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Abstract: The ruthenium-based complex [Ru(η6-p-phenylethacrynate)Cl2(pta)]  

(pta = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane), termed ethaRAPTA, is an 

interesting antitumor compound. The elucidation of the molecular mechanism of drug 

activity is central to the drug development program. To this end, we have characterized the 

ethaRAPTA interaction with DNA, including probing the sequence specific modified DNA 

structural stability and DNA amplification using the breast cancer suppressor gene 1 

(BRCA1) of human breast and colon adenocarcinoma cell lines as models. The preference 

of ethaRAPTA base binding is in the order A > G > T > C. Once modified, the 

ethaRAPTA-induced BRCA1 structure has higher thermal stability than the modified 

equivalents of its related compound, RAPTA-C. EthaRAPTA exhibits a higher efficiency 

than RAPTA-C in inhibiting BRCA1 amplification. With respect to both compounds, the 

inhibition of BRCA1 amplification is more effective in an isolated system than in cell lines. 

These data provide evidence that will help to understand the process of elucidating the 

pathways involved in the response induced by ethaRAPTA. 

Keywords: BRCA1; DNA adducts; DNA amplification; ethaRAPTA; tumor  

suppressor gene 
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1. Introduction 

Since the introduction of cisplatin [cis-dichlorodiammineplatinum(II)], and its analog carboplatin 

[cis-diammine-(1,1-cyclobutanedicarboxylato) platinum(II)] into clinical practice [1–4] there has been 

much interest in the development of anticancer drugs. Both platinum complexes have a similar 

spectrum of antitumor activity against human testicular, ovarian, urinary bladder and head and neck 

cancers [3] and the mechanism of cytotoxicity is mediated via covalent DNA binding between a 

platinum atom and the N-7 atom of guanine and guanine or adenine. The majority of platinum-DNA 

adducts are intrastrand crosslinks in the order Pt-GG (65%), Pt-AG (25%) to Pt-GNG (6%) [5,6]. 

Minor adducts include interstrand crosslink and the monofunctional adducts. All adducts interfere with 

DNA replication, transcription and translation, and finally leads to the apoptosis pathway and cancer 

cell death. 

Unfortunately, the platinum-based anticancer complexes have some side effects such as 

nephrotoxicity, myelotoxicity, ototoxicity, peripheral neuropathy, nausea and vomiting, 

myelosuppression and thrombocytopenia [3,7]. Furthermore, their clinical utility is limited, and many 

tumor cells are resistant to platinum drugs [8,9]. Where platinum drugs are ineffective, the mortality 

from cancer is significantly higher than when they are effective. For these reasons, new transition 

metal-based compounds are being designed that overcome the platinum complex limitations. 

Ruthenium complexes have properties particularly well suited for medicinal applications [10], 

including relevant ligand exchange kinetics, redox potentials and the ability to mimic iron in binding to 

certain biological molecules [11]. Currently, several generations of ruthenium complexes have been 

synthesized and investigated for their anticancer properties [12]. These ruthenium complexes have a 

different mode of action than the platinum-based drugs and could therefore widen the range of cancers 

that can be treated. 

The ruthenium complexes imidazolium trans-[tetrachlorido(1H-imidazole)(S-dimethyl sulfoxide) 

ruthenate(III)] (NAMI-A) and indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] 

(KP1019) are among the most promising anticancer candidates [12]. Both NAMI-A and KP1019 have 

successfully completed phase 1 clinical trials and NAMI-A entered phase 2 clinical trials in 2008 (in 

combination with a cytotoxic drug), and KP1019 is also undergoing further clinical trials [13]. The 

RAPTA compounds contain a ruthenium(II)-arene unit with a PTA ligand [14]. These complexes have 

been shown to interact with DNA in a pH-dependent manner [15,16] and offer cancer cell specific 

targeting. In the case of the cytotoxicity of the RAPTA complexes on TS/A mouse adenocarcinoma 

cells and on HBL-100 cells (normal human breast epithelial cells), the RAPTA complexes are selective 

towards the TS/A cells whereas cytotoxicity on the HBL-100 cells was not observed [10]. The 

selective cytotoxicity of these RAPTA complexes toward the cancer cells could potentially lead to a 

drug with lower side effects compared to other metal-based anticancer drugs [10]. Although the rate of 

reaction with DNA is significantly lower than that of cisplatin, several RAPTA complexes display 

excellent in vivo activity [10,17]. The prototype compound, [Ru(6-p-cymene)Cl2(PTA)], termed 

RAPTA-C (Figure 1), remains the best characterized complex in the series and the molecular 

mechanism has been shown to involve mitochondrial-induced apoptosis [18]. However, the rate of 

reaction of RAPTA-C with DNA is significantly lower than those of cisplatin or carboplatin. Recently, 

organometallic ruthenium complexes containing ethacrynic acid (EA) ligands have been  
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rationally developed as drugs which selectively bind to glutathione S-transferase (GST) and inhibit  

GST activity [19]. With the validation of ethacraplatin to overcome glutathione S-transferase  

(GST)-mediated drug resistance, a new RAPTA complex with EA tethered to the arene ring 

[(ethacrynic-6-benzylamide)RuCl2(pta) or ethaRAPTA] (Figure 1), was therefore developed, and 

investigated for GST-inhibitory activity and its effect on the proliferation of cancer cells. EthaRAPTA 

was found to inhibit cancer cell growth (A549, HT29, MCF-7, A2780, and A2780cisR cell lines) [19]. 

However, the molecular mechanisms underlying the ethaRAPTA-induced response remain to  

be elucidated. 

Figure 1. Structures of the RAPTA complexes. 

 

BRCA1 is an important tumor suppressor gene in humans. Its translated product, the 220 kDa 

BRCA1 protein, has been shown to play an important role in genomic integrity maintenance  

such as DNA repair, cell-cycle checkpoint control, transcriptional regulation and protein  

ubiquitination [20–22]. Therefore, approaching such a gene as a potentially molecular target for the 

antitumor ruthenium(II)-arene (RAPTA) compounds might be of interest in cancer therapy. Recently, 

the interaction of two RAPTA compounds, RAPTA-C and carboRAPTA-C, with the specified DNA 

sequence of the human breast cancer suppressor gene BRCA1 has been studied [23]. The ruthenation of 

DNA by RAPTA-C was also very similar to the platination value observed for carboplatin. Both 

RAPTA-C and carboRAPTA-C formed different ruthenium-DNA adducts with predominantly 

monofunctional adducts at A and C and, to a lesser extent, at G, which contrasts with the behavior of 

cisplatin [24]. For ethaRAPTA, the Ru-modified BRCA1 may lose its functions in cancerous cells  

that ultimately result in cancer cell death. In the present study, we investigate the interactions  

of ethaRAPTA with the specified DNA sequence of the human BRCA1 gene in cells and a  

cell-free system. 

