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Abstract: This study was conducted to examine whether there are quantitative or qualitative dif-
ferences in the connectome between psychiatric patients and healthy controls and to delineate the
connectome features of major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disor-
der (BD), as well as the severity of these disorders. Toward this end, we performed an effective
connectivity analysis of resting state functional MRI data in these three patient groups and healthy
controls. We used spectral Dynamic Causal Modeling (spDCM), and the derived connectome features
were further subjected to machine learning. The results outlined a model of five connections, which
discriminated patients from controls, comprising major nodes of the limbic system (amygdala (AMY),
hippocampus (HPC) and anterior cingulate cortex (ACC)), the salience network (anterior insula (AI),
and the frontoparietal and dorsal attention network (middle frontal gyrus (MFG), corresponding
to the dorsolateral prefrontal cortex, and frontal eye field (FEF)). Notably, the alterations in the
self-inhibitory connection of the anterior insula emerged as a feature of both mood disorders and SCZ.
Moreover, four out of the five connectome features that discriminate mental illness from controls
are features of mood disorders (both MDD and BD), namely the MFG→FEF, HPC→FEF, AI→AMY,
and MFG→AMY connections, whereas one connection is a feature of SCZ, namely the AMY→SPL
connectivity. A large part of the variance in the severity of depression (31.6%) and SCZ (40.6%)
was explained by connectivity features. In conclusion, dysfunctions in the self-regulation of the
salience network may underpin major mental disorders, while other key connectome features shape
differences between mood disorders and SCZ, and can be used as potential imaging biomarkers.

Keywords: psychiatry; effective connectivity; depression; salience network; schizophrenia; mood
disorders

1. Introduction

Mental illness can be defined as a complex construct integrating the continuity between
a multifaceted phenomenological presentation and an incomplete theoretical knowledge
on their morphological substrate and multifactorial etiopathophysiology [1]. There have
been various conceptual attempts for systematization of psychiatric disorders, with two
major approaches: a categorical one, which differentiates distinct nosological entities, such
as schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD); and
a dimensional approach, which defines mental illness as a continuum from adaptive to
discordant behavioral patterns. Both formulations, however, are heretofore insufficiently
validated by objective scientific findings. This deficiency can be explained both by the het-
erogeneity of research observations, and the diversity of the symptomatologic presentation,
as well as the common comorbidity seen in psychiatric clinical practice [1].
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Schizophrenia and bipolar disorder share many similarities and common features
which support the continuum hypothesis. Both SCZ and BD demonstrate a high degree of
genetic transmissibility supported by data from family and twin studies suggesting heredi-
tary overlap, along with gene susceptibility markers located on the same chromosomes,
and some similarities in neurotransmitter dysfunction [2]. Noto et al. (2019) reported that
first-episode psychosis, which later evolves into schizophrenia and bipolar disorder, is char-
acterized by a cytokine storm which is somewhat more pronounced in subjects who will
later develop schizophrenia. The expanded continuum hypothesis was recently supported
by the study of Sorella et al. [3]. They found clear evidence in SCZ and BD of a shared
altered network of brain areas (including ventro-temporal and medial parieto-occipital
areas, as well as portions of the cerebellum and the middle frontal gyrus), which could
represent the neural underpinnings of an altered interpretation of reality connected with
psychosis. This neural evidence, obtained by using magnetic resonance imaging (MRI),
is supported by convergent neuropsychological evidence, obtained using cognitive tests,
and is proposed to form a common “psychotic core” shared by SCZ and BD. Similarly, the
authors report neural and psychological evidence for a “cognitive” core, and less so for an
“affective” core.

On the other hand, the scientific framework of mood disorders is shaped over two
major theoretical concepts: the first separates MDD and BD into distinct categorical enti-
ties [4], and the other defines these classes as a dimensional continuum [5]. In addition,
both disorders have complex and multifactorial etiopathophysiology (e.g., neurobiological,
immunological, genetic, etc.) [6]. Contemporary psychiatric classifications group mood
disorders into bipolar disorder with two distinct subtypes (BD type I and BD type II),
and major depressive disorder. A recent study by Guo et al. demonstrated that, in terms
of clinical symptoms, six major domains of Overactivation, Psychomotor Acceleration,
Distraction/Impulsivity, Hopelessness, Retardation and Suicide Tendency can describe the
three diagnostic groups in a continuum from low to high [7]. The existence of the so-called
mixed states is an additional support for the continuity of the affective spectrum. In order
to test the continuum hypothesis of mood disorders, Benazzi et al. explored the distribution
of the intra-depression hypomanic symptoms between BD type II and MDD and failed to
find the expected bi-modality which would support the categorical approach [8]. Their
findings are mirrored by a similar non-bimodal distribution-of-lifetime manic/hypomanic
symptoms in BD-I and MDD, and of the intra-mania depressive symptoms [9,10].

Nevertheless, nomothetic network analysis shows that a shared core (i.e., a statisti-
cally defined unidimensional factor) underpins unipolar and bipolar disorder, namely the
interconnected reoccurrence of (hypo)manic and depressive episodes and suicidal behav-
iors [6]. This indicates that unipolar depression and bipolar disorder are the same illness
and that staging of the illness contributes to different phenotypes [6]. This necessitates
transdisciplinary methods for research, including the nomothetic networks approach as a
bottom-up integration of horizontal and vertical levels of explanation [1,11].

However, heretofore, the results from numerous scientific inquiries regarding the
connectome features of mood disorders and SCZ remain heterogeneous. For instance,
Ambrosi et al. found a significant reduction of the resting-state functional connectivity
(rsFC) between the left insula and the left mid-dorsolateral prefrontal cortex, as well as
between bilateral insula and right frontopolar prefrontal cortex, in patients with bipolar
depression as opposed to patients with unipolar depression and healthy individuals [12].
Moreover, in the same study, a decreased functional connectivity was established between
the right amygdala and the left anterior hippocampus in participants with depression in
the context of MDD compared to individuals with BD and healthy controls. However,
Anand et al. observed similar alterations in unipolar and bipolar depression, namely a low
rsFC between the pregenual anterior cingulate cortex and the dorsomedial thalamus in
comparison with healthy controls [13].

