quantum chemical calculations, 
namely: dipole moment, partial charges, HOMO/LUMO 
energies (Kubinyi, 1993 in [2]) or were based on molecular 
graph theory and topology concepts by Wiener (Wiener, 
1947 in [2]). Kier and Hall (Kier, Hall, Murray, 1975 in [2]) 
and Randic (Randic, 1975; Kier, Hall, 1976; Kier, Hall, 
1986 in [2]). 
 QSAR studies were applied on many occasions and 
recently reviewed [5-7]. QSAR studies also predicted 
antiprotozoal potency of pentamidines. The authors 
generated their own descriptors and used them in the final 
multiple linear regression equations. The comparison to our 
descriptors is delayed, awaiting the free Desmol software [8]. 
Drug screens from natural and synthetic sources have 
focused on antiprotozoal activities as part of the Drugs for 
Neglected Diseases Initiative [9-13]. A kind of knowledge-
based approach is the combination of activity data base and 
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QSAR prediction, called multi-species complex networks for 
antiparasite drugs [14]. As early as the 1980s nitro-aromatic 
antiparasitic drugs were already well-known, e.g. 
metronidazole [15]. Structurally related compounds to our 
nitrothiazole scaffold are also reported, e.g. benznidazole, 
nifurtimox and megazol 5-nitroimidazole derivative highly 
active in vitro and in vivo against parasites like Trypanosoma 
cruzi, or thiadiazines [16, 17]. 
 With growing population worldwide, infectious diseases are 
considered a serious health problem. In particular, amoebiasis is 
a protozoal infection caused by a living organism called 
Entamoeba histolytica. Upon contaminated food uptake or other 
oral expositions, the clinical symptoms of patients include 
severe dysenteries, mucosal ulcers and even peritonitis, amoebic 
granulomas and/or fulminant colitis [18-20]. 
 In 1974, Rossignol and Cavier conducted synthesis of 
nitazoxanide (NTZ) which was patented two years later [21]. 
Nowadays the drug is employed for a plethora of treatments, 
such as: anaerobic bacteria (Helicobacter pylori, Clostridium 
difficile); protozoa (Entamoeba histolytica, Balantidium 
coli, Giardia intestinalis, Trichomonas vaginalis); 
helminthes (E. vermicularis, A. lumbricoides, Strongyloides 
stercoralis, T. trichuria, Taenia spp, H.nana, Fasciola 
hepática) in addition to certain viruses (rotavirus, hepatitis B 
and C and influenza) [22-26]. 
 The common sense indicates that the biological activity 
of NTZ relies on the presence of the 5-nitrothiazole ring as 
the core substructure, i.e. the essential scaffold 
(pharmacophore) which is kept constant during chemical 
derivatization efforts (Figs. 1, 2) [27]. Deacetylation of NTZ 
produces tizoxanide (TIZ). It is a known active metabolite 
and included in the study (Tables 1a and 1b) [27-30]. 

 
Fig. (1). The structure of nitazoxanide and its pharmacologically active 
substructure or scaffold (doted area). The shaded boxes indicate the 
chemical variations introduced into the lead compound nitazoxanide 
chemically named as 2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl 
acetate (IUPAC: 2-acetyloxy-N-(5-nitro-2-thiazolyl)benzamide). 

 In 2011, Navarrete-Vazquez et al. synthesized and 
characterized two benzologues of nitazoxanide and 
tizoxanide [27], with proven antiprotozoal activity. After 
that, new compounds were designed and synthesized (Fig. 
3), and clustered into two series containing 11 thiazole 
analogues and 9 benzothiazoles as benzologues. They all (n 

= 20) were tested for their antiprotozoal activities (IC50) 
against Entamoeba histolytica [personal communication, 
2011]. The molecular structures are displayed in Figs. 1, 2), 
Tables 1a and 1b. Moreover, Hoffman suggested NTZ acts 
as an inhibitor of the pyruvate ferredoxin oxidoreductase 
(PFOR) enzyme as a possible mechanism of action [31, 32, 
personal communication 2012]. 

 
Fig. (2). The structures of lead compound (nitazoxanide), active 
metabolite (tizoxanide), physiological coenzyme bound to active 
site of PFOR (thiamine pyrophosphate, TPP) and the new, active 
derivatives of the present study (benzo / thiazoles). 

