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Abstract

Background: Prostate cancer is the second leading cause of cancer mortality among US men. Epidemiological
evidence suggests that high vitamin D status protects men from prostate cancer and the active form of vitamin D,
Ta,25 dihydroxyvitamin Ds (1,25(0H),D) has anti-cancer effects in cultured prostate cells. Still, the molecular
mechanisms and the gene targets for vitamin D-mediated prostate cancer prevention are unknown.

Results: We examined the effect of 1,25(0H),D (+/- 100 nM, 6, 24, 48 h) on the transcript profile of proliferating
RWPE1 cells, an immortalized, non-tumorigenic prostate epithelial cell line that is growth arrested by 1,25(0H),D
(Affymetrix U133 Plus 2.0, n = 4/treatment per time and dose). Our analysis revealed many transcript level changes
at a 5% false detection rate: 6 h, 1571 (61% up), 24 h, 1816 (60% up), 48 h, 3566 (38% up). 288 transcripts were
regulated similarly at all time points (182 up, 80 down) and many of the promoters for these transcripts contained
putative vitamin D response elements. Functional analysis by pathway or Gene Set Analysis revealed early
suppression of WNT, Notch, NF-kB, and IGF1 signaling. Transcripts related to inflammation were suppressed at 6 h
(e.g. IL-1 pathway) and suppression of proinflammatory pathways continued at later time points (e.g. IL-17 and IL-6
pathways). There was also evidence for induction of anti-angiogenic pathways and induction of transcripts for
protection from oxidative stress or maintenance of cell redox homeostasis at 6 h.

Conclusions: Our data reveal of large number of potential new, direct vitamin D target genes relevant to prostate
cancer prevention. In addition, our data suggests that rather than having a single strong regulatory effect, vitamin

.

D orchestrates a pattern of changes within prostate epithelial cells that limit or slow carcinogenesis.

Background

Several population-based studies have shown that low
UV exposure or low plasma vitamin D metabolite levels
increase prostate cancer risk [1-3]. The hormonal form
of vitamin D, la,25-dihydroxyvitamin D3 (1,25(OH),D)
or its analogs have anti-cancer effects in cancer cells or
animal tumor models that may be mediated through
multiple mechanisms including inducing growth arrest,
promoting cell differentiation, lowering apoptotic
thresholds, and suppressing angiogenesis or metastasis
(for current review see [4]). In prostate cancer cells, the
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growth inhibitory actions of 1,25(0OH),D require the
presence of the vitamin D receptor (VDR), a ligand-
inducible transcription factor [5-7]. However, it is not
clear whether the chemopreventative effect of high vita-
min D status in the normal, healthy prostate is mediated
by the same mechanisms.

Many vitamin D target genes have been identified and
characterized in the context of vitamin D’s traditional
actions in the control of calcium metabolism [8]. In con-
trast, very few 1,25(OH),D-regulated gene targets have
been definitively identified in the context of prostate can-
cer, much less normal prostate biology. For example, 1,25
(OH),D directly induces transcription of the cyclin depen-
dent kinase inhibitor gene p21 in U937 leukemia cells [9].
However, in LNCaP human prostate carcinoma cells 1,25
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(OH),D mediated accumulation of p21 mRNA appears to
be indirect [10] through induction of IGF binding protein
3 (IGFBP-3) gene expression and suppression of IGF-1
signaling [11]. A number of candidate vitamin D target
genes have been identified in other cell systems but it is
not clear if they are relevant to prostate cancer prevention.
For example, in breast cancer cells the 1,25(0OH),D analog
EB1089 up-regulates expression of TGFf; and f, mRNA
[12] and down regulates the anti-apoptotic protein bcl-2
[13], while in breast, ovarian, and neuroblastoma cells, c-
myc has been identified as a target of 1,25(OH),D-
mediated transcriptional repression [14,15]. In addition,
gene expression profiling of EB1089 action in squamous
carcinoma cells [16,17] shows that 1,25(OH),D modulates
expression of transcripts encoding extracellular matrix
proteins, cell adhesion proteins, DNA repair enzymes, and
factors controlling oxidative stress. These data suggest that
the cancer preventive impact of 1,25(OH),D may utilize
unique mechanisms in different tissues or that 1,25(OH)
,D impacts multiple pathways involved in carcinogenesis.

cDNA microarray analysis has been used on both
human primary prostate epithelial cells and prostate
cancer cells to identify potential target genes of 1,25
(OH),D [18-22]. However, these earlier studies have
limitations that prevent their results from being applied
more generally, e.g. they lack the sample replication that
permits statistical analysis with sufficient power. In this
study we examined 1,25(OH),D induced changes in the
transcriptome of the phenotypically normal, immorta-
lized human prostate epithelial cell line RWPE1. These
findings provide new insight into the mechanisms that
may be used by vitamin D to prevent the development
of human prostate cancer.

Results

Time course analysis of 1,25(0H),D induced genes

Using a 5% FDR cut-off, we identified 5435 transcripts as
significantly differentially expressed in at least one time
point (Table 1). Following treatment with 1,25(OH),D the
number of differentially expressed transcripts was
increased over time from 1571 at 6 h to 3566 at 48 h. At 6
and 24 h, the transcripts were predominantly up-regulated
(60.7% and 59.6%) while at the 48 h time point the tran-
scripts were predominantly down-regulated (62.3%). 1,25
(OH),D treatment significantly altered the expression of
288 transcripts at all three time points; 262 of these chan-
ged in the same direction and 63.2% were up-regulated.
Although many of our transcript-level changes were
greater than 1.5-fold, our use of sample replicates, quality
controls, and careful statistical analysis allowed us to see
more subtle changes that may have biological relevance. A
detailed list of all significantly differentially expressed tran-
scripts is available in Additional File 1. The entire list of
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Table 1 Transcripts that were significantly differentially
expressed (5% FDR) in RWPE1 cells after treatment with
1,25(0OH),D.

Up (>1.5%) Down (>1.5x) Total (>1.5%)
6 h 954(696) 617(340) 1571(1036)
24 h 1083(371) 733(243) 1816(614)
48 h 1343(410) 2223(639) 3566(1049)
Any time point * 2537(1076) 3009(956) 5435(2012)
All time points * 182(115) 80(37) 262(152)

*"Any time point” indicates transcripts that were regulated in at least one
time point. “All time points” indicates transcripts that were differentially
expressed in the same direction at all three time points.

25,986 transcripts analyzed and their FDR value is avail-
able upon request.

RT-PCR and ChIP confirmation of 1,25(0OH),D regulation
Eleven transcripts identified in the microarray analysis
as 1,25(OH),D induced were selected for PCR valida-
tion. These were selected based upon three criterion:
they are classic vitamin D target genes (i.e. CYP24,
TRPV6), they had been identified in other studies (e.g.
TXNRD1, IGFBP3, P2RY2), and they spanned a wide
range of expression levels (i.e. CYP24, CD14, TXNRDI,
IGFBP3, P2RY2, CYP26B1, SEMA3B, SEMA3F were all
up-regulated while VAV3, AKAP12, and APCDD1 were
suppressed, Table 2).