In terms of large-scale networks, unipolar depression has been associated with in-
creased functional connectivity in the Default Mode Network (DMN) and reduced rsFC
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between the cingulo-opercular network and DMN domains, whereas a higher rsFC in the
frontoparietal network was observed in bipolar depression [14,15]. On the other hand,
alterations in the static and dynamic functional connectivity strengths in the frontal–striatal–
thalamic circuits (in BD) and within the DMN/sensorimotor network (in MDD) have also
been demonstrated as possible differentiating biomarkers between these disorders [16].

SCZ and BD, on the other hand, demonstrate both shared and divergent characteristics
of the connectome. For instance, the amygdala and prefrontal cortex appear to play
important roles in both SCZ and BD. Liu et al. discovered that the rsFC between the
amygdala and the dorsolateral PFC was significantly decreased in the SCZ group, whereas
the rsFC between the amygdala and the ventrolateral PFC was significantly decreased in
the BD group, suggesting that this dorsal vs. ventral PFC differentiation in amygdala–PFC
connectivity might be used as a potential marker for differential diagnosis during the early
stages of the diseases [17].

Moreover, Li et al. [18] found that both bipolar and schizophrenic patients had higher
rsFC from the insula to the bilateral frontal pole and thalamus, the left middle frontal
gyrus and the hippocampus when compared to the healthy controls. They also found
that the bipolar group exhibited higher connectivity from the insula to the perigenual
anterior cingulate cortex, whereas the schizophrenic group had higher connectivity from
the insula to the right caudate and to the left middle frontal gyrus (an area that is situated
on the lateral prefrontal cortex). These findings suggest that the insula plays a significant
role in explaining the similar pathophysiology of bipolar disorder and schizophrenia
that is supported by shared insular connectivity abnormalities patterns in both disorders.
However, insular functional connectivity also has disorder-specific characteristics, which
may point to potential pathways for differentiation during the early phases of the disease.

Despite the research outlined thus far, there is no definite answer to the question of
whether the connectome differences between mentally healthy individuals and psychiatric
patient groups are mainly quantitative or qualitative. The best way to explore this is
by using a machine learning technique, namely Soft Independent Modeling by Class
Analogy (SIMCA) [19,20]. SIMCA allows us to compute principal-component SIMCA
models around the diagnostic classes based on connectome features and to compute
the distance between the class models, whereby a large distance indicates qualitative
differences between the classes [19–21].

Hence, this study was designed to examine whether there are quantitative or qual-
itative differences in the connectome between psychiatric patients and controls, on one
hand, and to delineate the connectome features of MDD, SCZ and BD and the severity
of the illness, on the other. To achieve our goals, we performed an effective connectivity
analysis of resting-state functional MRI data of three groups of patients presenting with
the abovementioned psychiatric diagnostic classes and a group of healthy controls. We
have focused on effective connectivity, which delineates the influence that one neural
system exerts over another, thereby reflecting a direct causal influence instead of functional
connectivity, which discloses only the correlation between the BOLD signals derived from
different brain regions [22]. In addition, we employed the spectral Dynamic Causal Model-
ing (spDCM) method [23], which estimates effective connectivity from the cross-spectra
of the fluctuations in neuronal states rather than from their time courses directly, as is the
case with stochastic DCM [24].

2. Subjects and Methods
2.1. Subjects

A hundred and one subjects were recruited for the present study, and they were
divided into four groups: healthy controls, and patients with SCZ, BD or MDD. Each
participant was assessed by experienced psychiatrists (D.S. and S.K.), using a general clini-
cal interview and the structured Mini International Neuropsychiatric Interview (M.I.N.I.
6.0) [25]. In addition, the Montgomery–Åsberg Depression Rating Scale (MADRS) [26] and
the Positive and Negative Syndrome Scale (PANSS) [27] were implemented in depressed
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and schizophrenic patients, respectively. The clinical diagnosis was established based on
the interview, the available medical documentation and, in some cases, additional informa-
tion from accompanying family members. The DSM-IV TR criteria were applied. Severity
of illness was measured by using the Clinical Global Impression scales for severity (CGI).

The SCZ group included subjects with a current psychotic episode, while patients
with BD and MDD were suffering from a depressive episode at the time of recruitment.
Psychiatric comorbidities, such as panic disorder, agoraphobia, social phobia, generalized
anxiety disorder, obsessive–compulsive disorder, post-traumatic stress disorder, eating
disorders (anorexia and bulimia) and alcohol or other substance-use disorders, as well as
dissocial personality disorder identified with the M.I.N.I. interview, were excluded.

The severity of depression was measured with the MADRS. For the current study, a
cutoff value for the total score of 20 was used as an inclusion criterion for mood disorders.
Severity of the psychotic symptoms was assessed with PANSS, providing detailed scor-
ing of positive, negative and general symptoms. The psychotic symptoms ratings of P1
(delusions) and/or P6 (suspiciousness) had to exceed 3 to ensure the severity required. Nev-
ertheless, in the current study, we computed an index of overall severity of schizophrenia
as z (sum of P1 (delusions) + P2 (conceptual disorganization) + P3 (hallucinatory behavior)
+ P6 (grandiosity) + z (sum of N1 (blunted affect) + N2 (emotional withdrawal) + N3 (poor
rapport) + N4 (passive social withdrawal) + N5 (difficulty in abstract thinking) + N6 (lack
of spontaneity) + N7 (stereotyped thinking)). Both schizophrenic and depressed patients
were taking stable doses of their antidepressant and/or antipsychotic medication for the
preceding two weeks.

Exclusion criteria were the following: age under 18 or above 65 years, presence
of metal implants or body grafts (e.g., pacemaker) incompatible with MRI, history of a
psychiatric disorder (for the healthy controls), comorbid psychiatric disorder as identified
by the clinical interview and the M.I.N.I., severe somatic or neurological disease, and
traumatic brain injury with loss of consciousness. Written informed consent complying
with the Declaration of Helsinki was obtained from each participant prior to inclusion.
The study protocol was granted approval by the University’s Research Ethics Committee
(No. R-2172/03.04.3015).