 Pharmacological reports relate the antiprotozoal activity 
of NTZ to an anaerobic microorganism-specific enzyme as 
its drug target, namely PFOR [31, 32, 35-37]. The 
physiological role of PFOR is known as an oxidative 
decarboxylation of pyruvate to form acetyl-CoA and carbon 
dioxide, paralleled by the reduction of ferredoxin or 
flavodoxin in the presence of the coenzyme Thiamine 
Pyrophosphate (TPP, Vitamin B1) [32, 37-39]. One possible 
explanation for the essential step in the anaerobic energy 
metabolism was proposed in that the antiprotozoal drug 
(candidates) inhibits the electron transfer reaction in a 
PFOR-dependent fashion [24, 30, 32]. Another possible 
pathway was suggested to explain the antiprotozoal activity 
[40]. P. S. Hoffman et al. proposed that NTZ directly 
interacts with TPP, what is a unique case of drug targeting a 
coenzyme. They observed NTZ was not replacing TPP from 
the active site at all in their Helicobacter pylori and 
Campylobacter jejuni assays [32]. 
 On occasion of practicing a full-size antiprotozoal drug 
development cycle including in silico design, syntheses and 
in vitro bioassays, we also inspected the quantitative 
structure-activity relationships (QSAR) models and analyzed 
their equations in order to identify the pitfalls encountered  
 

 
Fig. (3). Synthesis of the thiazole (T) and benzothiazole (B) series. 
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Table 1a. Listing of molecular structures of NTZ and its 
eleven thiazole derivatives (T series). The inhibition 
concentration pIC50 (against E. histolytica) is given 
and used as input data for QSAR. Note: tizoxanide 
(TIZ) is the hydrolysis product of NTZ: deacetyl-
nitazoxanide. Note: recently, T17 without E. 
histolytica activity data was used in a published 
study (cf. Table 1 on page 1627 in [33]). And also 
recently T18 appeared without E. histolytica activity 
data (cf. Fig. 1 on page 3159 in another article by 
GNV [34]). Molecules of test set are denoted by 
asterisk (*). 

 

THIAZOLES (T - Series) - Analogues Scaffold 

 

id Radical  pIC50 (-log IC50) 

T03 8.30 

T04* 
 

7.92 

T05 

 

8.15 

T06 

 

7.46 

T07 
 

7.92 

T08 
 

7.82 

T09 
 

7.92 

T17 
 

6.07 

T18* 
 

6.18 

T19 

 

5.83 

T22 
 

6.34 

NTZ 

 

6.30 

TIZ 
 

5.91 

Table 1b. Listing of molecular structures of NTZ and its nine 
benzothiazole derivatives (B series). The inhibition 
concentration pIC50 (against E. histolytica) are given 
and used as input data for QSAR. Note: B01 and 
B02 combined with E. histolytica activity data were 
already documented by the group leader GNV (cf. 
Table 1 on page 3169 in [27]. Molecules of test set 
are denoted by asterisk (*). 

 

BENZOTHIAZOLES (B - Series) - Benzologues Scaffold 

 

id Radical pIC50 (-log IC50) 

B01 

 

5.45 

B02 

 

5.10 

B10* 
 

5.19 

B11 

 

4.98 

B12 
 

5.38 

B25 
 

5.04 

B26 
 

4.81 

B27 

 

5.07 

B30* 
 

4.72 

 
therein. In an additional step we tried to circumvent them if 
possible according to our 2009 report on a collection of 
frequent problems and difficulties met in QSAR studies [3]. 
Intriguingly, A. Hopfinger et al. successfully applied 
predictive 3D- and 4D-QSAR techniques to two series of 
pyridinyl- and pyrimidinyl-imidazoles [41, 42], so we 
decided to apply higher dimensional QSAR protocols for our 
NTZ derivatives, too. 