With the exception of CYP24 and CD14, which were
higher in the array data, and TRPV6, which was “absent”
in the array data, the expression of transcripts was similar
between the array and RT-PCR analysis in vitamin D-trea-
ted RWPE1 cells (Figure 1A). We also examined the 1,25
(OH),D-mediated expression of these in other prostate
cell lines to determine if their regulation was a generaliz-
able response. A similar effect of 1,25(0OH),D on these
transcripts was observed cultures of primary human pros-
tate epithelial cells, but a blunted response to 1,25(0OH),D
treatment was seen in LNCaP cells (Table 2).

Potential VDR binding sites were identified in the genes
for nine 1,25(OH),D-induced transcripts using a bioinfor-
matic approach. The binding of VDR to the promoter
areas of five of these genes was demonstrated by ChIP
analysis in 1,25(OH),D-treated RWPE1 cells (CYP24,
TRPV6, CYP26B1, AKAP12 and SEMAS3B, Figure 1B) and
the extent of their enrichment was consistent with the
1,25(0OH),D-induced accumulation of their transcripts.
This demonstrates that differential regulation of transcript
levels can be both direct (i.e. demonstrated by VDR bind-
ing) and indirect (i.e. no binding in a ChIP assay).

Cluster analysis for identification of groups with similar
patterns of expression

Patterns of 1,25(OH),D-regulated expression were deter-
mined using Self Organizing Maps (SOM) (Figure 2).
Across the 12 clusters, there were five major expression
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Table 2 RT-PCR validation of expression values from microarray analysis for selected genes in primary human prostate

epithelial cells (hPEC), and LNCaP cells.

RWPE1 - Microarray (n = 4) hPEC(n = 3) LNCaP (n = 3)

Gene 6 h 24 h 48 h #1 #2 #3 8 h
CYP24 1072* 73.9% 63.2% 231 + 5% 790 + 192% 959 + 184* 392 + 26*
CD14 226* 27.6* 27.4% 63 + 08* 196 + 1.3% 338 + 80% 16+03
TXNRD1 7.0% 1.1 1.5% 21 £02% 60 % 0.1% 96 + 1.8* 41 +09*
IGFBP3 3.0% 27* -6.4* 31 + 04 380 + 3.1* 220+ 48 29 +03*
P2RY2 13.5% 38 29* 16+ 0.1% 52410 43 +02% 13+01
CYP26B1 56* 10 10 -1.1+01 -12+03 -13£0.1 27 +0.1%
SEMA3B 19.5% 13.4% 18.5% 41 +02% 25+ 06 57 + 03* 22+ 04
SEMA3F 2.5% 1.5% 1.7% 11402 14 +02 -13+0.1 18 +02%
VAV3 27* -23* -1.4% -13+01 12402 -13+03 14+ 0.1
APCDD1 -5.0% -23* 26" 31402 -15+03 -16+03 32+01%
AKAP12 9.9* 10 10 41 +08* 51+ 18* 53+19 71 +13
TRPV6 A* A A 233 + 50% 86.0 + 206* 153 + 406* 46+ 0.1%

Data are expressed as mean fold change +SEM of GAPDH-normalized expression (in arbitrary units).

* p < 0.05 (RT-PCR) or FDR<5% (Microarray data), # Absent

patterns: Group 1 contained transcripts up-regulated
early (clusters 4, 8). Group 2 contained transcripts
down-regulated early (clusters 2, 6, 10). Group 3 con-
tained transcripts that were up-regulated at 24 and 48 h
(clusters 0, 5). Group 4 contained transcripts that were
suppressed at 24 and 48 h (clusters 7 and 11). Group 5
contained transcripts whose normal up-regulation over
time was prevented by vitamin D (cluster 3).

Functional analysis of differentially regulated transcripts
Gene Set Analysis (GSA)

Between 6 and 48 h the total number of significantly
enriched genesets (curated, motif, and cancer computa-
tional) was increased and the proportion of motif and

curated genesets that were up-regulated fell (Table 3).
In contrast, at 6 h none of the cancer computational
genesets were up-regulated but 12 of these genesets
were induced at later time points. The lists of the
curated, motif, and cancer computational genesets sig-
nificantly regulated in the GSA analysis are available in
Additional files 2, 3 and 4.

Genesets that were significantly changed at each time
point were grouped according to related function (Table
4). As expected, the motif genesets representing genes
containing the classic DR3-type VDRE were significantly
enriched by 1,25(0OH),D at all three time points. Two
other genesets were induced at all three time points:
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Figure 1 Real Time-PCR and ChIP validation of differential regulation of selected transcripts. (A) Correlation between Microarray and
Real Time-PCR data. 9 transcripts identified as differentially expressed by microarray (TXNRD1, IGFBP3, P2RY2, Cyp26B1, SEMA3B, SEMA3F, VAV3,
AKAP12 and APCDD1) were examined by Real Time-PCR for 1,25(0H),D-induced changes in expression at the 6, 24, and 48 h. Fold changes of
RT-PCR validated transcripts were compared across their fold change identified in microarray analysis. The regression line was defined by the
following equation: PCR fold change = 0.91(Microarray data fold change) + 0.09; r’ = 064. (B) ChIP assays of VDR recruitment to putative
VDR binding sites. RWPE1 cells were treated with vehicle or 10 nM 1,25(0H),D for 3 h. DNA precipitates were measured with RT-PCR using
primers spanning known VDREs (CYP24, TRPV6 and SEMA3B) and predicted VDREs (CYP26B1 and AKAP12). The results are shown as mean + SEM
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Figure 2 Self-organizing map analysis of transcripts
significantly differentially expressed after 1,25(0H),D
treatment in RWPE1 cells. Transcripts that were found to be
significantly differentially expressed (FDR<5%) in at least one time
point by 1,25(0H),D treatment (n = 5435) were clustered into 12
groups using self organizing map. The X-axis for each cluster
represents hours after treatment (6, 24 and 48 h). The Y-axis for
each cluster represents normalized relative level of mRNA
expression (in arbitrary units). The number of genes within each
cluster in listed at the top, along with the cluster number.

6 24 48

“induced during differentiation” (from c2, curated) and
“suppressed by JNK”. Genesets suppressed at all time
points were for VEGF target genes (i.e. suggesting an
anti-angiogenic profile) and cytokine pathways (i.e. an
anti-inflammatory profile). Genesets altered by 1,25(OH)
,D treatment at 6 h only include one induced for “p53
and BRCAL1 target genes”, suggesting an early pro-apop-
tosis programming, and suppression of genesets contain-
ing WNT-, Notch-, and IGF1- target genes, suggesting
the disruption of signals that promote cell proliferation.
The shift to a less proliferative, more differentiated cell
was supported by the suppression of genesets at 24 and
48 h that contain transcripts whose protein products
promote proliferation and suppress differentiation (e.g.
“cyclins”, “down-regulated during cell cycle arrest”).

Table 3 Number of genesets that were significantly
altered in GSA analysis of microarray data from
1,25(0OH),D treated RWPE1 cells (FDR<5%).