2.2. Resting State MRI Acquisition and Analysis

A 3T MRI system (GE Discovery 750 w) was used for the scanning of the participants.
A high-resolution structural scan was first obtained (Sag 3D T1 FSPGR, slice thickness
1 mm, matrix 256 × 256, relaxation time (TR)–7.2 ms, echo time (TE)–2.3 ms, flip angle
12◦), followed by an eyes-closed resting-state functional scan (2D Echo Planar Imaging
(EPI), slice thickness 3 mm, matrix 64 × 64, TR-2000 ms, TE–30 ms, 36 slices, flip angle 90◦,
192 volumes).

The subsequent data analysis was performed with the SPM 12 software (Statistical
Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/, accessed on 4 March 2021),
running on MATLAB R2020b for Windows. The preprocessing steps included realignment,
co-registration with the structural scans, normalization to Montreal Neurological Institute
(MNI) space and smoothing with a 6 mm full-width-at-half-maximum Gaussian kernel.

Next, a general linear model (GLM) was applied to the time series, as well as the
covariates of no interest: the six rigid-body-motion parameters, average white matter,
and cerebrospinal-fluidsignal time series. The BOLD time series were then extracted for
eight predefined right-sided regions of interest (ROI), using 6 mm radius spheres. These
ROIs were the following (MNI coordinates given in brackets): ROI_1-anterior insula (AI)
[38, 22, 3], ROI_2-inferior frontal gyrus (IFG) [50, 26, 16], ROI_3-middle frontal gyrus (MFG)
[36, 42, 28] corresponding to dorsolateral prefrontal cortex (DLPFC), ROI_4-frontal eye field
(FEF) [31,−5, 58], ROI_5-anterior cingulate cortex (ACC) [5, 45, 12], ROI_6-superior parietal
lobe (SPL) [24, −54, 68], ROI_7-amygdala (AMY) [24, 3, −16], and ROI_8-hippocampus
(HPC) [30, −11, −17].

http://www.fil.ion.ucl.ac.uk/spm/
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Spectral dynamic causal modeling (spDCM) was performed with the abovemen-
tioned eight regions. We started with a fully connected model where each node was
connected to each other node. The individual spDCM models were then jointly estimated
using the Parametric Empirical Bayes framework, implemented in SPM12. In the last
step the connectivity strengths (A-matrix) were extracted from the estimated spDCM
models and further tested for statistical significance. The indexing of the connectivity
values was as follows: A11 = self-inhibitory connection of the first ROI–anterior insula
(AI⊃), A12 = influence of ROI_1 to ROI_2 (AI→IFG), etc. They can be excitatory (positive
numbers) or inhibitory (negative numbers).

2.3. Statistical Analysis

Difference between the study groups in scale variables were assessed by using the
Kruskal–Wallis test or analysis of variance (ANOVA), followed by protected pairwise
comparisons among treatment means. Associations between categorical variables were
assessed by using analysis of contingency tables (χ2 test). We used multiple regression
analysis to assess the significant (at p = 0.05) connectome data predicting the MADRS, CGI
or OSOS scores, while allowing for the effects of age and sex. We used a combination of
hierarchical (i.e., we defined the order to enter the predictor variables in the model based
on the importance of the connectome data) and automatic multiple regression analyses,
as explained when presenting the results of the regression analyses. The automated
stepwise methods were performed with a p-to-entry of 0.05 and a p-to-remove of 0.06. All
regressions were checked by using R2 change, as well as multicollinearity (using tolerance
and variance inflation factor), homoscedasticity (the White and modified Breusch–Pagan
tests) and multivariate normality (Cook’s distance and leverage). We employed stepwise
binary logistic regression analysis with diagnostic classes as dependent variables and
the connectome data as explanatory variables, while allowing for the effects of age and
sex. We computed the odds ratio (OR) and corresponding 95% confidence intervals (CIs),
as well as the Nagelkerke pseudo R2 value, which was used as an estimate of the effect
size. Moreover, we bootstrapped all regression analyses (5.000 samples) and show the
bootstrapped results if they would change the outcome of the model. The machine learning
techniques, namely support vector machine (SVM), soft independent modeling of class
analogy (SIMCA) and principal component analysis (PCA), followed by construction of a
PC plot, were performed as explained previously [20]. Since the diagnostic classes were
unbalanced, we employed a random oversampling approach with multiple copies of the
smaller n class to achieve an equal split among the classes when conducting SVM and
binary logistic regression analyses. All tests were two-tailed, and the significance was set
at p = 0.05. The statistical analyses were performed by using IBM SPSS windows version
25, 2017 (ANOVA, χ2, regression analyses), and the Unscrambler X10.5.1 (PCA, PC plot,
SVM, SIMCA).

3. Results
3.1. Sociodemographic Data

Table 1 shows the sociodemographic and clinical data of the patients and controls in
this study. There were no significant differences in age, sex ratio and education between the
four study groups. All three patient groups showed a higher CGI score than controls. The
MADRS score was significantly higher in BD and MDD patients than in healthy controls.
The OSOS score was significantly higher in SCZ patients than in controls. There were
no significant differences in illness duration, episode duration, and number of episodes
between the patient groups.
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Table 1. Sociodemographic data.

