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Abstract: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease
of wheat. The wild emmer gene, Yr15 (Wtk1), which confers a strong broad-spectrum resistance
to Pst isolates, is composed of kinase and pseudokinase domains. The analysis of 361 wild emmer
accessions from a wide range of natural habitats confirms that functional Wtk1 is distributed mainly
along a narrow axis from Mt. Carmel to Mt. Hermon regions, in the northern part of Israel, where
environmental conditions are favorable to the onset of stripe rust. An analysis of full-length Wtk1 DNA
sequences from 49 wild emmer accessions identified three haplotypes and extremely low nucleotide
diversity (π = 0.00002). The sequence diversity of Wtk1 is 9.5 times lower than that of broad-spectrum
partial resistance gene Yr36 (π = 0.00019), and both are in sharp contrast to the high level of nucleotide
diversity previously reported for race-specific resistance genes (e.g., Lr10 and Pm3). However, the
nonfunctional wtk1 sequences possess high level of nucleotide diversity (π = 0.07). These results may
reflect the different resistance mechanisms and the different evolutionary processes that shaped these
resistance genes. Yr15 was absent in 189 Chinese wheat landraces and was present in only 1.02%
of the 583 tested modern Chinese wheat cultivars. These results corroborate our previous results
showing that Yr15 was absent in 94% of a worldwide collection of 513 wheat cultivars, therefore
indicating the importance of Yr15 in wheat stripe rust resistance breeding programs in China and
elsewhere around the globe.

Keywords: stripe rust resistance; Yr15; nucleotide diversity; wild emmer populations; Chinese
wheat germplasm

1. Introduction

Wheat provides about 20% of the calories and proteins in the human diet globally [1]. Puccinia
striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, is one of the most devastating
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fungal diseases of wheat. Due to the rapid evolution of the pathogen and the emergence of new
virulent and highly aggressive Pst races, severe yield losses occurred during recent decades in most
wheat-producing areas around the globe [2]. Planting wheat cultivars with adequate levels of resistance
is the most effective and environmentally friendly strategy to control stripe rust.

Based on plant growth stages, stripe rust resistance can be classified as either all-stage resistance
(ASR) or adult plant resistance (APR). ASR is effective at both seedling and adult plant growth stages,
whereas APR is primarily effective in later stages of plant growth [3]. In wheat, ASR is usually
controlled by a single resistance gene conferring high levels of resistance to specific Pst races [4]. This
kind of resistance is vulnerable and can be rapidly overcome by new virulent races that frequently
evolve in the Pst populations [5–7]. In contrast, APR is usually quantitatively inherited and often
shows a broad-spectrum resistance that is partial and, in some cases, has proven to be more durable
than ASR [8,9].

In general, ASR genes encode NB-LRR proteins, which include a nucleotide binding (NB) site
domain and a leucine-rich repeat (LRR) [10]. Molecular evolution and genetic diversity studies
of race-specific NB-LRR genes revealed high levels of nucleotide diversity [11,12], presumably
because of the arms race with pathogen effectors, which drives them to change recognition specificity
frequently [13]. In contrast, APR genes, such as Yr36 and Lr34, that provide partial resistance to broad
spectrum of pathogen races, are highly conserved, probably because these genes interact with plant
substances rather than specific pathogen effectors [14–16].

Different to other race-specific ASR genes, Yr15 provides high levels of resistance to a broad
spectrum of Pst races [17]. The Yr15 gene is derived from wild emmer wheat (Triticum turgidum ssp.
dicoccoides, 2n = 4× = 28, BBAA) [18]. Using durum wheat as a bridge, Yr15 was introgressed into
several hexaploid bread wheat lines, which were then used in several breeding programs of the world
to transfer Yr15 into prebreeding lines and commercial wheat cultivars [19]. For example, Yr15 is
recently deployed in a few commercial common wheat cultivars, such as Clearwhite 515, Patwin 515,
Scarlet 09, and Summit 515 in the United States [17], but less is known about its use in wheat breeding
programs in other countries, such as China. Previously, SSR diagnostic markers were developed and
validated to facilitate breeding programs for incorporation of Yr15 into wheat cultivars [19].