6 h 24 h 48 h
Geneset* c2 3 44 2 3 dc c2 a3 d
Induced 69 20 0 49 16 12 47 26 17
Suppressed 57 21 6 43 12 20 94 29 25
Total 126 41 16 92 28 32 141 55 42

* €2: curated; ¢3: motif; c4: cancer computational
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GenMAPP and Metacore Analysis

The total number of local maps, GO terms, or Metacore
maps influenced by 1,25(OH),D treatment was
increased over time, due to an increase in the number
of suppressed maps. The detailed results from our Gen-
Mapp analysis of local maps and GO terms are available
in Additional files 5 and 6, respectively, while the Meta-
core results are summarized in Additional file 7. A sum-
mary of these analyses are provided for local maps and
for GO terms in Table 5 and for Metacore in Table 6.

Table 4 Representative genesets identified with GSA
analysis as significantly enriched after 1,25(0H),D
treatment of RWPE1 cells (FDR<5%).

Induced Suppressed
6 h Vitamin D target genes VEGF target genes (c2:1600, 1603,
(c3:465, 796, 797) 1604, 1605)

Induced during
differentiation (c2:963,

Cytokines signaling (IL17, STAT3,
STEM, LAIR pathways) (c2:406, 853,

1219,489) 861, 861, 1408, 1391)
Suppressed by JNK TNFA target genes (c2:1126, 875)
(c2:899) Suppressed during differentiation

Genes involved in
electron transport (c2:455)
p53 and BRCAT target
genes (c2:1149, 190)

GPC Receptors (c2:1108,
613, 620)

NRF2 pathway (c2:108)
Induced by SERM (c2:528)

(c2:40)

IGF1 target genes (c2:841)

WNT target genes (c2:1632, 1634;
c3:162)

Notch target genes (c2:1087)
GPC Receptors (c2:612, 1033, 618)
Suppressed by SERM ( c2:528)

24 Vitamin D target genes
h (c3:465)
Induced during
differentiation (c2:1219)
Suppressed by JNK
(c2:899)

VEGF target genes (c2:1600, 1602,
1604, 1605)

Cytokines signaling (c2:1650)
Down-regulated by p21 (c2:1141,
1138)

Cyclins (c2:288)

Genes involved in IGF1 target genes (c2:581)
electron transport (c2:455, Notch signaling (c2:1102)

457) Notch target genes (c2:1087)
Nitrogen metabolism

(€2:1096)

ROS modulators (c2:758)

48  Vitamin D target genes
(c3:465)
Induced during
differentiation (c2:963)
Suppressed by JNK
(c2:899)
Nitrogen metabolism
(c2:1096)

VEGF target genes (c2:1600, 1602,
1604)

Cytokines signaling (c2:1100, 1650)
IL6 target genes (c2:220, 918, 862)
IFNs target genes (c2:1241, 419, 421,
423, 4306, 623, 625, 155, 412, 835,
831, 832, 824, 825, 826, 829, 830)
IFNA and G pathway (c2:837, 838,
1394)

TNFA target genes (c2:1308, 1476,
1479)

Suppressed during differentiation
(c2:40, 812)

Down-regulated by p21 (c2:1138)
IGF1 target genes (c2:581, 841)
Induced by JNK (c2:900)STAT2 and
STATSB target genes (c3:597,765)

The geneset collection number shown in parenthesis is followed by ID
numbers of changed genesets (c2-curated genesets, c3- motif genesets, see
Additional files 2 and 3).
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An additional GenMAPP analysis was conducted to
determine the functional characteristics of each of the
five groups from the cluster analysis (see Additional file
8 and 9). Group 1 (up-regulated early) included tran-
scripts for signal transduction, cell differentiation,
response to oxidative stress, and lipid metabolism.
Group 2 (down-regulated early) contained transcripts
for cell proliferation, Wnt and Notch signaling, cell-cell
signaling (and cell adhesion), angiogenesis, and the
immune/inflammatory response. Group 3 (up-regulated
late) included transcripts for cellular metabolism, transi-
tion metal binding, and cell redox homeostasis. Group 4
(down-regulated late) contains the largest number of
functional groups related to cell proliferation and also
contained maps for the EGER signaling pathway and
sphingolipid metabolism. Group 5 (prevention of up-
regulation) reflects transcripts regulating a defense/
inflammatory response and anti-apoptotic signaling.

We also looked at the functional categories that were
regulated by 1,25(0OH),D treatment at each time point.
The most prominent functional groups/maps induced at
6 h were for cell differentiation, apoptosis, lipid metabo-
lism, and markers of the response to oxidative stress.
The GO process for lipid metabolism, the local map for
tissue-muscle, fat, and connective (which contains gen-
eral markers of cell differentiation), and maps for oxida-
tive stress (i.e. the local map for oxidative stress and
glutathione metabolism, the GO process of cell redox
homeostasis) were induced at 6 h and at later time
points. Similarly, Metacore maps related to apoptosis,
keratins, and “cell adhesion through extracellular model-
ing” were up-regulated when all time points were evalu-
ated together.

The primary suppressed function that is consistent
with a hypothesized role for vitamin D in cancer pre-
vention was cell proliferation. At the later time points a
clear reduction in specific functional groups and maps
related to “cell cycle regulation” was observed. Consis-
tent with this, the local map and Metacore maps for
Wnt signaling were suppressed at 6 h and in the Meta-
core analysis, Notch signaling maps were significantly
suppressed at 6 h and for all time points combined. Sev-
eral other interesting processes that were down-regu-
lated significantly at later time points include:
angiogenesis (i.e. VEGF family signaling), androgen
receptor signaling, and various aspects of the cytokine
signaling (e.g. in Metacore this was reflected at 24 h as
IL-6 and IFN signaling as well as in the combined time-
point analysis as IL-1 and IL-27 signaling).

Discussion

Optimal vitamin D status been proposed to prevent
prostate carcinogenesis [3] and this anticancer activity is
most likely mediated through VDR-dependent changes
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in the prostate transcriptome [4]. By applying microar-
ray technology to the immortalized but non-tumorigenic
human prostate epithelial cell line RWPE1, we have
identified a number of mechanisms by which vitamin D
may influence the early stages of prostate carcinogenesis.
Our data show that 1,25(OH),D influences many path-
ways relevant to prostate carcinogenesis and they under-
score the critical role of this molecule in the
maintenance of prostate epithelial development, func-
tion, and turnover.

Several studies have shown that 1,25(OH),D treatment
causes cell cycle arrest and growth suppression of pri-
mary prostate epithelial cell lines or prostate cancer cell
lines. While this has been viewed as the major antican-
cer effect for 1,25(0OH),D, the mechanism accounting
for this effect is not known with certainty. Liu et al.
showed that the cyclin-dependent kinase (CDK) inhibi-
tor p21 was strongly induced by 1,25(0OH),D treatment
in the monocytic cell line HL-60 and they identified a
functional Vitamin D Response Element (VDRE) in the
p21 promoter [9]. However, 1,25(OH),D does not
increase p21 transcript level in LNCaP cells [18] and
our data show that the impact of 1,25(OH),D on p21
mRNA level is modest (1.32-fold at 6 h). Another CDK
inhibitor, Weel, is induced by 1,25(OH),D in cultured
keratinocytes leading to G2/M arrest [23] and this is
also modestly induced by 1,25(OH),D in RWPE1 cells
(1.4-fold at 6 h). We examined other transcripts related
to cell cycle control in our study but most of these were
suppressed only at the later time points: e.g. GAS6,
ETS1, CDKG®, cyclin B2, cyclin A, CDC25C, and CDC27.
This suggests that they are not primary effects of 1,25
(OH),D action.