HC A

(n = 21)
SCZ B

(n = 24)
BD C

(n = 23)
MDD D

(n = 33) KWT/F/χ2 df p

Age–years (SD) 39.0 (13.1) 38.8 (14.0) 42.8 (11.9) 46.6 (13.9) 2.21 3/97 0.092 a

Sex (M/F) 5/16 12/12 8/15 12/21 3.37 3 0.338 b

Education-years (SD) 14.3 (2.0) 12.8 (2.4) 13.6 (2.3) 14.0 (2.3) 1.86 3/96 0.141 a

CGI-S mean (SD) 1.0 (0.0) B,C,D 4.29 (0.69) A 4.56 (0.73) A 4.39 (0.70) A KWT <0.001 a

MADRS mean (SD) 0.5 (1.3) C,D - 30.3 (6.1) 29.3 (7.0) 201.41 2/69 <0.001 a

OSOS (z score) −1.79 (0.) B 1.82 (0.91) A - - KWT <0.001 c

Illness duration (months) - 156.6 (116.1) 133.7 (91.8) 118.0 (93.7) 0.96 2/73 0.387 a

Episode duration (weeks) - 16.1 (16.7) 17.0 (18.5) 14.7 (16.6) 0.11 2/67 0.900 a

Number of episodes - 5.0 (4.5) 4.9 (4.6) 3.9 (4.0) 0.48 2/66 0.619 a

SD, standard deviation; a one-way ANOVA; b χ2-test; c Two sample t-test, KWT, Kruskal–Wallis test; A,B,C,D, pairwise comparisons between
group means; CGI-S, Clinical Global Impression—Severity; MADRS, Montgomery–Åsberg Depression Rating Scale; OSOS, overall severity
of schizophrenia.

3.2. Connectome Features in Patients versus Controls

A first SIMCA was performed by using all connectome data, and feature selection
was performed based on the modeling, and discriminatory power of the connectome
variables, resulting in nine variables with a significant modeling and discriminatory power.
Consequently, we performed a second SIMCA which included only these 9 connectome
features. Figure 1 shows that the top five discriminatory variables were (in descending
order of discriminatory power) A11, A34, A51, A26 and A17. Nevertheless, SIMCA showed
that the model-to-model distance was only 3.3, and that using those nine variables no
significant classification ability could be achieved. Figure 2 shows the PC plot obtained
by principal component analysis with the first two PCs explaining 35% of the variance. In
this two-dimensional display of the multivariate dataset, no clear demarcation between
patients and controls could be detected. Moreover, not one of the other combination of
PCs showed any significant street between both groups. Using the same nine variables, we
found that SVM showed a training accuracy of 96.4% and a validation accuracy of 87.1%.
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Consequently, we performed binary logistic regression analyses, which introduced
all AI and ACC connectome data. After performing automatic regression analyses with
feature selection, only two AI features were significant (A11 = self-inhibition of the AI
and A17 = AI→AMY) and no ACC features. After this first step, we subsequently added
the amygdala connectome features and performed another automatic regression, and
found that A76 (AMY→SPL) and A37 (MFG→AMY) were additional significant features.
Thereupon, we added the hippocampal feature set and found that A84 (HPC→FEF) was
another significant connectome feature. After consequently adding the remaining feature
sets while conducting feature selection, we delineated six significant predictor variables,
namely A11 (AI self-inhibition), A34 (MFG→FEF), A84 (HPC→FEF), A76 (AMY→SPL),
A17 (AI→AMY) and A37 (MFG→AMY) (see Table 2, Model #1). A11 and A76 were in-
versely associated with psychiatric disorders versus controls, and A34, A84, A17 and A37
were positively associated. By inference, SIMCA, SVM and binary logistic regression analy-
ses share A11, A34, A84, A76 and A17 as discriminatory variables, while logistic regression
revealed that A37 was another predictor variable. A51 (ACC→AI), A26 (IFG→SPL), and
A67 (SPL→AMY) were significant discriminators, as detected by SIMCA/SVM, but not by
binary regression.

Table 2. Results of linear logistic regression analysis with the psychiatric patients’ groups (SCZ, BD and MDD) as dependent
variable, and controls as reference group.

Explanatory Variables Nagelkerke
Pseudo R2

χ2 (df)
p-Values

B Standard
Error

Wald
df = 1 p Odds

Ratio 95% CI

All patients vs. HC 0.448 56.83 (6)
AI⊃ (A11) −1.113 0.308 14.24 <0.001 0.31 0.17–0.57

MFG→FEF (A34) 0.722 0.252 8.23 0.004 2.05 1.26–3.37
HPC→FEF (A84) 0.684 0.231 8.77 0.003 1.98 1.26–3.12
AMY→SPL (A76) −0.780 0.263 8.81 0.003 0.46 0.27–0.77
AI→AMY (A17) 1.261 0.282 20.02 <0.001 3.53 2.03–6.13

MFG→AMY (A37) 0.827 0.279 8.78 0.003 2.29 1.32–3.95

MOOD vs. HC 0.487 45.69 (5)
<0.001

AI (A11) −1.348 0.401 11.27 0.001 0.26 0.12–0.57
MFG→FEF (A34) 1.105 0.350 9.97 0.002 3.02 1.52–6.00
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Table 2. Cont.

Explanatory Variables Nagelkerke
Pseudo R2

χ2 (df)
p-Values

B Standard
Error

Wald
df = 1 p Odds

Ratio 95% CI

HPC→FEF (A84) 0.950 0.295 10.40 0.001 2.59 1.45–4.61
AI→AMY (A17) 1.380 0.381 13.14 <0.001 3.97 1.89–8.38

MFG→AMY (A37) 1.180 0.371 10.11 0.001 3.26 1.57–6.74

SCZ vs. HC 0.316 12.16 (2)
0.002

AI→AMY (A17) 0.802 0.382 4.41 0.036 2.23 1.06–4.71
AMY→SPL (A76) −1.112 0.479 5.40 0.020 0.03 0.13–0.84

In order to examine the connectome predictors of both mood disorders (MOOD)
versus controls, we entered the 5 variables delineated by the first regression in Table 2
together with A51, A26 and A67 in an automatic regression analysis and consequently
added the other connectome feature sets in the same order as described above. In Table 2,
Model #2 (MOOD vs. HC) shows that mood disorders were best predicted by five variables,
namely A11, A34, A84, A17 and A37, with a pseudo R2 of 0.487 and an accuracy of 73.3%
(sensitivity = 73.2%, and specificity = 73.3%). A34, A84, A17 and A37 were positively
associated with mood disorders, whereas A11 was inversely associated. None of the other
feature sets or connectome variables added important information.

To delineate the significant predictors of SCZ versus controls we followed the same
procedure with the limit of maximal three explanatory variables. In Table 2, Model #3 (SCZ
vs. HC) shows that two variables significantly discriminated SCZ from controls, namely
A17 (inversely associated) and A76 (positively associated with a pseudo R2 of 0.316). None
of the other connectome features had significant discriminatory power.