2. Results and Discussion 

2.1. EthaRAPTA-Mediated Conformational Changes of the Cell-Free BRCA1 Fragment 

The 3'-terminal region of the human BRCA1 gene covering exon 16–24 (nucleotide 4897–5592) 

was used as a model for the ethaRAPTA-mediated retardation of DNA. The electrophoretic mobility of 

ethaRAPTA-treated BRCA1 fragment was reduced as the concentration of ethaRAPTA increased 

(Figure 2). Ruthenation caused a progressive increase in the frequency of DNA lesions. It is interesting 

to note that at a ruthenium concentration of 200 μM, the band disappeared due to aggregation of the 
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ethaRAPTA-BRCA1 adducts and thus inhibited the intercalation of ethidium bromide into the DNA 

molecules at higher levels of ruthenation. 

Figure 2. Electrophoretic mobility of ethaRAPTA-treated BRCA1 fragment. The 696 bp 

BRCA1 fragment (3 μg) was incubated with various concentrations of ethaRAPTA  

(100–1000 μM) at 37 C for 24 h in the dark. Ruthenated DNA was electrophoresed on 1% 

agarose gel. The gel was stained with ethidium bromide and visualized under UV light.  

M = 100 bp DNA ladder, C-1 = untreated DNA (DNA solution in sterile double distilled 

water), C-2 = untreated DNA (DNA solution in DMSO). 

 

Gel electrophoresis was used to study the effect of ethaRAPTA on DNA interstrand crosslinks. 

Under alkaline denaturation, double-stranded DNA is disrupted to a single strand. Both strands migrate 

similarly as the rate is dependent on the size and not the sequence of DNA. The mobility of the DNA 

strands began to change at the ruthenium(II) complex concentration of 50 μM and this change was 

complete at the concentration of 80 μM (Figure 3). At ethaRAPTA concentration of 50 μM, initiation 

of interstrand crosslinks was formed. The intensity of interstrand crosslinks increased as ethaRAPTA 

concentration increased. The complete interstrand crosslinks were formed at ethaRAPTA 

concentration of 80 μM. At a ruthenium concentration of 70 μM or above, the band intensity was 

reduced due to aggregation of the ethaRAPTA-BRCA1 adducts and thus inhibited the intercalation of 

ethidium bromide into the DNA molecules at higher levels of ruthenation. 

Figure 3. Interstrand crosslinks between ethaRAPTA and the BRCA1 fragment. The  

696-bp BRCA1 fragment (3 μg) was incubated with various concentrations of ethaRAPTA 

(20–100 μM) at 37 C for 24 h in the dark. Ruthenated DNA was electrophoresed on 1% 

alkaline agarose gel. The gel was neutralized by neutralizing solution, stained with 

ethidium bromide and visualized under UV light. 
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2.2. The Preference of ethaRAPTA Base Binding is in the Order A > G > T > C 

Preferential sites for ruthenation on the 696-bp fragment of the 3'-terminal region of BRCA1 may be 

deduced from restriction analysis using specific enzymes (EcoO109I and PvuII) that recognize specific 

sequences on the tested gene. The EcoO109I cleaved the gene fragment into two fragments of 283-bp 

and 413-bp and the digestion of PvuII produced two digested fragments of 237-bp and 459-bp which 

can be detected by electrophoresis on an agarose gel. Production of the digested fragments from 

ethaRAPTA-treated DNA in the presence of both EcoO109I (dGpG) and PvuII (dGpC) was inhibited 

at similar concentrations, in a dose-response behavior (Figure 4). At 800 μM or above, the 

ethaRAPTA-treated BRCA1 fragment became resistant to both restriction enzymes. Both enzymes 

showed a similar level of inhibition and with no specificity between the two restriction sites. However, 

these two enzymes were about twice less effective in restriction cleavage when compared with its 

prototype RAPTA-C-treated BRCA1 fragment [23], indicating that the large bulky group of the 

ruthenium center may hinder accessibility by the enzymes to their restriction sites on the DNA 

molecules. In addition, the band intensity was reduced due to aggregation of the ethaRAPTA-BRCA1 

adducts and thus inhibited the intercalation of ethidium bromide into the DNA molecules at higher 

levels of ruthenation. 

Figure 4. Restriction analysis for ruthenation site of the 696-bp BRCA1 fragment. The  

696-bp BRCA1 fragment (3 μg) was incubated with various concentrations of RAPTA-EA1 

(200–1600 μM) at 37 C for 24 h in the dark. The ethaRAPTA-treated DNA was 

precipitated, redissolved in steriled double distilled water and further incubated with  

either EcoO109I or PvuII at 37 C for 5 and 6 h, respectively. Restriction products were 

electrophoresed on 1% agarose gel. The gel was stained with ethidium bromide and 

visualized under UV light. M = 100 bp DNA ladder, C = untreated and uncut DNA. 

 

The sequence specificity of ethaRAPTA-BRCA1 adducts was determined. Sequence analysis 

showed that ethaRAPTA was preferentially attacked by the BRCA1 gene in the order A > G > T > C. 

A possible interstrand crosslinking between the ruthenium atom and the base/sequence of the BRCA1 

fragment is shown in Figure 5. However, no ethaRAPTA-BRCA1 adducts were observed at the 

EcoO109I or PvuII cleavage sites suggesting that the ruthenation with the accessibility or function of 

these endonucleases. The observed ruthenation sites in this study agree very well with NMR, MS and 
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gel electrophoresis studies, suggesting that RAPTA, NAMI-A and KP1019 exhibit similar reactivity 

towards adenine and guanine [13,14]. In addition, it was found that adduct formation of the BRCA1 

fragment induced by RAPTA-C or carboRAPTA-C occurred most frequently at A, C, and G, in that 

order [23]. These crosslinks can be expected based on their different properties of the ruthenium 

complexes [25]. 

Figure 5. Schematic diagram showing base/sequence of the BRCA1 fragment used to 

monitor the inhibition of DNA synthesis on the template modified by ethaRAPTA. The 

arrow indicates the start site and the direction of DNA synthesis. The bars represent 

possible monofunctional crosslinks. TGGGCCC is a recognition sequence of EcoO109I 

and CAGCTG is a recognition sequence of PvuII. Numbers represent the nucleotide 

sequence of cDNA of BRCA1 gene (exon 16–24). 