The positional cloning of Yr15 provided us with a unique opportunity to understand the molecular
evolution and genetic diversity of ASR genes conferring broad-spectrum resistance [20]. This gene
encodes a tandem kinase-pseudokinase protein structure (TKP), designated as wheat tandem kinase 1
(WTK1), which is the first resistance gene with TKP structure discovered in wheat. The nonfunctional
alleles (wtk1) from common wheat Chinese Spring and wild emmer Zavitan differ from the functional
allele (Wtk1) by insertions of transposable elements, indels, and stop codons [20]. The functional
allele of this gene is absent in all tested cultivated tetraploid or hexaploid wheat, except for recent
introgressions [20]. Klymiuk et al. [21] demonstrated the efficiency of Kompetitive Allele Specific PCR
(KASP) markers for population studies of the Yr15 gene. However, the application of gene-specific
markers should be complemented by sequence analysis to discover sequence variation and haplotypes
in wild emmer populations aiming to provide a better understanding of the evolutionary processes
that shaped the structure and function of WTK1.

The objectives of the present study were: (1) to profile the distribution of Yr15 in wild emmer and
Chinese wheat germplasm with gene-specific primers; (2) to study the sequence diversity of WTK1
in wild emmer populations and explain its molecular evolution; (3) to characterize the stripe rust
resistance in wild emmer and Chinese wheats, which carry functional Yr15 allele.

2. Results

2.1. Distribution of Yr15 in Wild Emmer Populations

We screened a total of 361 accessions of wild emmer using three pairs of gene-specific primers for
Yr15 gene. Accessions showing successful amplification of the expected fragment size, with at least
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two primer sets, were considered as Yr15 positive. The obtained results indicated that 13.6% of the
wild emmer accessions (49 out of 361) were positive for the Yr15 gene-specific markers, while 312
(86.4%) showed no amplification for the Yr15 gene. In total, 23 out of 108 (21.3%) collection sites in
Israel included at least one Yr15 positive wild emmer accession, whereas all the 21 accessions from
Lebanon, Syria, and Turkey populations were Yr15 negative (Table S1).

Plotting the presence and absence of Yr15 sites on the map of Israel shows that Yr15 is assigned to
a narrow region along an axis of ~100 km from Mt. Carmel to Mt. Hermon regions, in the northern part
of Israel (Figure 1). In total, 44 out of 49 (89.8%) accessions that harbor Yr15 were found at elevation of
above 500 meters above sea level (MASL). Five accessions were collected at lower elevation (ranged
from 134 to 349 MASL) in four collection sites (Elifelet, Elifelet Junc., Haggit, and Hillazon).
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2.2. Characterization of Yr15 in Chinese Wheat Germplasm

A large collection of 772 Chinese wheat germplasm including 189 landraces and 583 prebreeding
lines/varieties in China was screened for the presence of Yr15 using gene-specific markers. The results
showed that all Chinese landraces were Yr15 negative (Table S2), while 1.02% of Chinese wheat
cultivars (six out of 583) had the Yr15 gene (Table S3). Sequencing of full-length Yr15 from these six
wheat cultivars showed that all genomic sequences are identical to Yr15 from G25 [20].

2.3. Haplotype Diversity of WTK1

The genomic sequence of the entire WTK1 gene was amplified, using overlapping gene-specific
primers, in 49 Israeli wild emmer accessions harboring WTK1. The obtained sequences were aligned
against the reference sequence of WTK1 (GenBank MG649384) [20]. Sequence alignment with the
functional Yr15 indicated that the whole region of WTK1 is extremely conserved. Only two SNP sites
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(A4328G and C4375T) were detected in intron 5 among the 49 wild emmer accessions (Figure 2). SNP
A4328G was detected in WEW110623 (Mt. Hermon) and SNP C4375T in WEW110846 (Meron-Kefar
Shammay). WTK1 genomic sequences from the remaining 47 accessions showed full identity to the
functional Yr15 [20].
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Figure 2. Schematic representation of the different genomic sequence haplotypes of Wtk1 in wild
emmer accessions. The haplotype of published Wtk1 is defined as Hap1. The number of accessions
corresponding to each haplotype is shown in brackets on the left. Rectangles in black represent
the polymorphic nucleotides compared with Wtk1 (G25). A, A4328G; B, C4375T; Hap 2 (GenBank
MN756015); Hap 3 (GenBank MN756016).

Analysis of the full-length of WTK1 in 49 wild emmer accessions identified only two SNPs defining
three haplotypes with a haplotype diversity of Hd = 0.081. The published functional Wtk1 sequence
was defined as Hap 1. This haplotype was the most frequent haplotype (96%) observed. The other two
haplotypes Hap2 and Hap3 of Wtk1 were identified in WEW110623 and WEW110846, respectively.

A comparative analysis of 49 WTK1 sequences revealed that the average number of nucleotide
difference (K) is 0.082, and the overall nucleotide diversity (π) is 0.00002.