3.3. Connectome Features as Predictors of Severity of Illness

To delineate the connectome features that best predicted the severity of psychiatric
illness (the CGI score), we performed automatic multiple regression analyses with the
CGI score as dependent variable and the connectome data as explanatory variables, while
allowing for the effects of age and sex (entered as a dummy variable). First, we entered all
variables which were significant in the logistic regression analysis separating patients from
controls. Table 3, Model #1 shows that only two of those variables significantly predicted
CGI, namely A17 and A84, which together explained 14.9% of the variance in the CGI
score. Sex and age were not significant in this regression analysis. Consequently, we first
included the ACC data, and then we added the amygdala connectome data, performed
automatic regression analysis, and found that two more features were significant predictors,
namely A56 and A65. Consequently, adding the other feature sets showed that none of
the remaining features was significant. In Table 3, Model #2 shows that 29.8% of the
variance in the CGI score was explained by the regression on A17, A84, A56 and A65 (all
positively correlated).

Table 3. Results of multiple regression analysis with the CGI, MDRS and OSOS as dependent variables and connectivity
strengths as explanatory variables.

Dependent Variables Explanatory Variables B A p F df p R2

CGI Model #1 6.03 2/69 0.004 0.149
HPC→FEF (A84) 0.265 2.38 0.020
AI→AMY (A17) 0.279 2.51 0.014

CGI Model #2 7.10 4/67 <0.001 0.298
AI→AMY (A17) 0.278 2.79 0.007
HPC→FEF (A84) 0.317 3.06 0.003
ACC→SPL (A56) 0.468 3.75 <0.001
SPL→ACC (A65) 0.299 2.42 0.018
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Table 3. Cont.

Dependent Variables Explanatory Variables B A p F df p R2

MADRS Model #3 6.11 5/66 <0.001 0.316
HPC→FEF (A84) 0.308 3.02 0.004
ACC→SPL (A56) 0.422 3.57 0.001

AI⊃ (A11) −0.223 −2.17 0.034
SPL→ ACC (A65) 0.317 2.61 0.011
SPL→ AMY (A67) 0.223 2.11 0.038

OSOS Model #4 6.62 2/36 0.004 0.269
AI→AMY (A17) 0.410 2.88 0.007

AMY→SPL (A76) −0.332 −2.33 0.026
OSOS Model #5 7.96 3/35 <0.001 0.406

AI→AMY (A17) 0.386 2.96 0.006
AI→IFG (A12) −0.432 −3.26 0.002

IFG→SPL (A26) −0.334 −2.52 0.016

To define the best connectome predictors of the MADRS, we performed the same
procedure as explained above (see CGI score). These automatic regression analyses showed
that five connectome features were incorporated in the final model (see Table 3, Model #3)
and explained 31.6% of the variance in the MADRS data. A84, A56, A65 and A67 were
positively associated with the MADRS, and A11 was inversely associated with the MADRS
score. Figure 3 shows the partial regression of the MADRS score on A84 (HPC→FEF).
Figure 4 shows the partial regression of the MDRS score on A56 (ACC→SPL).
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To examine the connectome features of OSOS, we first entered the two connectome
variables that significantly discriminated SCZ from controls and found that A17 (posi-
tively) and A76 (inversely) were significantly associated with OSOS explaining 26.9% of
its variance. Entering the other connectome feature sets revealed that A76 was no longer
significant after considering the effects of two other variables, namely A12 and A26, which
were both inversely associated with OSOS. As such, three connectome features explained
40.6% of the variance in OSOS, namely A17 (positively), A12 and A26 (both inversely).
Figure 5 shows the partial regression of OSOS on A17 (AI→AMY), and Figure 6 shows the
partial regression of OSOS on A12 (AI→IFG).
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3.4. Connectome Features Discriminating Patient Subgroups

In Table 4, Regression #1 shows the results of a binary logistic regression analysis
separating mood disorders from SCZ. To construct this final model, we first entered the
amygdala, hippocampus and MFG feature sets and performed an automatic regression
analysis resulting in three significant explanatory variables, namely A27, A23 and A76.
Following this first step, we consequently added the superior frontal gyrus feature set, but
no additional features were significant. Next, we added the IFG feature set and found that
three additional IFG features could be added as discriminatory variables. The addition of
the other feature sets did not reveal any other significant features. In Table 4, Regression
#1 shows the final model, i.e., six connectome features significantly discriminated both
groups with a pseudo R2 value of 0.604 and an accuracy of 83.1% (sensitivity = 75.0%,
and specificity = 89.7%); A23 and A76 were positively associated and A21, A52, A25 and
A27, inversely associated with mood disorders versus SCZ. Lastly, we performed a logistic
regression analysis with MDD as a dependent variable and BD (no MDD) as a reference
group and firstly entered the AI and ACC datasets. The final model (Table 4, Regression #2)
shows that three connectome features were associated with MDD, namely A31 (positively),
A26 and A57 (both inversely), with a pseudo R2 value of 0.547 and accuracy of 80.4%.

Table 4. Results of binary logistic regression analyses that delineate the connectome features of patient subgroups.

Explanatory Variables Nagelkerke
Pseudo R2

χ2 (df)
p-Values

B Standard
Error

Wald
df = 1 p OR 95% CI

MOOD vs. SCZ 0.604 74.55 (6)
<0.001

IFG→AI (A21) −6.272 1.625 14.89 <0.001 0.00 0.00–0.05
ACC→IFG (A52) −3.935 1.239 10.08 0.001 0.02 0.00–0.22
IFG→ACC (A25) −3.314 1.057 9.84 0.002 0.04 0.00–0.29
IFG→AMY (A27) −4.430 1.422 9.71 0.002 0.01 0.00–0.19
AI→AMY (A23) 1.495 0.368 16.51 <0.001 4.46 2.17–9.17

AMY→SPL (A76) 1.687 0.470 12.90 <0.001 5.40 2.15–13.57
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Table 4. Cont.