For more details concerning modeling, bioassays and 
mathematical model, including leave one out cross-
validation procedures, see the Supplementary Material. 
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2. MATERIALS AND METHODS 

2.1. Organic Synthesis and Characterization of New 
Compounds 

 Triethylamine (1.2 equiv.) was added to a solution of 2-
amino-5-nitrothiazole or 2-amino-6-nitrobenzo[d]thiazole 
(0.0015 mol) in dicloromethane. Fifteen minutes of stirring 
was necessary at 5°C. To this mixture a solution of 
acylchloride (adequately substituted) in dichloromethane was 
added. Under continuous stirring at room temperature during 
several hours the reaction process was monitored by thin 
layer chromatography between 4 to 24 hours until the 
transformation was complete. After distillation of 
dichloromethane was achieved, the resulting residues were 
neutralized with a saturated NaHCO3 solution. Prior to 
washing with brine (3×20 mL) the aqueous layer was 
extracted with ethyl acetate (3×15 mL). Ethyl acetate was 
removed in vacuum. Then the precipitated solids were either 
recrystallized from a mixture of solvents or purified by 
column chromatography. 

2.2. QSAR Modeling and Molecular Docking 

 Upon three-dimensional (3D) model generations [43-46], 
their molecular geometries adopted a conformation taken 
from the crystal structure of NTZ [47, 48]. Prior to retrieving 
the crystal structure of NTZ, we correctly predicted (15°) the 
out of coplanarity tilt (18°) between the 5- and 6-membered 
rings of NTZ. 
 Prior to docking of NTZ into the protozoal enzyme 
PFOR, the missing structure of the target enzyme PFOR 
from Entamoeba histolytica (RCSB Protein Data Bank) [49] 
was built from a similar PFOR crystal structure of 
Desulfovibrio africanus as three-dimensional template (PDB 
code: 2C42 [50]) [51, 52]. Automated flexible ligand 
docking was applied to the PFOR model of E. histolytica as 
rigid target receptor under Auto-Dock 4.2 & AutoDockTools 
[53, 54]. Adjacent to the binding cleft we kept the prosthetic 
group ferrodoxin and a magnesium cation to give the site its 
natural form. 
 Parts of our multicenter molecular modeling 
contributions were carried out on a Linux workstation using 
Schrodinger/CANVAS software [55]. To obtain QSAR 
equations by stepwise forward MLR method, an in-house 
program was developed using C language on a Windows 
platform. 
 Various 2D topological, structural, constitutional and 
physicochemical descriptors were calculated using 
CANVAS yielding a set of 757 descriptors [55]. In addition, 
a binary variable which has values 0 or 1 for indicating 
absence or presence of benzothiazole scaffold respectively 
was included in the study. The data preprocessing of 
independent variables was performed by removing the 
descriptors common to more than 90 % of the compounds 
and with a homogeneity index < 20 (i.e. deviating more than 
80% from the ideal homogenous distribution). The 
homogeneity index quantitatively indicates the degree of 
uniformity of a variable (descriptor) distribution within its 
range [56]. Data preprocessing led to a significant reduction 
of descriptors viz. 217 descriptors for further study. 

Furthermore for building multiple linear regression based 
QSAR models auto-scaled descriptors were utilized. 
 For the statistical procedure we followed the reasoning 
about internal and external validation processes by M.N. 
Noolvi et al. and applied their equations appropriately, 
besides alternative solutions [57, 58]. On the other side, the 
drawbacks and shortcomings concerning cross-validation 
procedures were published in a seminal work by D. Krstajic 
and coworkers [59]. I. Tetko (see below for Ochem online 
QSAR server [60]) recommended that the final step should 
always be the validation of hitherto unseen compounds and 
done only once (private communications, Helmholtz-
Zentrum Munich, Germany, 2013, 2014). We followed this 
tenet wherever the software allowed us to maintain all 22 
molecules together for QSAR modeling input, while Raptor 
was the sole tool which requires an a prior manual division 
into a test and training set [61, 62]. Hence our data set was 
only divided into two groups for Raptor application. To this 
end, the Raptor training set contained 18 compounds to 
generate the 5D-QSAR model complemented by a test set 
with 4 hand-selected compounds for the external (final) 
model validation. The molecules labeled B10, B30, T04 and 
T18 were manually selected because they embrace almost all 
the chemical features of the training set. The underlying 
trade-off meant to reflect a minimum number of molecules in 
the test set, while maximizing the chemical 
representativeness in that test set. The leave one out (LOO, 
Q2) method was carried out for internal/cross-validation of 
the models. For validation of either internal/cross or external 
models, values of either Q2 or pred R2, and other statistical 
parameters (Q2