 

2.3. EthaRAPTA can also Bind to the BRCA1 Fragment through Intercalation 

The absorption spectra of ethaRAPTA, in the absence and the presence of the BRCA1 fragment (at a 

constant concentration of complexes; 1000 μM), is shown in Figure 6. The absorption intensities of 

ethaRAPTA were shown to successively increase and exhibited hyperchromism. This result is similar 

to that reported for the interaction of other types of ruthenium(II) complexes [26–29]. The intrinsic 

binding constant (Kb) of the complex with the BRCA1 fragment was determined as 2.34 × 106 M−1 

from the changes in absorbance at 340 nm using the Equation 1 (see Experimental Section). As a 

result, ethaRAPTA can also bind to the BRCA1 fragment through intercalation [30]. 
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Figure 6. Absorption spectra of ethaRAPTA complex ([Ru] = 1 mM) in the presence  

of increasing concentrations of the 696-bp BRCA1 fragment. The arrow indicated  

the changes in absorbance upon increasing the DNA concentration. Inset: plot of  

[DNA]/(εa − εf) vs. [DNA]. 

 

2.4. Altered Thermal Stability of EthaRAPTA Adducts 

The DNA melting technique is indeed a very popular, sensitive and easy tool to detect even slight 

DNA conformational changes induced by metal complexes and other ligands [31]. As temperature is 

increased, the double-stranded DNA gradually dissociates to a single strand, and generates a 

hypochromic effect on the absorption spectra of DNA bases (λmax = 260 nm). The melting temperature 

(Tm), which is defined as the temperature where half of the total base pairs are dissociated, is 

determined from the thermal denaturation curves of DNA. Difference in melting temperature of DNA 

treated and non-treated by metal complexes can give an insight into the nature of the interaction of the 

metal complexes with DNA. The ΔTm values are small and positive for covalent adducts of monoaqua 

complexes and are large and positive for adducts of diaqua complexes [32]. The positive values of ΔTm 

imply that the covalent adduct is more difficult to melt than the unbound DNA. The DNA melting 

curves for the BRCA1 fragment in the absence or in the presence of the ruthenium(II) complexes  

were shown in Figure 7. When compared with the untreated DNA, the melting temperature increased 

upon treatment with either RAPTA-C or ethaRAPTA, respectively. An increase in DNA melting 

temperature may reflect an increased stability of the helical DNA structure after binding to these 

RAPTA complexes. 
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Figure 7. Thermal denaturation of the 696-bp BRCA1 fragment in the absence (♦) or in the 

presence of RAPTA-C (▲) and ethaRAPTA (■). The 696-bp BRCA1 fragment (3 μg) was 

incubated with either ethaRAPTA or RAPTA-C at 37 C for 24 h in the dark. Thermal 

denaturation was obtained by measuring the absorbance at the wavelength of 260 nm with 

the temperature scanning. The melting temperature (Tm) was taken as a mid-point of the  

melting curves. 

 

2.5. EthaRAPTA Exhibited a Higher Efficiency than RAPTA-C in Inhibiting BRCA1 Amplification  

In order to detect the degree of DNA damage, the quantitative PCR (QPCR) method was used to 

monitor the progress of the Taq DNA polymerase in a PCR that utilized the DNA adducts as templates. 

Previous reports have shown that the QPCR assay can be used to study cellular DNA damage in  

the specific genes after exposure to DNA damaging agents, such as cisplatin [33], carboplatin [33], 

nitrogen mustards [34,35], UV irradiation [36], chlorambucil [37], alkylbenzylguanine [38], and  

2-chloro-2-deoxyadenosine [39]. QPCR is a reliable method, equivalently sensitive to the ICP-MS 

method to analyze the incorporation of platinum-based drugs into the gene of interest [33]. The PCR 

was carried out under conditions that allowed for exponential amplification such that DNA damage 

will significantly reduce the amount of the amplified product. A QPCR study for ruthenium complexes 

has been previously reported and indicated that the ruthenium complexes reduced the amount of 

amplified DNA compared to the control untreated DNA [23]. As shown in Figure 8, the plots showed 

that DNA amplification decreased as the concentration of ethaRAPTA increased. DNA amplification 

was reduced by half at an approximate concentration of 300 μM for both ruthenium complexes. 

However, ethaRAPTA was only slightly more effective than RAPTA-C at blocking DNA replication. 
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Figure 8. Amplification products of DNA treated by ethaRAPTA and RAPTA-C were 

quantified, and the amount of DNA amplification (%) was plotted as a function  

of concentration. 

 

Induction of lesions with the 696-bp BRCA1 fragment can be quantitated by assuming a random 

(Poisson) distribution of damage [33]. The amounts of lesions per the BRCA1 fragment are calculated 

using the Poisson equation, Equation 2, as described in the Experimental Section. A relationship 

between the concentration of ethaRAPTA and ruthenated DNA is illustrated in Figure 9 and is used to 

estimate the amounts of DNA lesions in the BRCA1fragment. The results showed approximately one 

lesion per the BRCA1 fragment at 50% inhibition of DNA amplification. 

Figure 9. The number of lesions per the BRCA1 fragment induced by ethaRAPTA and 

RAPTA-C. Absorbance units were applied to a Poisson equation and plotted as a function 

of the concentration. 
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For cellular DNA damage, the MCF-7 or HT-29 cell lines were incubated with either ethaRAPTA 

or RAPTA-C before genomic DNA was extracted and analyzed. As shown in Figure 10A,B, two 

RAPTA complexes significantly reduced BRCA1 amplification of both the MCF-7 and HT-29 cells. 

The total amount of amplified PCR product was inversely proportional to the amount of DNA adducts 

within the specified BRCA1 fragment (Figure 11A,B). 

Figure 10. Cellular BRCA1 damage in MCF-7 (A) and HT-29 (B) cells. The cells were 

incubated with various concentrations of ethaRAPTA (200–400 μM) and RAPTA-C  

(200–1200 μM), respectively, at 37 C for 48 h in 5% CO2. Genomic DNA of the 

ruthenium-treated or untreated cells was isolated, and the 3426-bp fragment of the BRCA1 

exon 11 of the cells was then amplified by PCR, electrophoresed on 1% agarose gel, 

stained with ethidium bromide and then visualized under UV light. The amplification 

products were quantified using a Bio-Rad Molecular Imager, and the amount of DNA 

amplification (%) was plotted as a function of the concentration. 