Explanatory Variables Nagelkerke
Pseudo R2

χ2 (df)
p-Values

B Standard
Error

Wald
df = 1 p OR 95% CI

MDD vs. BD 0.547 29.16 (3)
<0.001

IFG→SPL (A26) −5.39 2.632 9.76 0.002 0.01 0.00–0.13
ACC→AMY (A57) −5.85 2.908 5.18 0.023 0.00 0.00–0.44

MFG→AI (A31) 1.36 0.675 8.10 0.004 3.90 1.53–9.96

4. Discussion

The first major finding of our study points to highly significant connectome differences
between patients and controls, as demonstrated by using SIMCA and SVM. Nevertheless,
these differences were more quantitative than qualitative because the distance between both
SIMCA models constructed around the SCZ and control classes was not that large [20,21].
These findings contribute to the growing evidence of quantitative changes along a spectrum
from health to mental illness. These advanced machine learning techniques were able
to define a model consisting of nine connectome features, reaching a training accuracy
of 96.4% and a validation accuracy of 87.1%, as demonstrated by SVM. The top five
features of the model included the self-inhibition of the AI (A11), the MFG→FEF (A34),
the ACC→AI (A51), the IFG→SPL (A26) and the AI→AMY connections (A17). The binary
logistic regression analysis, on the other hand, identified the AI self-inhibition (A11), the
MFG→FEF (A34), the HPC→FEF (A84), the AMY→SPL (A76), the AI→AMY (A17) and
the MFG→AMY (A37) connections as significant discriminators between patients and
healthy individuals. Notably, three of the features were detected in both SIMCA and binary
logistic regression, namely the self-inhibition of the AI, the MFG→FEF and the AI→AMY
connectivity, and should be regarded as “authorities” or key connectome features.

The role of the AI (part of the salience network), the AMY (major node of the limbic
system), the MFG (DLPFC) and the FEF (the central executive network) in the development
of various psychiatric disorders has been suggested by numerous studies; however, not
all interactions have been completely delineated. For instance, the AI as part of the SN
regulates the dynamic switch between the DMN and the central executive network and is
essential for the rapid change of focus between internal and external stimuli. By integrating
sensory, emotional and cognitively charged information, the SN engages in complex pro-
cesses, such as communication, social behavior and self-awareness [28]. In schizophrenia
and high-risk individuals for psychosis, there is impaired functional connectivity (FC)
in the nodes of the SN, as well as aberrant interactions of the SN with other large brain
networks [29,30]. Depression, on the other hand, has been associated with decreased FC
within the SN, and the severity of symptoms correlated with decreased intrinsic FC of the
right AI [31]. Moreover, decreased functional connectivity between DLPFC and insula was
found in subjects with subthreshold depression compared to healthy controls [32]. In a
previous study, we have found decreased effective connectivity between the AI and the
MFG as well as an aberrant connection (non-existent in healthy individuals) from the AMY
to the AI in a sample of unipolar and bipolar depressed patients [33].

In short, it seems that the dysfunction of the SN is in line with the clinical presenta-
tion and the suggested hypothesis of symptom formation in both mood and psychotic
disorders—with the predominance of externalizing mental representations in SCZ leading
to paranoid symptoms and overrepresented internalizing in depression that leads to self-
defeating depressive symptoms. This might explain why the self-inhibitory properties of
the AI in our study were identified as the major connectome feature contributing to the
distinction between healthy individuals and psychiatric patients presenting with psychotic
or depressive symptoms.

The other significant connection in our results involved the influence of the DLPFC on
the FEF, two regions considered to be part of the central executive network (known as well
as the frontoparietal network) and the dorsal attention network or dorsal frontoparietal
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network, respectively. Several lines of research support the role of the DLPFC in the patho-
physiology of both SCZ and depression. DLPFC dysfunction was found to characterize
SCZ patients during a high cognitive control task, along with significant impairments in the
functional connectivity between the dorsolateral prefrontal cortex and other task-relevant
brain regions. In addition, cognitive performance, behavioral disorganization and global
functioning demonstrated significant correlations with DLPFC functional connectivity [34].
Moreover, a lower ratio of N-acetyl aspartate to creatine in the left DLPFC was associated
with the cognitive deficits in patients with first-episode SCZ, and was suggested to be an
early biochemical marker for the cognitive impairment in schizophrenia [35].

Apart from the classical role of the DLPFC in “cognitive” or “executive” functions,
such as working memory, intention formation, goal-directed action, abstract reasoning and
attentional control [36], which are often impaired in SCZ, there is an increasing understand-
ing of its involvement in the regulation of emotions, as well [37], and more specifically
of the valence of emotional experiences [38]. Additionally, the DLPFC is responsible for
suppression of posterior cingulate cortex overactivation, which is considered to underlie
depressive ruminations [39]. Decreases of gray-matter volumes, along with disruptions
of both DLPFC activity during task performance and functional connectivity during rest
have been demonstrated in depression [40–42]. Moreover, the region is used as a target
for different treatment techniques, such as neuro-feedback [43], and transcranial magnetic
stimulation alleviating the symptoms of depression [44].

The third significant feature of the model distinguishing between healthy controls and
mentally ill patients was the connection arising from the AI to the AMY. The role of the AI
as part of the SN that has been implicated in the detection and integration of emotional
and sensory stimuli, and its contribution to the pathophysiology of the diagnostic entities
under study has been underlined repeatedly throughout the discussion hitherto. Therefore,
we will focus our further attention on the amygdala as a key node of the limbic system,
along with the hippocampus, hypothalamus, OFC and ACC [45]. A variety of structural,
functional and connectivity abnormalities of the AMY have been demonstrated in SCZ,
bipolar and unipolar depression [46–49]. Recent meta-analysis reported consistent findings
of reduced left, right and total amygdala volumes in SCZ relative to both healthy controls
and bipolar subjects, while such abnormalities were not confirmed in bipolar patients.
Studies of the uncinate fasciculus tract (which connects the AMY with the medial- and
orbitofrontal cortices) showed comparable degrees of reduced fractional anisotropy in both
SCZ and bipolar patients. In addition, decreased amygdala-orbitofrontal cortex functional
connectivity was generally a characteristic of SCZ, while in bipolar disorder the findings
were inconsistent [50].