F1, Q2
F2, Q2

F3, r2
m ) were calculated using 

formulae reported in the literature and references cited 
therein [57, 63-70]. 
 While Q2 values describe the internal stability, the pred 
R2 values reflects the predictive power of a model [57]. 
Moreover, to the influence of chance correlations on the 
model building of the training set was evaluated by Y-
randomization (randomization of the biological activity) test 
and ‘Z score’ as reported in literature [3, 71]. The Y-
randomization test was performed to ascertain that the 
obtained statistical significance of the QSAR model was not 
due to chance correlation or overfitting. 
 With another tool box, we created additional QSAR 
linear equations using widely accepted concepts [44, 72-75]. 
The acidic dissociation constants (pKa) were estimated in the 
first place based on the known functional fragments and later 
determined by two online resources (Marvin, SPARC) [76, 
77]. A higher-dimensional QSAR approach included a 4D-
QSAR [45, 46] as well as 5D-QSAR study [61, 62]. For 
external validation of the QSAR equations, newly, all 
molecules were hand-selected into a training set (n=18) and 
test set (n=4; B10, B10, T04, T18) [3]. The composition of 
the test set was changed, once the descriptors were selected 
for the final equations in order to get rid of any bias and 
compensate the small amount of compounds. The selection 
criterion for MLR equations was established with an R2 ≥ 0.4 
[3]. 
 Note, an additional fully automated 2D-QSAR approach 
(Ochem) is available online at https://ochem.eu/home/ 
show.do) [60]. In addition, the Supplementary Material 
presents another approach based on more physical grounds: 
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the general regularization theory for ill-posed inverse 
problems was employed as an alternative to the MLR 
statistic technique in order to obtain a more general and 
robust linear QSAR equation. To this end, a smooth 
dependence from the activity data on the molecular 
descriptors was the only a priori assumption needed. 

3. RESULTS 

3.1. Synthesis 

 The organic synthesis resulted in yields in the range of 
milligrams and hereafter each compound could be 
crystallized and characterized. The melting points of all 
twenty synthesized compounds were each measured with a 
fully automated device known as EZ-Melt MPA120 and left 
uncorrected. Reaction monitoring was performed by thin 
layer chromatography (0. 2 mm pre-coated silica gel 60 F254 
plates from E. Merck). 1H-NMR spectra were collected on a 
Varian Oxford (400 MHz) and 13C NMR (100 MHz) 
instruments. Chemical shifts were recorded in part per 
million (tetramethylsilane, δ =0) in deuterated 
dimethylsulfoxide; J values are represented in Hertz unities. 
Mass spectrometry analyses were carried out using a JEOL 
JMS-700 spectrometer under fast atom bombardment 
[FAB(+)]. Starting reagents were purchased from Sigma-
Aldrich and the reagents did not undergo any purification 
before their use in the corresponding reaction procedures. 
 For more details concerning the spectrometric 
characterizations see the Supplementary Material. 

3.2. Docked Ligand-PFOR Binding Analysis and 2D 
QSAR Modeling 

 Upon inspection of the docked ligand-enzyme poses, the 
interacting amino acids were identified (Table 2) to answer 
questions about the possible activity enhancements related to 
chemical derivatization. This way we gained mechanistic 
insight and observed whether or not all ligands have one 
common binding mode. The proposed poses were compared 
with closely related crystallographic data to avoid a common 
pitfall, namely multiple binding modes, see Supplementary 
Material, Figs. SD1, SD2) [3]. In theory, the NTZ 
derivatives could replace TPP in a competitive way. 
Actually, none showed higher binding energies than TPP 
itself. On the contrary, their affinities at best are found to be 
1000-fold lower than TPP, so they cannot replace TPP as 
stronger binders to PFOR at all. Our computed finding is in 