 
(A) 

 
(B) 
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Figure 11. The number of lesions per the 3426-bp fragment of the BRCA1 exon 11 in 

MCF-7 (A) and HT-29 (B) cells calculated by the Poisson equation. 

 
(A) 

 
(B) 

EthaRAPTA blocked 50% DNA amplification of the BRCA1 exon 11 of MCF-7 cells at a 

concentration of 300 μM and that of HT-29 cells above 300 μM. Similarly, RAPTA-C exerted its 

inhibitory effect on DNA amplification at a concentration of 1000 μM and 500 μM for MCF-7 and 

HT-29 cells, respectively. However, an approximate 6- to 15-fold higher concentration of ethaRAPTA 

was required to achieve the 50% inhibition of DNA amplification in both cell lines. In addition, the 

ethacrynic acid alone did not interfere with DNA amplification (data not shown). 

The inhibition concentration of 50% cancer cell growth, as shown in Table 1, by ethaRAPTA was 

lower than that by RAPTA-C both in MCF-7 and HT-29 cell lines, indicating a higher efficiency of 

ethaRAPTA over RAPTA-C in inhibiting these cancer cell growths. The increased efficiency may be a 

function of the ligand substitution on an arene group of these RAPTA complexes and nature of  

the cells [19,40,41]. In ethaRAPTA, ethacrynate is hydrophobic [42], making the complex more 

hydrophobic than that of the RAPTA-C. Furthermore, ethacrynic acid has a unique ability to inhibit 

glutathione S-transferase [43], particularly with GST P1-1 [19,30,41,44,45] offering increased potency 

via protection against detoxification. Crystallographic studies showed ethaRAPTA coordinated with 

both Cys101 residues from the homodimer of GST P1-1 via a loss of the chloride ligands. The 

ethacrynate ligand inserted into the hydrophobic substrate binding site (H-site), which is part of the 

active site [46,47], produced an interaction that suggests the disruption of the c-Jun N-terminal kinase 

(JNK) inhibition elicited by GST P1-1 enzyme [48].  
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Table 1. Inhibition of cancer cell growth and DNA amplification by ethaRAPTA  

and RAPTA-C. 

Metal complexes 
50% Inhibition (μM) of 

DNA amplification 
50% Inhibition (μM) of 

cancer cell growth 

 MCF-7 HT-29 MCF-7 HT-29 
Cisplatin 25 [33] ND 36 17 

ethaRAPTA 300 >300 * 20 50 
RAPTA-C 1000 500 * >1600 500 

* ethaRAPTA above 300 μM and RAPTA-C above 600 μM (as shown in Figure 10B) precipitated 
in the growth medium of the cell culture. ND = not determined.  

It is observed that the degree of inhibition of DNA amplification by these two RAPTA complexes 

was lower in cancerous cells than in the isolated systems, possibly because of the interaction of the 

metal complexes with participating proteins [45] or the structure of the histone-bound DNA offering 

some protection [49]. It was also noted that in some incubations (ethaRAPTA above 300 μM and 

RAPTA-C above 600 μM, as shown in Figure 10B), the RAPTA complexes precipitated in the growth 

medium of the cell culture. In addition, ethaRAPTA has been shown to interact with proteins in the 

cell culture medium and such interactions are favored over DNA binding [30]. It is likely that 

ethaRAPTA interacts with numerous targets [17,30,45,50–56]. In addition, ethaRAPTA has been 

demonstrated to induce apoptosis in the cisplatin-resistant MCF-7 breast cancer cell line. This 

suggested that ethaRAPTA triggers multiple pathways toward apoptosis, including those involving 

endonuclease G, caspases, and c-Jun N-terminal kinase [46]. These data provided insights into the 

mode of action of ethaRAPTA to participating proteins as opposed to DNA [49]. Therefore, it could be 

possible that DNA is not the primary target for ethaRAPTA, based on our data of the inhibition of 

DNA amplification. 

3. Experimental Section 

3.1. Materials 

EthaRAPTA and RAPTA-C were prepared using literature protocols [15,41]. Taq DNA 

polymerase, PvuII, EcoO190I, dNTPs and Tris-HCl were from New England Biolabs. The nucleotide 

sequences of the forward and reverse primers were obtained from Invitrogen; RT-PCR: forward 

primer, 5'-AGCAGGGAGAAGCCAGAATTG-3' and reverse primer, 5'-TCAGTAGTGGCTGTGG 

GGGAT-3'; 696-bp BRCA1: forward primer, 5'-ATAAAATCGACAGGGATCCTTAGCAGGGAG 

AAGCCAGAATTG-3' and reverse primer, 5'-ACTTTGTGTTCATTTTCTAGATCAGTAGTGGCTG 

TGGGGGAT-3'; 3426-bp BRCA1 exon 11: forward primer, 5'-GCCAGTTGGTTGATTTCCACC-3' 

and reverse primer, 5'-GTAAAATGTGCTCCCCAAAAG-3'. All other reagents were of the highest 

purity grade. 

3.2. Preparation of the 696-bp BRCA1 Fragment (Exon 16–24, Nucleotide 4897–5592) 

RNA (mRNA) was extracted from white blood cells using an mRNA isolation kit and biotinylated 

oligo-dT (Qiagen). The purified mRNA was used for complementary DNA (cDNA) synthesis and the 
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amplification of the 696-bp BRCA1 fragment (nucleotide 4897–5592) was performed with the Qiagen 

OneStep RT-PCR Kit (Qiagen). The RT-PCR mixture was prepared in a 1.5-mL microcentrifuge tube 

with a final volume of 50 mL, containing a 5 mL reaction buffer, 400 μM of each dNTP, 0.6 μM of 

forward primer, 0.6 μM of reverse primer, OneStep RT-PCR enzyme mix (Qiagen), and RNase-free 

H2O. The template RNA was finally added in order to initiate the PCR reaction using two-step thermal 

cycling. The first step comprised of one cycle at 48 C for 45 min, allowing for the synthesis of the 

first strand cDNA by the action of reverse transcriptase. The reverse transcriptase was inactivated at  

94 C for 2 min. The second step included 40 cycles of denaturation at 94 C for 30 s, annealing at  

60 C for 1 min, and extension at 68 C for 2 min. The extension of the final cycle was expanded to  

7 min. The amplified PCR product was subjected to gel electrophoresis in agarose at 80 V for 60 min. 