A review of emotion processing fMRI studies in major depression has confirmed
the often-reported increased amygdala activation to negative and arousing stimuli which
typically normalizes with antidepressant treatments [51]. Comparison studies suggested
greater activation of the amygdala toward negative emotional stimuli in MDD compared
to BD, with the opposite pattern during exposure to positive emotional stimuli of diverse
types (facial expressions, even in subliminal presentations, and autobiographical memo-
ries) [15]. Lower resting state FC (rsFC) between the right amygdala and the left anterior
hippocampus was observed in MDD compared to BD and controls [12]. BD patients
showed increased rsFC between left amygdala and left anterior supramarginal gyrus when
compared to healthy controls and MDD [52]. Overall, the literature is consistent in stating
that amygdala dysfunction plays a crucial role in the pathophysiology of both unipolar and
bipolar depression; however, there is less support for the specific alterations distinguishing
both classes.

In conclusion, our findings suggest that there are three major connectivity features dis-
tinguishing mentally healthy individuals from psychiatric patients: first, the self-regulatory
properties of the AI (securing the balance between the internally and externally focused
attention); second, the communication between the DLPFC and the FEF (providing ap-
propriate executive functioning and attention); and third, the influence that the AI exerts
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on the AMY (the salience network regulation of the emotion processing). Our results are
supported by numerous findings of structural and functional disruptions of the above-
mentioned brain regions in all three diagnostic classes under study. Moreover, studies on
the neural substrates of general psychopathology outline a role for delayed maturation
of limbic and default mode connectivity and more generally reduced between-network
connectivity, leading to a compromised ability to integrate and switch between internally
(somatosensory–motor networks, DMN) and externally (executive networks) focused
tasks [53].

In addition, the overall severity of illness, as measured with CGI, was predicted by
connectome features, including, again, the anterior insula and amygdala nodes, as well
as the hippocampus, the frontal eye field, and the bidirectional connection between the
superior parietal lobe and the anterior cingulate cortex. As mentioned earlier, the ACC is
a major node of the limbic network as well as the SN, and both structural and functional
anomalies of this brain area have been reported in major psychiatric disorders, more so
in bipolar and unipolar depression but in SCZ, as well [15,54–57]. A recent meta-analysis
by Goodkind et al. [58] compared structural imaging studies across major psychiatric
disorders, and demonstrated a shared pattern of reduced grey matter volume in dorsal
anterior cingulate cortex and bilateral anterior insula. The only significant difference across
diagnostic classes was the more pronounced hippocampus/amygdala gray matter loss in
MDD compared to BD, anxiety and obsessive–compulsive disorder.

The second major finding in our study was that SCZ could be discriminated from
healthy controls, using the AI→AMY (A17) and the AMY→SPL connections (A76). In
addition, the OSOS was predicted by the connections from the AI to both the AMY (A17),
and the IFG (A12), and from the IFG to the SPL (A26). As discussed earlier, the structural,
functional and connectivity findings point to the involvement of both the anterior insula
and the amygdala in the pathophysiology of SCZ. In addition, a recent study using com-
bined voxel-based morphometry and resting-state functional connectivity reported that
early stage SCZ patients demonstrated a significantly decreased gray matter volume in
both bilateral AI and ACC compared to the HC group. Furthermore, a marked reduction of
the functional connectivity within the SN was found in the SCZ group. These convergent
morphological and functional deficits in the SN were significantly associated with hallu-
cinations [56]. In line with our findings, a most recent resting state fMRI study reported
decreased FC of the right amygdala with the anterior insula in both high-risk subjects and
first episode schizophrenia [49]. Moreover, the positive symptom scores of the PANSS scale
were correlated with the FC within the right AI during the state of psychosis [29].

We also found that the severity of SCZ was associated with changed connectivity
in the SPL and the IFG nodes. The superior parietal lobe plays a key role in different
brain functions, including visuomotor, cognitive, sensory, higher order, working memory,
attention and visuospatial perception, including the representation and manipulation of ob-
jects [59–61]. The inferior frontal gyrus is functionally a part of the ventrolateral prefrontal
cortex (VLPFC), which is involved in cognitive control and motor-response inhibition [62],
as well as in emotion regulation, and its activation correlates with the intensity of the
emotional stimuli [63]. Moreover, the activation of the right VLPFC seems to be crucial
for the successful implementation of emotion-regulation strategies, such as affect labeling
or cognitive reappraisal, which can eventually reduce the activation of the amygdala to
negative stimuli [64,65]. Compared to healthy controls both SCZ patients and their unaf-
fected siblings demonstrated hypoactivation in VLPFC, insula and middle temporal gyrus
when reappraising negative pictures [66]. Similarly, reduced activation of the VLPFC was
found during conscious downregulation of negative emotions in schizophrenic compared
to bipolar patients [67]. Meta-analytic data show that, when emotional facial stimuli were
contrasted to neutral stimuli, SCZ patients displayed hypoactivation throughout the en-
tire facial-affect-processing network and increased activation in visual-processing regions
within the cuneus [47]. Thus, we may suggest that the severity of schizophrenia symptoms
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in our study was associated with the connectivity between regions implicated mainly in
emotion regulation.

The third major finding of the current study was that five connectome features could
discriminate healthy controls from mood-disorder patients, namely the self-inhibition of
the AI (A11), the connections from the MFG and the HPC to the FEF (A34 and A84), and
the influences exerted upon the AMY by both AI (A17) and MFG (A37). The role of the
structural and functional abnormalities of the amygdala and the anterior insula in the
pathophysiology of depression was discussed earlier (see above). The influences exerted by
the MFG (DLPFC) and HPC onto the FEF reflect the top-down and bottom-up regulation of
attention by the cognitive and affective systems, respectively. As depression encompasses
both cognitive and affective symptoms, our findings further support the research so far
outlining the impairment of both the cognitive control (for example, hypoactivation of the
DLPFC during task performance [40,68] and the emotional response, e.g., the increased
activation of the limbic system in response to negative stimuli [51]).