In contrast, our microarray data suggest that disrup-
tion of Wnt-signaling may be an alternative mechanism
for 1,25(OH),D-mediated growth arrest. A number of
Wnt pathways and genesets were reduced by 1,25(OH)
»D treatment by 6 h, e.g. the geneset containing genes
with LEF1/TCF4 binding motifs in their promoters that
includes classical Wnt target genes like c-myc, cyclin D,
PPARS (see tables 4, 5 and 6). This is consistent with a
model developed for colonocytes where VDR directly
interacts with B-catenin to disrupt transcriptional events
that normally increase cell proliferation [24,25]. 1,25
(OH),D treatment also induced E-cadherin mRNA 1.7-
fold in RWPEL cells at 6 h. E-cadherin antagonizes Wnt
signaling by inducing translocation of f-catenin to the
plasma membrane (see figure in Additional file 10 for a
summary of the transcript-level changes occurring in
Wnt signaling). Disruption of Wnt/p catenin signaling
could be a means whereby vitamin D treatment ampli-
fies its impact on biology. In support of this model, net-
work analysis in Metacore identified a gene network
with the B catenin/TCF gene target c-myc at its center.
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Table 5 GenMAPP analysis of the pathways and biological processes modified by 1,25(0OH),D treatment in RWPE1

cells.
MAPP Name %' 2 P MAPP Name % Z P
6 h Local maps (Induced): 24 maps at P < 0.1 6 h Local maps (Suppressed): 12 maps at P < 0.1
Oxidative Stress 35 57 0  Wnt Signaling 11 22 0035
MAPK signaling pathway KEGG 1332 0002 IL-1 NetPath 13 11 18 0076
2-Tissues-Muscle, Fat and Connective 15 24 0031 Phosphatidylinositol signaling system 8 18 0091
TGFB signaling pathway 10 18 0092
6 h GO Biological process (Induced): 236 maps at P < 0.1 6 h GO Biological process (Suppressed): 181 maps at P <
0.1
Cell differentiation (30154) 5 20 0062 Cell proliferation (8283) 7 36 0
Response to stress (6950) 12 32 0  Positive regulation of cell proliferation 8 18 0072
(8284)
Apoptosis (8219) 30 24 0013 Anti-apoptosis (6916) 10 3.1 0007
Regulation of transcription from RNA polymerase Il promoter 10 25 0013 Transcriptional repressor activity (16564) 7 21 0039
(6357)
Signal transduction (7165) 13 79 0  Signal transduction (7165) 5 28 0007
Lipid metabolism (6629) 7 21 0035
24 h Local maps (Induced): 19 maps at P < 0.1 24 h Local maps (Suppressed): 19 maps at P < 0.1
Oxidative Stress 23 34 0005 Delta-Notch NetPath 3 15 42 0001
Sterol biosynthesis 28 36 0003 Focal adhesion KEGG 1240 0001
Nitrogen metabolism 33 42 0005 Hedgehog NetPath 10 27 40 0011
Glycolysis and Gluconeogenesis 15 23 0036 TGF receptor NetPath 7 10 28 0.009
2-Tissues-Muscle, Fat and Connective 26 54 0  Androgen-Receptor NetPath 2 10 24 0022
24 h GO Biological process (Induced): 260 maps at P < 0.1 24 h GO Biological process (Suppressed): 294 maps at P <
0.1
Lipid metabolism (6629) 9 3.1 0003 Cell proliferation (8283) 8 35 0001
Cell adhesion (7155) 9 24 0014 Cell motility (6928) 11 44 0
Development (7275) 7 22 0032 Immune response (6955) 8 45 0
lon transport (6811) 9 28 001 Signal transduction (7165) 6 54 0
48 h Local maps (Induced): 24 maps at P < 0.1 48 h Local maps (Suppressed): 25 maps at P < 0.1
Oxidative Stress 23 27 0013 Inflammatory Response Pathway 60 54 0
Glutathione metabolism 22 22 0061 Delta-Notch NetPath 3 22 23 0017
Nitrogen metabolism 47 54 0  Focal adhesion KEGG 23 38 0
Glycerolipid metabolism 18 30 0006 TGF receptor NetPath 7 23 37 0
2-Tissues-Muscle, Fat and Connective 28 50 0  Androgen-Receptor NetPath 2 23 29 0003
48 h GO Biological process (Induced): 242 maps at P < 0.1 48 h GO Biological process (Suppressed): 245 maps at P <
0.1
Lipid metabolism (6629) 12 56 0 Cell proliferation (8283) 19 43 0
Steroid metabolism (8202) 15 38 0  Extracellular matrix (31012) 28 57 0
Cell adhesion (7155) 1332 0001 Immune response (6955) 26 85 0
Cell redox homeostasis (45454) 33 26 0033 Angiogenesis (1525) 36 38 0
lon transport (6811) 12 42 0 Signal transduction (7165) 14 34 0.005

% = percent in map changed; ?Z = Z score; 3P = permuted P value

This network connects the suppression of c-myc expres-
sion to a large number of other transcripts that were
differentially expressed by 1,25(OH),D treatment (see
Additional file 11). However, while our data shows a
consistent, early suppression of Wnt/B-catenin signaling,
careful experimental evaluation of this hypothesis in
prostate epithelial cells is needed.

Our data also show that transcripts for the Notch
ligands, JAG1, JAG2, and DLL1 were suppressed by 1,25

(OH),D treatment in RWPEL cells (each reduced by -2
fold at 6 or 24 h). NOTCHI1 and JAG1 are proposed as
markers of normal prostate stem cells and they are
necessary for fate determination of the proliferating
stem cell [26]. In addition, expression of JAG1 protein is
increased in metastatic prostate cancer [27] and prostate
cancer cells suggesting Notchl and JAG1 mediated sig-
naling may enhance carcinogenesis [26,28]. Collectively,
these observations suggest that suppression of Notch or
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Table 6 Metacore analysis of the pathways modified by 1,25(0H),D treatment in RWPE1 cells (p < 0.05).