The gel was stained with ethidium bromide (EB), visualized under ultraviolet light (UV), and the DNA 

extracted with a gel extraction kit (Qiagen). The sequence of the purified 696-bp BRCA1 fragment  

was subsequently verified using an automated DNA sequencer (ABI PRISM™ 377 DNA Sequencer) 

with a PRISM™ Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kit (Applied Biosystem,  

Foster City, CA, USA).   

To avoid the interaction between ruthenium atoms and salts in buffers, the purified 696-bp BRCA1 

fragment (3 μg) used in the following experiments was dissolved in double-distilled water and then 

incubated with various concentrations of ethaRAPTA at 37 C for 24 h in the dark. Ruthenated DNA 

was further characterized for adduct formation and in vitro inhibition of DNA amplification. 

3.3. Sequence Preference for EthaRAPTA Binding to the BRCA1 Fragment 

The ethaRAPTA-treated BRCA1 fragment control (non-ruthenated) was ethanol precipitated, 

resuspended in double-distilled water and the concentration of DNA was determined 

spectrophotometrically at 260 nm. Ruthenium-treated DNA (200 ng) was mixed with BigDye 

terminator in a PCR tube (20 μL) containing 5 pmol of forward primer (5'-GGAATTCCATA 

TGAGCAGGGAGAAG-3') or reverse primer (5'-ATTGGTTCTGCAGRCAGTAGTGGCT-3'),  

200 μM of each dNTP, 1.5 mM MgCl2, 1 mM Tris-HCl (pH 8.3), and 1 unit of Taq DNA polymerase. 

The reactions were subjected to temperature cycling using a Perkin-Elmer Model 9600 cycle (Applied 

Biosystem, Foster City, CA, USA). The reactions used followed the protocols in the literature [23]. 

3.4. Absorption Titration 

Absorption spectra were recorded on a Hewlett-Packard 8452A Diode Array Spectrophotometer 

using a cuvette of 10 mm path length. The absorption titration was performed with a solution of 1 mM 

ethaRAPTA in DMSO. The DNA solution of 4–17 μL (1 × 10−4–5 × 10−4 M) was added to the sample 

cell. The sample solution was mixed and allowed to equilibrate for 15 min before measurement.  

The data were then fitted to the following equation, Equation 1, to obtain the intrinsic binding  

constant, Kb [57]. 

[DNA]/(εa − εf) = [DNA]/(εb − εf) + 1/Kb(εb − εf) (1) 
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where εa, εf and εb are the apparent, free and bound metal complex extinction coefficients, respectively. 

From a plot of [DNA]/(εa − εf) vs. [DNA], a slope of 1/(εb − εf) is obtained. Kb is the ratio of slope and 

the intercept. 

3.5. Thermal Denaturation of RAPTA-BRCA1 Adducts 

The 696-bp BRCA1 fragment (3 μg) was incubated with 60 μM of ethaRAPTA or 30 μM RAPTA-C 

in 1000 μL of a reaction mixture at 37 C for 24 h in the dark. Thermal denaturation profiles were 

obtained by measuring the absorbance at 260 nm for solutions of the 696-bp BRCA1 fragment in the 

absence and presence of the RAPTA complexes with the temperature scanning of 20–100 C. The 

melting temperature (Tm) was taken as the mid-point of the melting curves. 

3.6. Quantification of DNA Lesions Using QPCR 

The quantitative PCR (QPCR) method was used to assess the polymerase inhibiting effect of DNA 

ruthenation. RAPTA-treated DNA was ethanol precipitated and centrifuged at 12,000g at 4 C for  

20 min. After drying, the DNA pellet was resuspended in 10 μL of double distilled water and the 

concentration of DNA was determined spectrophotometrically at 260 nm. The PCR mixture (50 μL) 

contained 100 ng of Ru-treated DNA, 0.5 μM of each forward and reverse primer, 200 μM of each 

dNTP, 2 mM MgCl2, and 1.5 units of Taq DNA polymerase. The PCR conditions were as follows:  

3 min at 94 C, 30 cycles of 45 s at 60 C, 45 s at 72 C, and a final extension for 10 min. The PCR 

products were separated by gel electrophoresis on 1% agarose at 80 V for 60 min. The gel was stained 

with ethidium bromide and visualized under UV light. 

Product amplification was measured directly from the agarose gel using a Bio-Rad Molecular 

Imager with Image Quant Software Bio-Rad GS-700 Imaging Densitometer with the Molecular 

Dynamics program (version 1.0.2, Bio-Rad, Hercules, CA, USA, 1994). The amount of amplification 

was represented by the units of absorbance of the amplified products. The quantitative PCR assay was 

further employed to estimate the number of lesions per strand. Based on the assumption that the lesions 

were randomly distributed [33], the Poisson equation, Equation 2, was used to calculate the lesion 

frequency per strand. 

S = −ln(Ad/A) (2) 

Where S is the lesion frequency/strand, A is the absorbance unit produced from a given amount of  

non-damaged DNA template, and Ad is the absorbance unit produced from a given amount of damaged 

DNA template (damaged by a particular dose of ethaRAPTA). Therefore, Ad/A is the fraction of  

non-damaged template at a given dose. 

3.7. Cell Culture 

A human breast adenocarcinoma cell line (MCF-7) and a human colon adenocarcinoma cell line 

(HT-29) were grown as monolayers in Dulbecco’s modified Eagle medium (DMEM) without phenol 

red, supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin and incubated at  

37 C with 5% CO2. 
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3.8. Cell Treatment and Genomic DNA Preparation 

About 1 × 106 MCF-7 or HT-29 cells were seeded into each well of a 6-well flat-bottomed plate. 

The cells were treated with the RAPTA complexes at various final concentrations (0–400 μM for 

ethaRAPTA and 0–1000 μM for RAPTA-C), and incubated at 37 C for 48 h. Genomic DNA was 

prepared using a procedure modified from the literature methods [33,58]. The RAPTA-treated cells 

and untreated control cells were harvested and washed twice with 0.5 mL of phosphate-buffered saline 

(PBS). The cells were centrifugation at 3000g for 5 min and the pellet resuspended in a 1.5 mL 

microcentrifuge tube with 500 μL of a cell lysis buffer. The cell lysate was digested overnight at 37 C 

with 25 μL of 10% sodium dodecyl sulfate and 2 μL of a proteinase K solution. After digestion was 

completed, 140 μL of saturated NaCl (6 M) was added and shaken vigorously for 15 s, followed by 

centrifugation at 3000g for 20 min. The protein sediment was left at the bottom of the tube and the 

supernatant containing the DNA was transferred to another 1.5 mL microcentrifuge tube. DNA was 

precipitated by addition of 2 volumes of absolute ethanol and centrifuged at 13,000g at 4 C for  

20 min. The DNA pellet was washed twice with 70% ethanol, dried and resuspended in 100 μL of 

double distilled water. 