The interactions of the SN (AI) and the central executive network (MFG) with the
limbic system (AMY) seem to represent a key feature of mood disorders. A possible clinical
correlate of the dysfunctional communication between those three major networks might
be the well-known negative bias in depression [69,70]. The basis of it is suggested to be
the failure of the DLPFC to exert appropriate top-down regulation of the AMY response,
along with the bottom-up emotional expression dysfunction characterizing depression [71].
In accordance with this explanation are the reports of reduced functional and effective
connectivity in both MDD and BD [72,73].

An additional finding of our study consists of the MADRS score being predicted by
the following connections: HPC→FEF (A84), ACC→SPL (A56), SPL→ACC (A65) and
SPL→AMY (A67), which were positively associated with the score, and self-inhibition of
the AI (A11), which was inversely associated. The main nodes involved in these significant
connections include key limbic regions, such as the HPC, ACC and AMY, as well as the SPL,
which is part of the association cortex. Previous studies exploring the neural correlates of
symptom severity of depression have found various positive associations: (1) decreased
intrinsic FC within the right AI [31], (2) increased FC of the DMN [74], (3) increased
amplitude of low-frequency fluctuations (ALFF) values of the left dorsal medial PFC [75],
(4) ALFF values of the right superior frontal gyrus [76] (while the same study found a
negative correlation with the ALFF values of the left insula), (4) increased FC of bilateral
dorsal medial PFC [77] and (5) reduced perfusion in the DMN (the posterior cingulate
cortex and the right inferior parietal lobe) [78]. On the other hand, our finding of negative
associations between AI self-regulation and the MADRS score is in line with the report of
Manoliu et al., who found that the decreased intrinsic FC within the right AI was positively
associated with severity of symptoms [31].

Finally, in our study there were three connectome features significantly discriminating
between MDD and BD, namely the IFG→SPL, the ACC→AMY and the MFG→AI connec-
tions. Once again, we detected the major nodes of the limbic system, namely the anterior
cingulate cortex and the amygdala (emotion processing), along with the dorsolateral and
ventrolateral prefrontal cortices (cognitive control) and the balancing SN in the face of
the anterior insula. Differentiating between unipolar and bipolar depression is a major
unsolved clinical challenge in psychiatry, and it is not surprising that there is an abundance
of studies comparing the two diagnostic entities in the search for potential structural,
functional or connectivity markers, as was reported in a recent review by Han et al. [15].
Overall, the most convergent findings involve regions such as the amygdala, the anterior
cingulate cortex and the prefrontal cortex, mainly DLPFC. Nevertheless, to the best of
our knowledge, there are no other effective connectivity studies comparing unipolar and
bipolar depression that employ spectral DCM by the time of the writing of the present text.

However, in line with our findings is the reported association of bipolar depression
with decreased FC between the insula and the DLPFC when compared to MDD and con-
trols [12]. Our results can be viewed as complementary in the sense that they demonstrate
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the directionality of the differential connection, namely from the DLPFC to the AI. More-
over, in a recent study exploring the brain networks’ connectivity by means of group
independent component analysis and graph theory, BD was associated with stronger FC
and more efficient topological properties in the DLPFC, VLPFC and ACC when compared
to MDD [79].

Earlier reports on resting state fMRI demonstrated that BD was associated with
decreased ALFF in the left posterior insula and superior parietal lobule and increased
amplitude of low-frequency fluctuations in the right dorsal anterior insula compared to
MDD [80]. Another study revealed that individuals with BD showed lower fractional
ALFF in the left medial and middle frontal gyrus compared to those with MDD [81].
Thus, along with previous findings, our results suggest that abnormalities in resting-state
neural connectivity of the anterior insula, amygdala and PFC may be a useful marker for
differentiating the depressive states of MDD and BD.

In the final lines of this report, we want to point the reader’s attention to the fact that
four out of the five connectome features that discriminate controls from mental illness are
features of mood disorders, namely the MFG→FEF, the HPC→FEF, the AI→AMY and the
MFG→AMY connections (A34, 84, 17 and 37). As can be easily seen, these involve major
nodes of the SN, frontoparietal network, dorsal attention network and the limbic system.
Only one of the connections was pertinent to SCZ, the AMY→SPL connectivity (A76),
which reflects the influence of the limbic system on the association cortex, while the self-
inhibitory connection of the AI (A11) is a feature of both mood disorders and SCZ. Thus,
the shared A11 connectome feature supports the continuous theory, i.e., the self-regulation
of the SN underpins mental illness, while the other features support qualitative differences
between mood disorders and SCZ, and can be used as potential imaging biomarkers.

Several limitations of the current study should be acknowledged. First, the sample
size might not be sufficient to detect more subtle changes in connectivity. Second, since
the medication status may have influenced the results, future studies on unmedicated
patients are needed to establish the replicability of our findings. In addition, study samples
should be enlarged to examine this issue, using machine learning and network analysis.
It is worth noting that other sophisticated machine learning algorithms, such as Tensor-
flow, which incorporates a pre-training stage by using known control/patient data and
non-linear regression or pattern recognition, may further improve the observed intensity
of connections.
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Abbreviations

ACC Anterior cingulate cortex
AI Anterior insula
AMY Amygdala
BD Bipolar disorder
CGI-S Clinical global Impression—Severity scale
DCM Dynamic Causal Modeling
DLPFC Dorsolateral prefrontal cortex
DMN Default mode network
FC Functional connectivity
FEF Frontal eye field
HC Healthy controls
HPC Hippocampus
IFG Inferior frontal gyrus
MARDS Montgomery–Åsberg Depression Rating Scale
MDD Major depressive disorder
MFG Middle frontal gyrus
OFC Orbitofrontal cortex
OSOS Overall severity of schizophrenia
PANSS Positive and negative syndrome scale
PC/PCA Principal component/principal component analysis
PFC Prefrontal cortex
SCZ Schizophrenia
SIMCA Soft Independent Modeling by Class Analogy
SN Salience network
SPL Superior parietal lobule
SVM Support vector machine
VLPFC Ventrolateral prefrontal cortex
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