2.4. Stripe Rust Resistance in Wheat Accessions That Carry Yr15

The initial inoculation testing of 49 wild emmer accessions and six Chinese wheat cultivars that
carry Yr15 at the seedling stage showed a range of resistance responses (infection type (IT) = 0–6)
against Pst race CYR34 (Figure 3). Of the 55 accessions, 47 (85.45%) were resistant (IT = 0–3), and eight
were intermediate (IT = 4–6).

The same set of wild emmer accessions together with six Chinese wheat cultivars harboring Yr15
were further evaluated in the field for adult-plant-stage resistance to stripe rust. All wheat accessions
carrying Yr15 showed resistance phenotype (IT = 0–3) (Figure 3). Thirty-seven accessions showed
consistent IT at seedling and adult-plant stages, whereas 18 accessions had significant lower IT at
adult-plant stage than those of seedling stage.
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Figure 3. Stripe rust resistance phenotype in wheat accessions carrying Yr15 functional allele. The stripe
rust ITs of each accession at seedling and adult stages are shown on the column. Each bar represents
the average value of the ITs and standard error of mean (SEM, n = 5). Some accessions showed no
variation among replicates (SEM = 0). One-way ANOVA was used to determine the significance level
between seedling and adult stages. Significance at *p < 0.05, significance at ***p < 0.0001.

3. Discussion

To date, three wheat resistance genes, stripe rust resistance gene Yr15 (WTK1) [20], stem rust
resistance gene Sr60 (WTK2) [22], and powdery mildew resistance gene Pm24 (WTK3) [23], have
been found to possess two tandem kinase (or pseudokinase) domains. Yr15 and Pm24 have been
shown to confer a broader spectrum of disease resistance than Sr60. In the current study, we have
characterized the distribution of Yr15 gene in a large set of wild emmer wheat accessions and Chinese
wheat germplasm as well as analyzed the nucleotide diversity with respect to the functional allele of
Yr15.

3.1. The Geographic Distibution of Yr15 in Wild Emmer Populations

In this study, we found that a low percentage (13.6%) of wild emmer accessions from Israel (the
southern distribution range of wild emmer) were Yr15 positive, and all of the accessions from Turkey
(the northern distribution range of this species) were Yr15 negative. Our results are in agreement
with those previously described by Klymiuk et al. [21]. Previous studies have shown that wheat was
probably domesticated from wild emmer in southeast Turkey (northern distribution range of wild
emmer) [24,25]. Recently, Nave et al. [26] demonstrated that at least part of the wild emmer from
the southern region of the Fertile Crescent played an important role in the emmer domestication
process. Therefore, the absence of Yr15 gene in wild emmer accessions that reside in the northern
distribution range and most of accessions in the southern distribution range, as well as in genepool of
cultivated wheats, support the idea that Yr15 was “left behind,” rather than lost, during early wheat
domestication events.
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The current screening of wild emmer natural populations confirmed that Yr15 gene is present only
in northern Israeli populations and distributed along a narrow mountain ridge of about 100 km from
Mt. Carmel to Mt. Hermon regions, mainly at an elevation of above 500 MASL [21]. Comparing the
wild emmer collections studied here and those of in Klymiuk et al. [21], we found only 91 accessions
were overlapped, while both studies revealed a similar geographic distribution of Yr15 in wild emmer
populations. It seems that selection pressure exerted by the pathogen is affecting the host-parasite
interactions and co-evolution and shaping the resistance genes distribution among wild emmer
populations [21,27]. In Israel, the climatic conditions are more favorable for stripe rust pathogen
development in the northern regions, which are cooler and more humid during the wheat growing
season, than in the southern regions of Israel [27]. Therefore, the climate conditions that favor high
stripe rust pressure may exert a strong positive selection for the distribution of Yr15 in wild emmer
populations. On the other hand, wild emmer accessions are known to show a wide range of variations
in flowering time due to different climate conditions within their habitats [28]. The heading date in
wild emmer accessions was positively correlated with mean annual rainfall and altitude but negatively
correlated with temperature variables [29]. It is known that wild emmer populations located on high
mountains (high humidity and low temperature) flower later than those located on lower elevation
habitats with warmer and drier climate conditions [30]. Thus, we cannot rule out the possibility that
the flowering time differences in the wild emmer wheat populations are affecting the Yr15 gene flow.