3.9. Quantification of DNA Lesions in Cancer Cells 

Exon 11 of the BRCA1 gene (3426 bp) is a model DNA target for studying the effect of the RAPTA 

complexes (ethaRAPTA and RAPTA-C) on DNA amplification. The total volume of the PCR mixture 

was 50 μL containing 400 ng of ruthenated genomic DNA template, 0.5 μM of each forward and 

reverse primer, 300 μM of each dNTP, 2 units of Phusion Hot Start DNA polymerase, 1.5 mM MgCl2, 

1xPhusion™ GC Buffer. The PCR conditions used for amplifying the RAPTA adduction were as 

follows: 3 min at 98 C; 30 cycles of 30 s at 60 C, 2 min at 72 C and a final extension for 7 min at  

72 C. PCR products were electrophoresed on 1% agarose gel at 100 V and stained with ethidium 

bromide. The resulting PCR products were visualized and quantitated using the QPCR analysis. 

3.10. Cytotoxicity Assays 

MCF-7 and HT-29 cells were cultured in Dulbecco’s modified Eagle medium (DMEM)  

(pH 7.2–7.4) without phenol red supplement with 10% FBS and 1% penicillin-streptomycin. All cells 

were incubated at 37 °C with 5% CO2. The logarithmically growing cells were detached using 0.25 g/L 

trypsin-ethylenediamminetetraacetic acid (EDTA) solution (Gibco, Birmingham, MI, USA), washed 

twice with supplemented medium and centrifuged at 1500g for 5 min at 25 °C. Cells were plated  

at density of 5 × 104 cells per well into flat-bottmomed 96-well microplates and cultured in  

incubator overnight at 37 °C. The ruthenium(II) complex (ethaRAPTA or RAPTA-C) with various 

concentrations was added in culture medium, and further incubated for 48 h. The medium  

was removed and washed twice with 100 μL of phosphate buffer saline (PBS). Then, the  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) solution (final concentration of 

0.5 mg/mL) was added to each well and incubated for 3–4 h. The MTT solution was gently removed 

and the formazan crystals were dissolved with 200 μL of dimethylsulfoxide solution (DMSO). 

Absorbance was measured at 570 nm using and automated microplate reader. The cell viability rate 
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was calculated as follows: cell viability (%) = (absorbance of the treated wells)/(absorbance of the 

control wells) × 100%. 

4. Conclusions 

The present study described a detailed investigation of the interaction of ethaRAPTA with the 

human BRCA1 gene fragment. We have characterized the ethaRAPTA interaction with DNA, 

including probing the sequence specific modified DNA structural stability and DNA amplification 

using the breast cancer suppressor gene 1 (BRCA1) of human breast and colon adenocarcinoma cell 

lines as models. The preference of ethaRAPTA base binding is in the order A > G > T > C. Once 

modified, the ethaRAPTA-induced BRCA1 structure has higher thermal stability than the related 

compound, RAPTA-C, modified equivalents. EthaRAPTA exhibits a higher efficiency than RAPTA-C 

in inhibiting BRCA1 amplification. With respect to both compounds, the inhibition of BRCA1 

amplification is more effective in an isolated system than in cell lines. These data provide evidence 

that will help to understand the process of elucidating the pathways involved in the response induced 

by ethaRAPTA. In addition, approaching such a gene as a potential molecular target for the novel 

antitumor ethaRAPTA could be of interest in cancer therapy. 

Acknowledgments 

This work received financial support by a grant from the National Research Council of Thailand 

(PHA550012S) and Prince of Songkla University (PHA550314S). The authors are indebted  

to Professor Wee Han Ang (NUS) for providing the samples of ethaRAPTA and RAPTA-C. We  

would like to thank Dr. Brian Hodgson for assistance preparing this paper, and the Pharmaceutical 

Laboratory Service Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University for  

research facilities. 

References 

1. Rosenberg, B.; van Camp, L.; Krigas, T. Inhibition of division in Escherichia coli by electrolysis 

products from a platinum electrode. Nature 1965, 205, 698–699. 

2. Rosenberg, B.; van Camp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of 

potent antitumor agents. Nature 1969, 222, 385–386. 

3. Keppler, B.K. Metal Complexes in Cancer Chemotherapy, 1st ed.; VCH Publishers: New York, 

NY, USA, 1993; pp. 1–8. 

4. Orvig, C.; Abrams, M.J. Medicinal inorganic chemistry: Introduction. J. Chem. Rev. 1999, 99, 

2202–2203. 

5. Eastman, A. Reevaluation of interaction of cis-dichloro(ethylenediamine)-platinum(II) with DNA. 

Biochemistry 1986, 25, 3912–3915. 

6. Fichtinger-Schepman, A.M.J.; van Oosterom, A.T.; Lohman, P.H.M.; Berends, F.  

cis-Diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven 

cancer patients. Cancer Res. 1987, 47, 3000–3004. 



Int. J. Mol. Sci. 2012, 13 13199 

 

 

7. Wong, E.; Giandomenico, C.M. Current status of platinum-based antitumor drugs. Chem. Rev. 

1999, 99, 2451–2466. 

8. Holler, E. Mechanism of Action of Tumor-Inhibiting Metal Complexes. In Metal Complexes in 

Cancer Chemotherapy, 1st ed.; Keppler, B.K., Ed.; VCH Publishers: New York, NY, USA, 1993; 

pp. 39–71. 

9. Wernyj, R.P.; Morin, P.J. Molecular mechanisms of platinum resistance: Still searching for the 

Achilles’ heel. Drug Resist. Updat. 2004, 7, 227–232. 

10. Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.;  

Geldbach, T.J.; Sava, G.; Dyson, P.J. In vitro and in vivo evaluation of ruthenium(II)-arene pta 

complexes. J. Med. Chem. 2005, 48, 4161–4171. 

11. Allardyce, C.S.; Dyson, P.J. Ruthenium in medicine: Current clinical uses and future prospects. 

Platinum Metals Rev. 2001, 45, 62–69. 

12. Ang, W.H.; Dyson, P.J. Classical and non-classical ruthenium-based anticancer drugs: Towards 

targeted chemotherapy. Eur. J. Inorg. Chem. 2006, 2006, 4003–4018. 