excellent keeping with the postulated binding mechanism 
proposed by Hoffman et al. [32]. 
 The 2D-QSAR model for biological response was build 
using stepwise forward multiple regression using all the 
calculated descriptors (as independent variables) and pIC50 
values of biological response (as a dependent variable). 
Stepwise forward multiple regression adds descriptor one by 
one in the regression model until there is no significant 
improvement in training set R2 value. This analysis led to a 
multiple regression QSAR model with reasonable statistical 
parameters using one subset of four descriptors. Table 3 
reports the descriptors, regression coefficients and statistical 
parameters associated with the developed 2D-QSAR model 
(equation SA-1). The observed and predicted pIC50 values 
of training and test sets by using the 2D-QSAR model are 
shown in Fig. (4). 
 The model revealed major role of BTZ_indicator 
descriptor i.e. 43.9% in determining Entamoeba histolytica 
activitiy, and it is inversely proportional to activity data. This 
suggests that compounds with thiazole scaffold are preferred 
over benzothiazole to attain higher potency against E. 
histolytica. 
pIC50 = - 20.72 + 0.96 aasC_Cnt + 0.50 aOm_Cnt +  
6.62 ssNH_Sum - 3.45 BTZ_indicator  (equation SA-1) 

 
Fig. (4). The final plot graphically displays the prediction power 
(the distance from predicted value to observed values). Diamonds 
and rectangles represent compounds in training and test sets, 
respectively. 

Table 2. Matrix of interactions representing Docking results (H-bonds, donors or acceptors). The gray boxes represent the 
interaction with the corresponding amino acid of PFOR model of E. histolytica. The experimental pIC50 and the 
computed ΔGbinding energies are included in the right side (T03 doesn’t show qualitative relationship between both values). 

 

ID Glu60 Glu808 Cys831 Asp957 Gly958 Trp959 Thr985 Ser989 Asn990 pIC50 ΔGbinding 

TPP          --- -12 

T03          8.30 -3 

T22          6.34 -6.5 

NTZ          6.30 -6.9 

TIZ          5.91 -6.4 
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3.3. 3D-QSAR Equations for Activity Prediction 

 In principle, the QSAR equations predict new activities 
for hitherto unseen structures and therein support the 
decisions to take for a new cycle of synthesis, tests and 
improved design, although in this paper we focus more on 
the diagnostic strength of QSAR and possible shortcomings 
[3, 41, 42]. 

pIC50 = -3.85 + 2.17 pKa + 0.41 MD + 0.9 Lipole (equation 
JL-1) 
 Analyzing the 3D-QSAR equations for the tilted 
compounds (equation JL-1, Fig. 5) yields the following 
design message: the higher the descriptor values for a given 
compound – the more active it will become, since all three 
linear descriptors are positive with similar contribution 
weight. The first variable represents molecular acidity (pKa) 
which is formally located on the common exocyclic “>N-H” 
group and originated on the acidifying electron-withdrawing 
decoration of the mesomeric systems. The third one (lipole) 

is calculated in analogy to the dipole moment (DM) when 
molecular lipophilicity is broken down to all atoms of the 
molecule and assigned as fragmental atomic values to feed 
the dipole formula and thereby becoming what is called the 
lipole measure. The statistical analyses yield the following 
linear determination coefficients of R2

Train=0.85, R2
Test=0.96 

with p<0.0001 (equation JL-1, Fig. 5). In each case there is 
no risk of overfitting thanks to the 6:1 ratio between numbers 
of molecules versus descriptors [3]. The test set was hand-
selected in the first place, but then during 5D-QSAR its 
composition was unattended, and the R2 did neither drop nor 
rise significantly (R2 ranged between 0.8 and 0.9, Fig. 6). 
 In addition we present numerical results for the entire 
compound set, adding the four preselected compounds (B10, 
B30, T04, T18) of the test set. As can be noted for equation 
JL-1, the overall performance of our final QSAR model does 
by no means change, yet the values remain constant applying 
the LOO to the entire set of 22 compounds (see S). 

Table 3. Statistical parameters and descriptor definitions of the regression model (equation SA-1). Cross-validation standard 
error: cvSE; external-validation standard error: predSE; cross-validated Zscore: Zscore_cv; cross-validated alpha: 
alpha_cv. 