3.2. Sequence Diversity of the WTK1

In the present study, we detected a very low nucleotide diversity of functional Wtk1 in wild
emmer populations. Wtk1 alleles showed an average nucleotide diversity of π = 0.00002, which
is approximately 38 times lower than the mean nucleotide diversity (π = 0.0027) in 21 randomly
sequenced wild emmer housekeeping genes [31] (Figure 4). A similarly low level of polymorphism
has been found in wild emmer gene Yr36 (π = 0.00019) [27], which encodes a protein with a kinase
and lipid binding START domain that confers partial and a broad-spectrum stripe rust resistance.
In contrast, the nonfunctional wtk1 showed a high level of nucleotide diversity (π = 0.07, calculated
according to seven coding sequences of wtk1 in wheat).

The sequence conservation of Wtk1 is in sharp contrast to the high diversity of race-specific
resistance genes, such as Lr10 [11] and Pm3 [12], studied in wild emmer populations. For example,
the total nucleotide diversity of NB-LRR gene Lr10 (π = 0.029) [11] in wild emmer populations was
1450 times higher than that of Wtk1 (π = 0.00002). The sequence diversity of nonfunctional wtk1 is
comparable to those of the NB-LRR gene. The race-specific resistance genes exhibit high level of
nucleotide diversity due to the co-evolution with pathogens, which drives them to change recognition
specificity frequently [6,32]. In contrast, the broad-spectrum resistance genes, such as Yr15 and Yr36,
are expected to be more conserved. A selective sweet [33] may have shaped the very low diversity,
despite allelic diversity being advantageous. Furthermore, the nature of the resistance may also result
in little allelic variation being retained, despite it being advantageous.
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Pm3 [12] are indicated in blue, and the broad-spectrum partial resistance genes Lr34 [34] and Yr36 [27]
are indicated in green. The nucleotide diversity of functional Yr15 is indicated in red.

3.3. Stripe Rust Resistance Variation in Wild Emmer Accessions Carrying Yr15

In the present study, we observed a range of resistance responses in wild emmer accessions carrying
functional Yr15. Different hypotheses may explain our observation: (1) phenotypic differences in the
presence of Yr15 are likely associated to differences in the genetic backgrounds [35]; (2) the presence
of suppressors that suppressed Yr15-mediated resistance [36]; (3) absence/mutation of downstream
substrates of resistance gene signaling pathway [21,37].

3.4. The Potential Value of Yr15 Gene in Wheat Stripe Rust Resistance Breeding Programs in China

In a previous study, Yr15 was found only in the wild emmer populations and recently developed
Yr15 introgression lines but not in other cultivated wheat germplasm from around the globe [20].
In the present study, we further confirmed the lack of Yr15 in all tested wheat landraces from ten
major wheat-growing zones in China. To our best knowledge, Yr15 has not been widely used in wheat
breeding. For example, Yr15 was just recently deployed in a few commercial common wheat cultivars
in the US [17]. Zeng et al. [38] reported the absence of Yr15 in 330 leading cultivars and 164 advanced
breeding lines in China. In this study, we identified the presence of Yr15 in six cultivars/advanced
breeding lines in Sichuan province. These six lines that showed high resistance to wheat stripe rust
could serve as donors for conventional introgression of Yr15. Among them, two leading cultivars,
Chuanfu8 and Chuanyu29, were released in Sichuan in 2015 and 2017, respectively. Therefore, our
results demonstrated the potential value of Yr15 for wheat stripe rust resistance breeding in China.

4. Materials and Methods

4.1. Plant Material

A total of 340 accessions of wild emmer collected from 108 collection sites, representing a wide
range of ecogeographic distribution of wild emmer in Israel and its vicinity, and a total of 21 accessions
collected from natural populations in Lebanon, Syria, and Turkey were used to profile the distribution
and sequence diversity of Yr15 in wild emmer populations. These materials were provided mainly
by the Institute of Evolution Wild Cereal Gene Bank at the University of Haifa, Israel [39] and the
National Small Grains collection (NSGC, USDA). The list of accessions and their collection sites are
described in Table S1.
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A total of 189 wheat landraces from ten major wheat-growing zones (Table S2) [40], as well as
583 wheat prebreeding lines/varieties covering most important wheat-producing regions in China
(Table S3), were also included in the current study.