13. Groessl, M.; Tsybin, Y.; Hartinger, C.; Keppler, B.K.; Dyson, P.J. Ruthenium versus platinum: 

Interactions of anticancer metallodrugs with duplex oligonucleotides characterized by electrospray 

ionisation mass spectrometry. J. Biol. Inorg. Chem. 2010, 15, 677–688. 

14. Dorcier, A.; Hartinger, C.G.; Scopelliti, R.; Fish, R.H.; Keppler, B.K.; Dyson, P.J. Studies on the 

reactivity of organometallic Ru-, Rh- and Os-pta complexes with DNA model compounds.  

J. Inorg. Biochem. 2008, 102, 1066–1076. 

15. Allardyce, C.S.; Dyson, P.J.; Ellis, D.J.; Heath, S.L. [Ru(eta(6)-p-cymene)Cl2(pta)]  

(pta=1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane): A water soluble compound that exhibits pH 

dependent DNA binding providing selectivity for diseased cells. Chem. Commun. 2001,  

1396–1397. 

16. Groessl, M.; Hartinger, C.G.; Dyson, P.J.; Keppler, B.K. CZE-ICP-MS as a tool for studying the 

hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model 

compound dGMP. J. Inorg. Biochem. 2008, 102, 1060–1065. 

17. Bergamo, A.; Masi, A.; Dyson, P.J.; Sava, G. Modulation of the metastatic progression of breast 

cancer with an organometallic ruthenium compound. Int. J. Oncol. 2008, 33, 1281–1289. 

18. Chatterjee, S.; Kundu, S.; Bhattacharyya, A.; Hartinger, C.G.; Dyson, P.J. The  

ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial 

and p53-JNK pathways. J. Biol. Inorg. Chem. 2008, 13, 1149–1155. 

19. Ang, W.H.; de Luca, A.; Chapuis-Bernasconi, C.; Juillerat-Jeanneret, L.; Lo Bello, M.;  

Dyson, P.J. Organometallic ruthenium inhibitors of glutathione-S-transferase P1-1 as anticancer 

drugs. ChemMedChem 2007, 2, 1799–1806. 

20. Huen, M.S.Y.; Sy, S.M.H.; Chen, J. BRCA1 and its toolbox for the maintenance of genome 

integrity. Nat. Rev. Mol. Cell. Biol. 2010, 11, 138–148. 

21. O’Donovan, P.J.; Livingston, D.M. BRCA1 and BRCA2: Breast/ovarian cancer susceptibility 

gene products and participants in DNA double-strand break repair. Carcinogenesis 2010,  

31, 961–967. 



Int. J. Mol. Sci. 2012, 13 13200 

 

 

22. Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; 

Cochran, C.; Bennett, L.M.; Ding, W.; et al. A strong candidate for the breast and ovarian cancer 

susceptibility gene BRCA1. Science 1994, 266, 66–71. 

23. Ratanaphan, A.; Temboot, P.; Dyson, P.J. In vitro ruthenation of human breast cancer suppressor 

gene1 (BRCA1) by the antimetastasis compound RAPTA-C and its analogue carboRAPTA-C. 

Chem. Biodivers. 2010, 7, 1290–1302. 

24. Ratanaphan, A.; Wasiksiri, S.; Canyuk, B.; Prasertsan, P. Cisplatin-damaged BRCA1 exhibits 

altered thermostability and transcriptional transactivation. Cancer Biol. Ther. 2009, 8, 890–898. 

25. Hartinger, C.G.; Timerbaev, A.R.; Keppler, B.K. Capillary electrophoresis in anti-cancer 

metallodrug research: Advances and future challenges. Electrophoresis 2003, 24, 2023–2037. 

26. Mei, W.J.; Liu, J.; Chao, H.; Ji, L.N.; Li, A.X.; Liu, J.Z. DNA-binding and cleavage studies of a 

novel porphyrin ruthenium mixed complex [MPyTPP-Ru(pip)2Cl]+. Transit. Met. Chem. 2003, 28, 

852–857.  

27. Arjmand, F.; Mohani, B.; Ahmad, S. Synthesis, antibacterial, antifungal activity and interaction  

of CT-DNA with a new benzimidazole derived Cu(II) complex. Eur. J. Med. Chem. 2005, 40, 

1103–1110.  

28. Mei, W.J.; Liu, Y.X.; Liu, J.; Li, J.; Zheng, K.C.; Ji, L.N. Synthesis, characterization and  

DNA-binding properties of mixed porphyrin-polypyridyl ruthenium(II) complexes. Transit. Met. 

Chem. 2005, 30, 82–88.  

29. Lu, X.L.; Zhang, L.; Lou, J.D.; Yan, J.; Nong, P.-S.; Chen, X.-H.; Yang, J.-J.; Gao, M. Synthesis, 

characterization and DNA binding studies of two cyclopentadienyl ruthenium(II) complexes with 

amino acid ligands. Transit. Met. Chem. 2010, 35, 513–519. 

30. Ang, W.H.; Casini, A.; Sava, G.; Dyson, P.J. Organometallic ruthenium-based antitumor 

compounds with novel modes of action. J. Organomet. Chem. 2011, 696, 989–998. 

31. Messori, L.; Casini, A.; Vullo, D.; Haroutiunian, S.G.; Dalian, E.B.; Orioli, P. Effects of two 

representative antitumor ruthenium(III) complexes on thermal denaturation profiles of DNA. 

Chim. Acta 2000, 303, 283–286.  

32. Grover, N.; Welch, T.W.; Fairley, T.A.; Cory, M.; Thorp, H.H. Covalent binding of 

aquaruthenium complexes to DNA. Inorg. Chem. 1994, 33, 3544–3548.  

33. Ratanaphan, A.; Canyuk, B.; Wasiksiri, S.; Mahasawat, P. In vitro platination of human breast 

cancer suppressor gene 1 (BRCA1) by the anticancer drug carboplatin. Biochim. Biophys. Acta 

2005, 1725, 145–151. 

34. Grimaldi, K.A.; Bingham, J.P.; Souhami, R.L.; Hartley, J.A. DNA damage by anticancer agents 

and its repair: Mapping in cells at the subgene level with quantitative polymerase chain reaction. 

Anal. Biochem. 1994, 222, 236–242. 

35. Jennerwein, M.M.; Eastman, A. A polymerase chain reaction-based method to detect cisplatin 

adducts in specific genes. Nucleic Acids Res. 1991, 19, 6209–6214. 

36. Govan, H.L.; Valles-Ayoub, Y.; Braun, J. Fine-mapping of DNA damage and repair in specific 

genomic segments. Nucleic Acids Res. 1990, 18, 3823–3830. 