 

Statistical Parameter Value Statistical Parameter Value Statistical Parameter Value 

Train/Test (n) 18/4 Q2
F1 0.72 cvSE  0.97 

Descriptors (k) 4 Q2
F2 0.70 predSE 0.68 

R2 0.80 Q2
F3 0.69 Zscore 3.99 

Q2 (LOO*) 0.55 r2
m 0.39 Zscore_cv 2.42 

pred R2 0.72   alpha 0.00 

SEE 0.65 r2
m (LOO*) 0.48 alpha_cv 0.01 

Descriptor Definition  

aasC_Cnt Count of atom-type E-State: :C:- 

aOm_Cnt Count of atom-type E-State: :O- 

ssNH_Sum Sum of atom-type E-State: -NH- 

BTZ indicator A binary variable either 0 or 1 to indicate the absence or presence of a benzothiazole scaffold in a given 
molecule 

Note: (LOO*) is a particular parameter only applied to the initial training set (18 compounds). 

 
Fig. (5). 3D-QSAR equation generated by MLR for E. histolytica (equation JL-1). The three descriptors are: pKa: Acidic dissociation 
constant; MD: Dipole Moment; Lipole: 3D-lipophilic distribution. 
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3.4. Higher Dimensional QSAR 

 Concerning the higher dimensional QSAR (5D-QSAR), 
the model quality (3 equations JL-2, Fig. (6), Bottom) is not 
significantly improved over the canonical QSAR linear 
equations (equation SA-1; R2

Train=0.80, n=18, R2
Test=0.72, 

n=4) or the 3D-QSAR equation (equation JL-1; 
R2

Train=0.85, n=18, R2
Test=0.91, n=4). 

3.5. Inspecting the QSAR Models for Possible Pitfalls 

 We performed all QSAR studies on a training set (n=18) 
leaving four hand-selected molecules for the test set (B10, 
B30, T04, T18, Table 1). 
 After inspection of two online resources (Marvin, 
SPARC [76, 77].) mayor inconsistencies were detected for 
the extended mesomeric systems concerning nitro groups 
[76] (pitfall: non constant “constants” [3]). 
 According to Table 1, seven out of twenty compounds 
possess higher activity than NTZ or TIZ in the in vitro 
susceptibility assays (T03, T04, T05, T06, T07, T08, and 
T09). The activity spreads over three orders of magnitude 
(pIC50 values) which complies with the rule of thumb 
concerning the data range pitfall [3]. However, the data set 
falls short of expectation concerning the covered chemical 
space, which is a serious setback when only a restricted 
variation of synthetic paths limit the functional enrichment 
of the produced compounds (cf. pitfall: data size and variety 
[3]). Despite obvious structural differences (cf. scaffold 
types of either thiazoles or benzothiazoles) we fused both 
clusters following the more pivotal constraint of dealing with 
a small data size and the limited chemical space therein 
(here: nTotal=22) [3]. 
 In general, QSAR studies must be very carefully 
performed, i.e. under a balanced protocol (bias of training 
set, size and chemical diversity and activity range, 
representative internal and external test set, outlier handling) 
to ensure a meaningful interpretation of the chosen 
descriptors and require understanding of the mathematical 
operations that takes time and experience [78-84]. While 

practicing 2D- or 3D-QSAR modeling certain problems 
arose and were collected (Table 4). 

4. DISCUSSION 

 The application of computer aided drug design tools 
demonstrates the (more) rational approach to drug candidate 
development using medicinal chemistry concepts to support 
drug research. To guide new efforts in the near future into 
promising new chemical space, we predicted the theoretical 
activity of a new promising compound, see Supplementary 
Material (Fig. SD4). 
 Mechanistic insight comes from the docking studies 
indicating that NTZ and its derivatives do not replace 
cofactor TPP as a PFOR ligand at the binding site as 
proposed by Hoffman et al. [32]. 
 As an asset, the present work sheds also light on the 
implications and limitations which the medicinal chemists 
and QSAR practitioners should be aware of as a sine qua non 
condition. If the physicochemical data space is huge, the 
linearity may be at stake (outliers, activity cliffs) whereas, if 
it becomes smaller and smaller or even ill-explored – like in 
the present case with only ether, nitro and halogen 
substituents – then QSAR prediction falls short of 
expectation without remedy. Apparently, very few data 
points are addressed and new structure predictions tend to 
become either intrapolations with no fresh ideas or 
extrapolations into uncovered chemical space. 
 Another challenge becomes the sheer number of 
descriptors available for QSAR model generation which 
makes it more probable that solutions are found “by chance”, 
which is obviously more the case in automated, unattended 
QSAR approaches with hundreds to thousands of descriptors 
[85]. In contrast, the meaningful descriptors can be hand-
selected from the very beginning to build stepwise forward 
QSAR models, i.e. reiteratively increase the number of 
descriptors bit by bit (stepwise forward procedure). QSAR 
studies carried out without considering the active 
conformation compounds (tautomers, ionic forms, prodrugs) 
are omitting critical information reducing the quality of the 