Metacore Map p-Value Genes changed
6 h induced: 83 maps at p < 0.05
Apoptosis and survival_NGF activation of NF-kB 2.89E-03 6
Transcription: p53 signaling pathway 2.33E-02 5
Inhibitory action of Lipoxins on pro-inflammatory TNF-alpha signaling 2.33E-02 5
Arachidonic acid production 1.76E-03 6
6 h suppressed: 28 maps at p < 0.05
Transcription_NF-kB signaling pathway 2.29E-02 4
Development_WNT signaling pathway. Part 2 1.48E-02 6
Development_Notch signaling pathway 4.17E-02 4
Transcription_Androgen receptor nuclear signaling 3.68E-02 5
24 h induced: 30 maps at p < 0.05
Oxidative phosphorylation 5.66E-04 13
Cell adhesion_ECM remodeling 2.02E-02 7
Role of tetraspanins in the integrin-mediated cell adhesion 4.62E-02 6
Prostaglandin 2 biosynthesis and metabolism FM 2.93E-03 5
24 h suppressed: 84 maps at p < 0.05
Immune response_IL6 signaling pathway 3.85E-03 10
Immune response_IFN gamma signaling pathway 2.06E-04
Cell cycle Nucleocytoplasmic transport of CDK/Cyclins 6.04E-05 7
Cell cycle_Role of APC in cell cycle regulation 7.19E-03 6
48 h induced: 53 maps at p < 0.05
Cell cycle_Regulation of G1/S transition (part 2) 6.07E-03 6
Oxidative phosphorylation 2.17E-02 11
Regulation of lipid metabolism_Insulin regulation of fatty acid metabolism 1.37E-02 8
Glycolysis and gluconeogenesis (short map) 343E-03 7
Apoptosis and survival_p53-dependent apoptosis 3.54E-02 5
Prostaglandin 2 biosynthesis and metabolism FM 1.27E-03 6
48 h suppressed: 140 maps at p < 0.05
Cell cycle_Role of APC in cell cycle regulation 2.92E-04 14
Immune response_Antiviral actions of Interferons 407E-05 16
Immune response_PGE2 common pathways 5.22E-04 16
Development_TGF-beta receptor signaling 3.94E-04 15
Development_VEGF-family signaling 1.68E-02 9
Peroxisomal branched chain fatty acid oxidation 3.51E-04 8
All times induced: 66 maps at p < 0.05
Cytoskeleton remodeling_Keratin filaments 8.37E-04 13
Development_TGF-beta receptor signaling 8.65E-03 13
Development_VEGF signaling and activation 3.92E-02 10
Cell Adhesion_ECM remodeling 3.94E-02 11
Apoptosis and survival_caspase cascade 6.47E-03 9
All times suppressed: 155 maps at p < 0.05
Immune Response_IL-27 signaling pathway 3.14E-04 12
Development_Notch Signaling Pathway 5.70E-04 16
Cell cycle_Regulation of G1/S transition (part 1) 6.25E-07 24
Transcription_Androgen Receptor nuclear signaling 3.38E-03 18
Cell adhesion_Ephrins signaling 847E-03 14

Development_VEGF-family signaling 3.86E-02 10
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its ligands by 1,25(OH),D could be associated with can-
cer protection.

In addition to modulating cell grown, vitamin D has
been proposed to inhibit the development of the tumor
vasculature that is required for the progression of solid
tumors [29-32] by suppressing expression of Vascular
Endothelial Growth Factor (VEGF) family members, the
major pro-angiogenic cytokines in normal prostate
epithelial cells [33]. The impact of 1,25(OH),D on
VEGF gene regulation has been confusing. In mouse
embryo fibroblasts and human vascular smooth muscle
cells 1,25(OH),D induces VEGFA expression through a
VDRE in its promoter [34], yet 1,25(OH),D can also
suppress VEGF-induced vasculogenesis in cultured
endothelial cells and in nude mice implanted with
MCEF-7 breast cancer cells [35]. We found that 1,25
(OH),D treatment suppressed VEGFC mRNA levels at
all time points (-2.1 to -1.6 fold). Higher expression of
VEGFC occurs after NKX3.1 loss in prostate cancer and
is correlated with lymph node metastasis of prostate
cancer [36]. VEGF promotes angiogenesis by binding to
and activating the receptors KDR, FLT1, and NRP1 and
we found that 1,25(OH),D significantly suppressed KDR
and NRP1 expression. Suppressing the activation of
these receptors reduces tumor angiogenesis and promo-
tion in the Dunning cell carcinoma model [37]. Finally,
VEGEF signaling can be suppressed by competitive bind-
ing of semaphorins to NRP1. Semaphorins induce apop-
tosis, inhibit growth of lung and breast tumor cells [38],
and modulate invasion and adhesion of prostate cancer
cells [39]. In our study, 1,25(OH),D induced expression
of several semaphorin isoforms including SEMA3B, 3F,
and 6D (19.4-, 2.5-, and 18-fold, respectively at 6 h).
Collectively our array data show that 1,25(OH),D
induces an anti-angiogenic transcript profile in RWPE1
cells.