37. Honma, M.; Hayashi, M.; Hackman, P.; Sofuni, T. Chlorambucil-induced structural changes in 

the gpt gene of AS 52 cells. Mutat. Res. Toxicol. Environ. Mutagen. 1997, 389, 199–205. 



Int. J. Mol. Sci. 2012, 13 13201 

 

 

38. Hickson, I.; Fairbairn, L.J.; Chinnasamy, N.; Lashford, L.S.; Thatcher, N.; Margison, G.P.; 

Dexter, T.M.; Rafferty, J.A. Chemoprotective gene transfer I: Transduction of human 

haemopoietic progenitors with O6-benzylguanine-resistant O6 alkylating-DNA alkyltransferase 

attenuates the toxic effects of O6-alkylating agents in vitro. Gene Ther. 1998, 5, 835–841. 

39. Yuh, S.H.; Tibudan, M.; Hentosh, P. Analysis of 2-chloro-2'-deoxy-adenosine incorporation into 

cellular DNA by quantitative polymerase chain reaction. Anal. Biochem. 1998, 262, 1–8. 

40. Ang, W.H. Development of organometallic ruthenium(II) anticancer (RAPTA) drugs. Chimia 

2007, 61, 140–142. 

41. Ang, W.H.; Parker, L.J.; de Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; Lo Bello, M.;  

Parker, M.W.; Dyson, P.J. Rational design of an organometallic glutathione transferase inhibitor. 

Angew. Chem. Int. Ed. 2009, 48, 3854–3857. 

42. Mahajan, S.; Atkins, W.M. The chemistry and biology of inhibitors and pro-drugs targeted to 

glutathione S-transferases. Cell. Mol. Life Sci. 2005, 62, 1221–1233. 

43. Van Iersel, M.L.P.S.; Ploemen, J.P.H.T.M.; Struik, I.; van Amersfoort, C.; Keyzer, A.E.; 

Schefferlie, J.G.; van Bladeren, P.J. Inhibition of glutathione S-transferase activity in human 

melanoma cells by α,β-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, 

citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem. Biol. Interact. 

1996, 102, 117–132. 

44. Lo, H.W.; Ali-Osman, F. Genetic polymorphism and function of glutathione S-transferases in 

tumor drug resistance. Curr. Opin. Pharmacol. 2007, 7, 367–374. 

45. Casini, A.; Hartinger, C.; Nazarov, A.; Dyson, P.J. Organometallic antitumour agents with 

alternative modes of action. Top. Organomet. Chem. 2010, 32, 57–80. 

46. Chatterjee, S.; Biondi, I.; Dyson, P.J.; Bhattacharyya, A. A bifunctional organometallic ruthenium 

drug with multiple modes of inducing apoptosis. J. Biol. Inorg. Chem. 2011, 16, 715–724. 

47. Meggers, E.; Atilla-Gokcumen, G.E.; Grundler, K.; Frias, C.; Prokop, A. Inert ruthenium  

half-sandwich complexes with anticancer activity. Dalton Trans. 2009, doi:10.1039/B917792B. 

48. Adler, V.; Yin, Z.; Fuchs, S.Y.; Benezra, M.; Rosario, L.; Tew, K.D.; Pincus, M.R.; Sardana, M.; 

Henderson, C.J.; Wolf, C.R.; et al. Regulation of JNK signaling by GSTp. EMBO J. 1999, 18, 

1321–1334. 

49. Wu, B.; Ong, M.S.; Groessl, M.; Adhireksan, Z.; Hartinger, C.G.; Dyson, P.J.; Davey, C.A.  

A ruthenium antimetastasis agent forms specific histone protein adducts in the nucleosome core. 

Chem. Eur. J. 2011, 17, 3562–3566. 

50. Messori, L.; Orioli, P.; Vullo, D.; Alessio, E.; Iengo, E. A spectroscopic study of the reaction of 

NAMI, a novel ruthenium(III) anti-neoplastic complex, with bovine serum albumin. Eur. J. 

Biochem. 2000, 267, 1206–1213. 

51. Bergamo, A.; Messori, L.; Piccioli, F.; Cocchietto, M.; Sava, G. Biological role of adduct 

formation of the ruthenium(III) complex NAMI-A with serum albumin and serum transferrin. 

Invest. New Drug 2003, 21, 401–411. 

52. Piccioli, F.; Sabatini, S.; Messori, L.; Orioli, P.; Hartinger, C.G.; Keppler, B.K. A comparative 

study of adduct formation between the anticancer ruthenium(III) compound HInd  

trans-[RuCl4(Ind)2] and serum proteins. J. Inorg. Biochem. 2004, 98, 1135–1142. 



Int. J. Mol. Sci. 2012, 13 13202 

 

 

53. Smith, C.A.; Sutherland-Smith, A.J.; Keppler, B.K.; Kratz, F.; Baker, E.N. Binding of 

ruthenium(III) anti-tumor drugs to human lactoferrin probed by high resolution X-ray 

crystallographic structure analyses. J. Biol. Inorg. Chem. 1996, 1, 424–431. 

54. Casini, A.; Mastrobuoni, G.; Ang, W.H.; Gabbiani, C.; Pieraccini, G.; Moneti, G.; Dyson, P.J.; 

Messori, L. ESI-MS characterisation of protein adducts of anticancer ruthenium(II)-arene PTA 

(RAPTA) complexes. ChemMedChem 2007, 2, 631–635. 

55. Hartinger, C.G.; Casini, A.; Duhot, C.; Tsybin, Y.O.; Messori, L.; Dyson, P.J. Stability of an 

organometallic ruthenium-ubiquitin adduct in the presence of glutathione: Relevance to 

antitumour activity. J. Inorg. Biochem. 2008, 102, 2136–2141. 

56. Scolaro, C.; Chaplin, A.B.; Hartinger, C.G.; Bergamo, A.; Cocchietto, M.; Keppler, B.K.;  

Sava, G.; Dyson, P.J. Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA) drugs to 

modify uptake, biomolecular interactions and efficacy. Dalton Trans. 2007, 43, 5065–5072. 

57. Selvi, P.T.; Stoeckli-Evans, H.; Palaniandavar, M. Synthesis, structure and DNA interaction of 

cobalt (III) bis-complexes of 1,3-bis(2-pyridylimino)isoindoline and 1,4,7-triazacyclo-nonane.  

J. Inorg. Biochem. 2005, 99, 2110–2118. 

58. Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from 

nucleated cells. Nucleic Acids Res. 1988, 16, 1215. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