4.2. Analysis of Presence/absence Polymorphism in Yr15

Wheat genomic DNA was extracted from leaf tissue using the CTAB protocol [41]. Presence/absence
of Yr15 was detected using PCR amplification with three pairs of gene-specific primers of Yr15 (Table
S4). PCR was performed using the Gene Amp PCR system 9700 (Applied Biosystems, Foster City,
CA, USA) in 20 µL reaction volume containing 1× PCR buffer, 80 ng of DNA, 300 nM of each primer,
200 µM of each dNTP, and 0.5 U of Dream Taq™ DNA Polymerase (Thermo Scientific, Waltham, MA,
USA). Alternatively, the high-fidelity ExTaq polymerase (Takara, Dalian, China) was used for PCR
amplifications. A touchdown PCR amplification was performed as described by Huang et al. [27].
The PCR products were visualized by 1.5% agarose gel electrophoresis, followed by staining with
GoldView (Solarbio, Beijing, China).

4.3. Sequence Analysis of WTK1

The whole Wtk1 gene region of over 4.6 kb was amplified from DNA samples of 49 wild emmer
genotypes using four pairs of gene-specific primers (Table S4), designed based on the NCBI GenBank
accession MG649384 [20]. PCR products were purified using SanPrep Column DNA Gel Extraction Kit
(Sangon Biotech, Shanghai, China) and directly sequenced using Sanger chain termination method.
Alternatively, purified products were cloned into pMD19-T vector (Takara, Dalian, China) and
transformed into cells of Escherichia coli DH10B. Positive clones were identified by colony PCR. The
sequencing was performed by the Sangon Biotechnology Company (Chengdu, China). Sequence
reads were assembled and subjected to multiple alignments using DNAMAN software version 6.0
(Lynnon Biosoft, San Ramon, CA, USA). The obtained sequences were manually corrected. SNPs were
visually checked on the chromatogram to ensure their quality. The coding sequences of wtk1 were
obtained from whole-genome assemblies of common wheat Chinese Spring [42] and wild emmer
wheat Zavitan [43] as well as genomic sequence of wheat cultivars (Cadenza, Claire, Paragon, Robigus,
and Kronos; https://opendata.earlham.ac.uk/wheat/under_license/). DnaSP program version 5.0 [44]
was used to estimate nucleotide diversity (π) [45].

4.4. Stripe Rust Resistance Response

Forty-nine wild emmer accessions and six wheat varieties from Sichuan province carrying
functional Yr15 gene were tested for their response to stripe rust infection both at seedling and adult
stages. The highly virulent Pst race CYR34 (virulent on Yr1, Yr6, Yr7, Yr8, Yr9, Yr10, Yr17, Yr18, Yr24,
Yr26, Yr27, Yr28, Yr29, Yr31, Yr43, Yr44, YrExp2, and YrSP) [46] was used to inoculate the wild emmer
plants and the six wheat varieties at the two-leaf seedling stage. Urediniospores used for inoculation
of leaf tissue were first suspended in Isododecane and then sprayed using pneumatic airbrush (RuiYi,
Guangzhou, China). Inoculated plants were placed in a dew chamber (100% humidity) at 10 ◦C for
16 h in the dark followed by 8 h of light. The plants were then moved to a growth chamber (75%
humidity) with 10 ◦C during the dark period (8 h) and 15 ◦C during the light period (16 h). Disease
severity was evaluated and characterized 14–21 days after inoculation using a 0–9 scale of infection
type (IT) as described by Line and Qayoum [47]. The susceptible LDN cultivar was used as control for
lack of resistance to Pst race CYR34. ITs were summarized by combining them into three classes of
which 0–3 were considered as resistant response, 4–6 as intermediate, and 7–9 as susceptible.

A field evaluation for adult-plant stripe rust resistance of wild emmer accessions and wheat
cultivars was performed at the experimental field of the Triticeae Research Institute, Sichuan Agricultural
University, Wenjiang during the 2017/2018 crop season. The Pst-susceptible common wheat line SY95-71
was used as a spreader. Plants at the boot to heading stage were inoculated using a brush with a
mixture of Chinese prevalent Pst races (CYR32, CYR33, CYR34, Zhong4, and HY46) mixed with talc

https://opendata.earlham.ac.uk/wheat/under_license/
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(1:20) one hour before sunset. Disease notes were taken when susceptibility of flag leaves of SY95-71
was fully expressed.

5. Patents

The University of Haifa and The Natural Resources Institute Finland (Luke) had filed a patent
application on the use of the sequences of the yellow rust resistance gene Yr15 (PCT/IL2018/051081),
published previously by Klymiuk et al. (2018), in which T.F. and L.H. are listed as co-inventors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/3/212/s1,
Table S1: Distribution of Yr15 gene in wild emmer populations, Table S2: Chinese wheat landraces evaluated for
the presence of Yr15, Table S3: Wheat advanced lines/cultivars in China evaluated for the presence of Yr15, Table
S4: Oligonucleotide primers and PCR conditions used in the present study.
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