While our discussion has focused on the modulation
of classical anti-cancer effects, our array analysis also
revealed other potential mechanisms for vitamin D
mediated cancer prevention. For example, oxidative
stress-induced damage of DNA and other cellular com-
ponents are implicated in cancer [40]. These effects can
be prevented by induction of antioxidant defense or
DNA repair mechanisms that subsequently reduce the
biological impact of reactive oxygen species. In our
study 1,25(OH),D influenced the expression of genes
related to these events (see figure in Additional file 12)
and our observations are consistent with a previous
microarray study in SCC25 cells that showed EB1089-
regulated induction of transcripts whose gene products
are involved in antioxidant (e.g. thioredoxin reductase 1,
TXNRD1) and DNA repair processes (e.g. GADD45a.)
[16]. There is some evidence that 1,25(OH),D directly
regulates transcripts controlling these functions.
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Glucose-6-phosphate dehydrogenase (G6PD) is an
enzyme involved in maintaining cellular glutathione
levels and its mRNA was significantly induced at all
time points following 1,25(OH),D treatment in RWPE1
cells (3.4-6.8 fold). Recently, Bao et al. [41] showed that
G6PD expression is controlled by 1,25(0OH),D in pros-
tate epithelial cells through a VDRE located in the first
intron of the gene and that the induction of G6PD by
1,25(0OH),D protected RWPEL cells against HyO,-
induced apoptosis. It is also possible that vitamin D-
mediated protection from pro-oxidant stress is indirect
due to the induction of nuclear factor (erythroid-derived
2)-like 2 (NFE2L2), a transcription factor that controls
expression of genes for many antioxidant enzyme sys-
tems [42]. NFE2L2 expression is down-regulated in
prostate cancer and suppression of NFE2L2 promotes
prostate tumor development in TRAMP mice [43]. Con-
sistent with a role for NFE2L2 in vitamin D-mediated
cancer prevention, a number of NFE2L2 target genes
were increased in RWPE1 cells after 1,25(OH),D treat-
ment, e.g. GPX3, HMOX1, AKR1C2, and TXNRDI.
Several studies have shown that vitamin D is anti-
inflammatory and our data are consistent with these
findings. In the immune system 1,25(OH),D promotes
immunotolerance and immunosuppression by altering
the differentiation and function of tolerogenic dendritic
cells [44], suppressing NFkB signaling necessary for T
helper cell activation [45], and increasing the activity of
regulatory T cells necessary for immunosuppression
[46]. These actions would be expected to protect tissues
from pro-inflammatory stresses that cause prostatitis
[47] and promote prostate carcinogenesis [48]. However,
many cells outside of the traditional immune system
have the capacity to respond to and produce immuno-
modulatory factors and we found that in RWPE1 cells
vitamin D-treatment regulated a large number of tran-
scripts for proteins controlling immune function. In
fact, induction of CD14 was one of the most strongly
1,25(0OH),D up-regulated transcripts in RWPE1 cells.
Prostate epithelial cells are thought to be early sensors
of infection and CD14 and toll-like receptor 4 (TLR4)
production in these cells contributes to protection from
Chlamydia infection [49]. While a role for vitamin D-
induced CD14 or TLR4 induction in the regulation of
prostate infection/inflammation has not been studied
directly, others have identified CD14 as crucial factor
for vitamin D induced expression of the antimicrobial
peptide cathelicidin in human keratinocytes [50].
Another point where vitamin D may inhibit inflamma-
tory processes is through suppression of cytokine signal-
ing and production. Consistent with this, we found that
1,25(0OH),D suppressed several components of JAK-
STAT signaling in RWPE1L cells including JAKI,
STATI, n-myc and STAT interactor (NMI), STAT2,
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and STAT3. JAK-STAT signaling is required for the
pro-proliferative effects of many cytokines including the
pro-inflammatory cytokines IL6, IL12 and IFNy [51]. In
addition, transcripts for many cytokine receptor tran-
scripts (i.e. upstream regulators of JAK-STAT signaling)
and cytokines (i.e. downstream targets of JAK-STAT sig-
naling) were suppressed by 1,25(OH),D-treatment (see
figure in Additional file 13). Disruption of JAK-STAT
signaling could be a means whereby vitamin D treat-
ment amplifies its impact on the prostate epithelial cells.
In support of this model, network analysis of the data
from the 48 h timepoint identified a gene network with
STAT1, STAT3, and the transcription factor PU.1 at
three interacting centers. This network connects the
suppression of STAT1 and STAT3 expression to a large
number of other transcripts related to immunoregula-
tion that were differentially expressed by 1,25(OH),D
treatment (see Additional file 14). Many changes in
immune or cytokine signaling pathways occur only at or
after 24 h of treatment but this reflects a clear anti-
inflammatory role for 1,25(OH),D in prostate epithelial
cells that is consistent with findings by others in Jurkat
T cells [52] and Thl immune cells [53]. In addition,
Nonn et al. had previously shown that in normal pros-
tate epithelial cells, 1,25(OH),D inhibits TNFa-induced
IL-6 production through a mechanism that requires
direct transcriptional regulation of the MAPK phospha-
tase 5 gene (DUSP-10, increased 9.9-fold at 6 h in our
analysis) [54]. Finally, our data suggest that NFkB signal-
ing is modulated by 1,25(OH),D treatment; i.e. upregu-
lation of IkB (NFKBIA) expression and suppression of
RELB mRNA levels. These observations are consistent
with data showing that 1,25(OH),D suppressed secretion
of IL-8 by interfering with NFxB signaling in RWPE1
cells [31] and that it enhanced radiosensitivity of pros-
tate cancer cells by selectively suppressing radiation-
mediated RELB activation in prostate cancer cell lines
[55].

Prostaglandin signaling is a final pro-inflammatory
pathway that has been identified as vitamin D regulated
by others. Krishnan et al. [18] found that the message
for the prostaglandin inactivating enzyme 15-PGDH was
significantly increased and the mRNA levels for COX2,
an enzyme that drives production of PGE2 levels, was
significantly reduced by 1,25(OH),D in LNCaP cells.
Moreno et al. [56] subsequently showed that 1,25(OH)
»D reduced the mRNA levels for two prostaglandin
receptors (EP2, FP) in prostate cancer cells. Since the
prostanoid pathway is a critical component in acute
inflammation that may contribute to the development of
prostate cancer [57], this suggested that vitamin D-
mediated chemoprevention involves disruption of pros-
taglandin signaling. However, our RWPE]1 data is not
consistent with this hypothesis. In contrast to the earlier

Page 9 of 15

studies in LNCaP cells, we observed induction of COX2
by 1,25(OH),D in RWPEI cells (6.3-fold at 6 h) and
neither 15-PGDH nor prostaglandin receptor mRNA
levels were altered.

The functional analysis of transcript-levels changes
induced by 1,25(0OH),D reveals how the biology of pros-
tate epithelial cells is changed by the hormone but
microarray studies cannot differentiate between tran-
scripts that are differentially regulated due to direct,
VDR-mediated transcriptional activation and those that
are secondary effects following the primary transcrip-
tional events. As such, we can only infer the direct VDR
gene targets based upon our data and their relationship
to other studies. Unfortunately, there is very little infor-
mation regarding the effect of 1,25(OH),D on the pros-
tate epithelial cell transcriptome to draw upon from
earlier studies. Using a spotted cDNA microarray with
no sample replicates, Peehl et al. [18,22] identified 48
transcripts as 1,25(OH),D regulated in primary normal
prostate epithelial cells and 52 transcripts in primary
cultures of prostate cancer cells. Twenty-one of the dif-
ferentially regulated transcripts from the normal pros-
tate epithelial cells and 28 of the transcripts from the
primary prostate cancer cells were also differentially
regulated by 1,25(OH),D in RWPE1 cells. Still, the only
overlap between the three lists was CYP24, DUSP10,
AKAP12, P2RY2, BMP6, TGFB2, and TXNRD1. In con-
trast, of the 22 transcripts identified by Krishnan et al.
[18,22] as differentially regulated in 1,25(OH),D-treated
LNCaP cells only IGFBP3, ABCA1 and FKBP5 were
regulated in the same direction in RWPEL1 cells. This
suggests that the response of RWPEL1 cells is more simi-
lar to that of primary cultures of human prostate epithe-
lial cells.

Of the genes identified in the three different prostate
array studies only CYP24 has been identified as a direct
target for 1,25(0OH),D. Our ChIP examination of the
AKAP12 and CYP26B1 promoters revealed significant
VDR binding to putative VDREs in those promoters too,
but given the large number of transcript level changes
we observed, we expect that many more primary VDR
target genes exist in the prostate epithelial cells. Before
our analysis, the most comprehensive array-based analy-
sis of 1,25(0OH),D action and putative VDR target genes
was conducted by Wang et al. [17]. Using a bioinfor-
matics approach they identified putative VDREs in the
promoters of genes whose transcripts were differentially
regulated by treatment with EB1089 in SSC25 cells (12
h in presence of cycloheximide). We compared their list
of differentially expressed transcripts to our list of tran-
scripts regulated by 1,25(OH),D at 6 h in RWPE1 cells
based on the assumption that the early time point is less
likely to contain transcripts that are regulated as a sec-
ondary consequence of primary vitamin D-mediated
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transcription events. This analysis identified 414 tran-
scripts that were vitamin D regulated in both cell lines.
267 of these had a putative VDRE (see Additional file
15), including 16 of the 21 transcripts regulated by 1,25
(OH);D in both RWPE1 and primary prostate epithelial
cells [22]. This suggests there may be a much larger
number of direct VDR target genes than has been sug-
gested by earlier research. Future studies using either
ChIP-chip or ChIP-sequencing [58] will be necessary to
validate whether these 267 transcripts are truly direct
vitamin D target genes.