 
Fig. (6). Display of the active site projections (surrogate) generated by 5D-QSAR approach which represents the consensus of the three 5D-
QSAR equations (equation JL-2; Bottom; IF: Internal Factor of Topology; TdS: Entropy; HO: Hydrophobicity; HB: H-Bonds formation.), 
dispersion plot of which is shown to the right. Color code in surrogate active site: blue: H-bond donor; red: H-bond acceptor; brown: strongly 
hydrophobic; yellow: weakly hydrophobic. 
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input data needed for equations which in turn lose predictive 
power, ending up in an incorrect molecular design [3, 81, 82]. 
 As an internal validation we used the final QSAR 
equations to predict the pIC50 values of the designed 
compound applying our linear equations, see Supplementary 
Material (Figs. SD4). Equation SA-1 yields 8.3 while 
equation JL-1 yields 8.4 which are practically the same. 

CONCLUSION 

 The synthetic afford yielded seven new derivatives with a 
ten-fold or even stronger antiprotozoal activity than 
nitazoxanide. Concerning the relationships between 
structures and activities only mechanistically interpretable 
and fast to calculate descriptors were used in the final linear 
equations to predict even better candidates. Finally, we 

Table 4. Listing of detected QSAR shortcomings and pitfalls which were reported in the literature [3]. 
 

Pitfalls Comments 

Small simple and 
limited chemical 
variability 

It does not exist an ideal sample number size for QSAR, but is clear with larger sample size, the results become more 
representative. Here, the compound number is small (n=22), and the chemical variety is so limited. Basically it consist in ester (-O-
CO-), ether (-O-), nitro (-NO2) and chloride, all of which occupy different positions of the phenyl ring of the molecules. 

Composition of 
training and test 
sets 

With a small sized series, the distribution of chemical items may not be representative in terms of the activity and chemical 
variability.  

Meaningless 
descriptor 
selections 

A common QSAR descriptor is pKa with high correlation to biological activity, which is not the case of dipole moment (DM, 
dipole). DM takes on different values with changing conformations. When DM is calculated for artificially held planar molecules, it 
is loaded onto the Z-axis only, while even small torsional changes are reflected by huge changes in DM values. 

not constant 
coefficients and 
constants 

The calculated pKa values are not equal to literature reports. It takes different values in different programs; moreover, each software 
consider different ionized forms, making difficult its selection/consideration for QSAR equations. 
Depending on the software, DM takes on different values due to normalization of input data. 
Certain descriptors like molar refractivity (MR) are very similar in magnitude in most programs. In contrast, polar surface area 
(PSA) should change according to the conformation of the molecule which implies that PSA is a 3D descriptors [44]. Other 
programs, however, calculate a “flat” PSA based on 2D data (atom connectivities and radii).  

Starting geometries 
for 3D-QSAR 

Albeit, the active conformation is not necessarily identical to the observed crystal structure, and since no NTZ-PFOR complex has 
been solved, two pieces of information were taken into account to assess the active conformation of the NTZ scaffold: (1) its 
crystallographic record deposited in CCDC [47] and (2) the final pose of NTZ docked into the ligand binding site of the cofactor 
TPP-PFOR complex. As a direct result, both geometries are practically the same, see Supplementary Material (Fig. SD2-C). 

Errors of descriptor 
calculations 
(acidity, 
dissociation)  

The experimental acidity value of NTZ is reported as pKa≈6 [32] for the conjugated acid / neutral thiazole system ([B-H+] / [B]) 
which corresponds to approx. 90% neutral species under physiological conditions. The calculated value, pKa≈8 [76], however, 
inverts the cationic/nonionic portions (10% neutral species). With no experimental value at hand, the (wrong) cationic forms would 
have been taken as input for the QSAR and docking studies.  