Conclusions

This study is the most comprehensive functional analysis
of 1,25(0OH),D-induced changes in the transcript profile
of non-tumorigenic prostate epithelial cells. As such, it
provides new insight into the mechanisms used by 1,25
(OH),D to prevent the early stages of prostate cancer. By
using several independent procedures we identified mul-
tiple 1,25(OH),D-regulated pathways and mechanisms
that may disrupt the promotion of carcinogenesis in vivo.
This includes anticancer mechanisms that have been tra-
ditionally attributed to 1,25(OH),D action, e.g. suppres-
sion of cell proliferation and angiogenesis, as well as
several potential new mechanisms including gene-protec-
tive and immunosuppressive effects. Further research is
necessary to determine whether the genes identified in
our array study are direct VDR target genes as well as to
determine whether these transcripts are regulated by
vitamin D signaling in vivo.

Methods

Supplies

Unless otherwise noted, all chemicals were obtained
from Sigma (St. Louis, MO). Defined Keratinocyte-
Serum Free medium (SFM) and RPMI medium 1640
were obtained from Invitrogen (Carlsbad, CA) and cell
culture plasticware was from Corning-Costar (Cam-
bridge, MA). 1,25(OH),D was purchased from Biomol
International (Plymouth Meeting, PA).

Cell culture

RWPE1 cells [59] were obtained from ATCC (CRL-
11609) (Manassas, VA) at passage 52 and used between
passages 55 and 60. Cells were maintained in Defined
Keratinocyte-SFM medium supplemented with growth
factors (insulin, Epidermal Growth Factor and Fibroblast
Growth Factor, Invitrogen, Carlsbad, CA) and medium
was replaced every the other day. LNCaP cells were
obtained from ATCC (CRL-1740D) and used between
passages 25 and 30. LNCaP cells were grown in RPMI-
1640 medium supplemented with 10% fetal bovine
serum and antibiotics.
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Microarray analysis

Cell Treatment

RWPE1 cells were plated in T75 flasks (1 x 10° cells per
flask) and grown until cells reached 60% confluence. At
this point, cells were treated with medium containing
100 nM of 1,25(OH),D or vehicle (0.1% ethanol) for 6,
24 or 48 h (n = 4 per treatment, 24 total samples). For
the 48 h time point, media was replaced at 24 h prior to
cell harvest. Total RNA was isolated from the cells
using TriReagent (Molecular Research Center, Inc., Cin-
cinnati, OH) in accordance with the manufacturer’s
instructions. Isolated total RNA was further purified
using the RNeasy kit (Qiagen, Valencia, CA). The qual-
ity of the isolated RNA was confirmed using agarose gel
electrophoresis.

Microarray Data Analysis

The transcripts levels in each sample were determined
by using the Affymetrix HU133 plus 2.0 GeneChip
(Affymetrix, Santa Clara, CA; 54,210 probe sets covering
over 47,000 transcripts and splice variants). RNA label-
ing, chip hybridization and chip scanning was carried
out at the Ohio State University Comprehensive Cancer
Center by (Columbus, OH) using standard Affymetrix
protocols (Affymetrix, Santa Clara, CA). Chips were
scanned and raw data was saved into CEL files or ana-
lyzed using the Affymetrix Microarray Suite (MAS) 5.0
software. Microarray data may be accessed at the NCBI
Gene Expression Omnibus (GEO) database (accession #
GSE15947).

Quality Control Assessment, Chip Normalization, and
Filtering

The quality of microarray images from individual chips
was examined using methods from the affyPLM package
of Bioconductor http://www.Bioconductor.org[60]. The
quality of the expression distribution at the probeset
level between chips was inspected by using the Relative
Log Expression (RLE) and the Normalized and the
Unscaled Standard Error (NUSE) methods. All of the
chips were found to be of high quality and were used
for subsequent analysis.

Microarray data from CEL files for all 24 chips was
normalized simultaneously and expression levels were
generated using the gcRMA package in Bioconductor
[61]. The normalized data was filtered for present/
absent call using information from MAS5.0 software
("Present”, P < 0.05; “Marginal”, 0.05 < P < 0.065,
“Absent”, P > 0.065). Only transcripts identified by
MASS as “present” or “marginal” in 3 out of 4 replicates
for at least one treatment group were retained for
further analysis. Of the 54,210 transcripts represented
on the chip, 25,986 met our present/absent filter
criterion.
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Statistical Analysis of Microarray Data

Differentially expressed transcripts were identified at
each time point (control vs. 1,25(OH),D treated) using
the Significance Analysis of Microarray program (SAM,
version 3.02) [62]. Data for each time point were ana-
lyzed using a two class, unpaired analysis with T-statis-
tics and 100 permutations. For each transcript SAM
uses permutation of the data to identify a False Detec-
tion Rate (FDR) that balances type I and type II statisti-
cal error rates [63]. Significance for differential
expression due to 1,25(OH),D treatment was deter-
mined at the 5% FDR at each time point.

Clustering of Microarray Data

Patterns of differentially expressed genes were deter-
mined by cluster analysis using Self-Organizing Maps in
GeneCluster http://www.genome.wi.mit.edu/MPR/. Only
data from transcripts identified by SAM as significantly
differentially expressed in at least one time point
(FDR<5%), were used for the cluster analysis. Prior to
the clustering, the data was normalized to mean = 0 and
variance = 1. For this analysis we used a 4 x 3 matrix
and the default settings of the software (random vectors
method of initialization, bubble neighborhood definition,
o; = 0.1, 5, = 5, as = 0.005, o¢ = 0.5).

Functional Analysis of Microarray Data

Gene Set Analysis (GSA) was conducted using the GSA
function in SAM http://www-stat.stanford.edu/~tibs/
GSA/ and geneset databases from the Molecular Signa-
tures Database http://www.broad.mit.edu/gsea/msigdb/
index.jsp: c2-curated, c3-motif, and c4-cancer neighbor-
hood. Analysis for each time point was done using a
two class, unpaired analysis with T-statistics, 1000 per-
mutations, automatic estimation of sO factor for
denomination, K-nearest Neighbors imputer and a ran-
dom number seed.