Lipole-dipole 
collinearity 

The algorithm of Lipole calculation is derived from the dipole moment equation (DM = q*r, q = atomic partial charge, r = VDW 
atomic radius) and atomic lipophilic values replace atomic partial charges. Despite different scale and units (charges and lipophilic 
fragments, same VDW radii), the equal calculation protocol generates collinearity. 

Linearity 
hypothesis 

The a priori assumption of linearity might be the main drawback in QSAR studies. Since data sampling is not complete, because no 
scientist would seek to explore the weaker, less active or more toxic data segments, it is often not clear if linearity is a first principle 
of nature or just appears due to insufficient data spread. Outliers and activity cliffs are first signs of nonlinear relationships between 
independent variables and response (biological activity, dependent variable). 

Ligand based 
alignment (LBA) 

The X-ray (crystal) conformation of NTZ may not constitute the biological active conformation. The hitherto unsolved structure of 
the NTZ-PFOR complex constitutes a disadvantage in case of higher dimensional QSAR where reliable conformational data is 
required. Results based on 2D descriptors (connectivities, drawings, SMILES, etc.) do not need special information while ligands 
can be superposed on their more rigid substructure or common scaffold (LBA). 

Multiple solutions 

We generated different equations based on different conformations and methodologies. It is not clear whether modeling based on 
NTZ X-ray conformation reflects realistic molecule geometries for binding site interaction, because the NTZ liganded binding site 
complex has not been elucidated. According to the pKa value of NTZ (here: 6.2, located on exothiazolic N amide), it can be inferred 
that all molecules treated here, present their activity at anionic form. Then, a new QSAR equation generation step based on 
descriptors calculated considering anionic compounds (without H at exothiazolic N amide, same training set), give us smaller R2 
values that those obtained with X-ray data. The ideal case is considering the anionic form directly related with biological activity, 
because a small structural change can be reflected in huge descriptor magnitudes differences. This last QSAR equation generated 
with ionic compounds (pIC50= -2.36+2.28 pKa+0.17DM + 0.62 Lipole; R2

Train=0.74, Q2=0.65, r2
m=0.37, n=18; R2

Test=0.75, 
Q2

F1=0.75, Q2
F2=0.75, Q2

F3=0.75, r2
m=0.68, n=4) could be seen as a poor predictive equation, but it becomes a better reflection of 

the biological behavior of our molecules. 

Prodrugs and 
active metabolites  

Some publications describe NTZ as a prodrug, albeit the biological activity of NTZ itself has been reported, too. Nevertheless, upon 
hydrolysis of the acetyl group, the metabolite TIZ shows comparable antiprotozoal potency.  

Incompatible 
concepts and 
contradictions 
(chance 
correlation) 

Sometimes, linear equations in 2D QSAR include conformation-dependent descriptors in a way where spatial information about 
structural requirements for the ligands and the binding site remains unknown. Hence, conformation-dependent descriptors 
contribute to establish the “rules” governing the relations between structures and activities, without any reason to be present in the 
equation except for chance correlations: “… because the relevant features only appear in molecules that also contain the wrong 
features” [3]. 
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devised a hitherto unseen molecule with a 100-fold higher 
potency than NTZ, see Supplementary Material. The external 
validation was achieved upon manual and Random 
separation of molecules into a training and test set to 
guarantee representativeness despite the small input data 
size. This downside and other pitfalls were presented and 
solutions thereof proposed if possible. In addition, 
mechanistic insight came from the docking studies indicating 
that NTZ and its derivatives do not replace cofactor thiamine 
pyrophosphate as a pyruvate ferredoxin oxidoreductase 
binder at the active site as proposed in the scientific 
literature. 

LIST OF ABBREVIATIONS 

CCDC =  The Cambridge Crystallographic Data Centre 
DM = Dipole Moment. 
IC50 = 50% Inhibitory Concentration. 
MLR = Multiple Linear Regression. 
NTZ = Nitazoxanide. 
pIC50 = - log10 (IC50). 
PFOR = Pyruvate Ferredoxin Oxidoreductase. 
QSAR = Quantitative Structure-Activity Relationships. 
R2 = Linear coefficient of determination. 
RMSD = Root mean square distance. 
TIZ = Tizoxanide. 
TPP = Thiamine Pyrophosphate, Vitamin B1 
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