Two methods were used to identify and visualize bio-
logical processes and pathways that were enriched due
to 1,25(0OH),D treatment: GeneMAPP http://www.gen-
mapp.org[64] and Metacore software (Metacore, St.
Joseph, MI). GenMAPP analysis was done for each of
the time points as well as on groups of related clusters
from the cluster analysis (group 1 (clusters 4, 8), group
2 (clusters 2, 6, 10), group 3 (clusters 0, 5), group 4
(clusters 7, 11), group 5 (cluster 3)). Criteria for includ-
ing a transcript into the GeneMAPP analysis was FDR
<5% and fold change >1.2 or < -1.2. The search for
maps significantly enriched in the transcripts that meet
this criterion was done separately for up-regulated and
suppressed genes using the Gene Database (Hs-
Std_20060526), local maps (Hs_Contributed_20070308,
Hs_KEGG_Converted_20041111 and Hs_Tissue-speci-
fic_20050711) and gene ontology (GO) maps (Hs_GO_-
Samples_20050810). GeneMAPP maps with p-value <0.1
were considered significant.
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For the Metacore analysis, transcripts significantly dif-
ferentially induced or suppressed (SAM, FDR<5% ) were
mapped to Metacore maps representing functional path-
ways individually for each time point or for all time
points combined. Enrichment of Metacore maps was
determined by the p-value of hypergeometric distribu-
tion representing probability that a transcript would be
matched to a map by chance. This analysis takes into
account the sizes of the dataset, map or ontology group.
Metacore maps with p-value < 0.05 were considered sig-
nificant. Networks were generated de novo from the dif-
ferentially expressed transcripts at each time point by
using Metacore. In addition, the “Analyze network (tran-
scription factors)” program was used to create networks
centered around specific transcription factors of interest.
Validation of microarray results
For the validation of microarray data, differential expres-
sion of 11 genes was examined in cDNA prepared from
the RNA for the microarray study by Real Time Poly-
merase Chain Reaction (RT-PCR). The impact of 1,25
(OH),D treatment on the accumulation of these 11
transcripts was also examined in RNA from 1,25(OH)
sD-treated LNCaP cells and in primary normal human
prostate epithelial cells. 80% confluent LNCaP cells were
treated with medium containing 100 nM of 1,25(OH),D
or vehicle (0.01% ethanol) for 6 h. RNA from 1,25(OH)
»D-treated primary human prostate epithelial cells was a
provided by Dr. Scott Cramer (Wake Forest University,
Winston-Salem, NC). Three human primary prostate
epithelial cell preparations were treated with growth
medium containing 10 nM of 1,25(OH),D or vehicle
(0.01% ethanol) for 8 h. Cells were harvested in TriRea-
gent and RNA isolated. cDNA was prepared from RNA
samples as we have described previously [65].

cDNA samples were analyzed by RT-PCR analysis
using the BioRad MyiQ Real-Time PCR system and the
BioRad SYBR Green supermix (BioRad Laboratories,
Hercules, CA). Expression levels were determined from
the threshold cycle (Ct) value using the method of 2~
AACt described elsewhere [66] and using GAPDH
expression as the reference control gene. Primers
sequences for RT-PCR are listed in Additional file 16.
The cycle conditions for the PCR were 1 cycle of 3 min-
utes at 95°C and 40 cycles of 30 seconds at 95°C, 30 sec-
onds at the annealing temperature, and 30 seconds at
72°C.

Identification of putative vitamin D receptor binding sites
in selected genes

The promoters of the genes encoding the top 50 tran-
scripts significantly up-regulated by 1,25(0OH),D at 6 h,
were analyzed for presence of VDR binding sites using a
bioinformatics approach. The -10 kb to +10 kb region
(transcriptional start site = 0) of candidate genes was
downloaded from the GenBank database at the NCBI.
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We then screened the conserved regions of the promo-
ters utilizing an in silico approach by using CONSITE
http://asp.ii.uib.no:8090/cgi-bin/ CONSITE/consite/ and
the following settings: window size = 50 bp; conserva-
tion cut-off = 70%, Transcription Factor score threshold
= 65%. Putative VDR binding sites with similarity score
over 3.5 were accepted as candidates for ChIP valida-
tion. Ten potential VDR binding sites located within
conserved regions were selected for further testing
within the following gene promoters: SEMA3B, CD14,
P2RY2, AKAP12, SERPINB1, HBEGF, TXNRDI,
CYP26B1, MTSS1 and LOX. The location of these sites
is provided in Additional file 15.

Chromatin Immunoprecipitation (ChIP) assays

RWPE1 cells were cultured to 60% confluence and trea-
ted with 10 nM 1,25(OH),D or vehicle for 3 h. ChIP
assays for VDR association to DNA were done as we
have previously described [67]. ChIP assays were per-
formed with anti-VDR antibody sc-1008 from Santa
Cruz Biotechnology, Inc., (Santa Cruz, CA). The primers
used for VDRE region in CYP24 promoter (-300 bp
from transcription start site (TSS), TRPV6 promoter
(-4.3 kb to TSS) and SEMA3B promoter (+2 kb to TSS)
were described previously [17,68]. For other target
genes, primer pairs were designed with PRIMER3 http://
frodo.wi.mit.edu to amplify a fragment containing the
predicted VDR binding sites. Primers used for analysis
of CD14, P2RY2, AKAPI12, SERPINB, HBEGEF,
TXNRD1, CYP26B1, MTSS1 and LOX are provided in
Additional file 17. GAPDH primers used as positive
controls for the ChIP assay were obtained from Upstate
Biotechnology (Lake Placid, NY).

Statistical analysis for non-array experiments

The analysis for treatment effects in the RT-PCR data
was conducted using one-way ANOVA using the SAS
statistical software package (SAS 8.0 Cary, NC). Pairwise
comparisons were conducted when appropriate using
Fisher’s Protected LSD. Values are expressed as the
means + SEM. Differences between means were consid-
ered significant at p < 0.05.

Additional file 1: Significantly differentially expressed transcripts.
Significantly changed transcripts at any time point from SAM analyzed
microarray data on RWPET cells treated 100 nm 1,25(0OH),D vs. vehicle.
Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S1.XLS]

Additional file 2: GSA currated gene sets c2. GSA curated genesets
(c2) significantly enriched in differentially expressed transcripts.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S2.XLS]

Additional file 3: GSA motif genesets c3. GSA motif genesets (c3)
significantly enriched in differentially expressed transcripts.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S3XLS]
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Additional file 4: GSA cancer computational genesets (c4). GSA
cancer computational genesets (c4) significantly enriched in differentially
expressed transcripts.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S4.XLS]

Additional file 5: GenMAPP local map results. Table of GenMAPP
analysis of local maps for enrichment (SAM, FDR<5%).

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S5.XLS]

Additional file 6: GenMAPP GO group results. GenMAPP Gene
Ontology terms significantly changed (Z > 0, Permute P <= 0.1).

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S6.XLS]

Additional file 7: Metacore summary. Metacore Maps enriched in
significantly changed genes (SAM, <5%FDR).

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S7XLS]

Additional file 8: GeneMAPP SOM groups Local maps results. Table
showing GenMAPP analysis on SOM groups using Local maps.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S8.XLS]

Additional file 9: GeneMAPP SOM groups GO group results. Table of
GeneMAPP GO map analysis for SOM groups.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S9XLS]

Additional file 10: Effect of 1,25(0H),D on Wnt and Notch signaling
at 6 h. Figure showing the effect of 1,25(0H),D (100 nM, 6 h) on
transcripts controlling Wnt and Notch signaling in RWPE1 cells.
Differentially expressed transcripts (SAM, any time point, FDR<5%) were
examined by time point for functional changes using GenMAPP and
GSA. The GeneMapp local map for Wnt signaling (Hs_WNT_Signaling)
was identified as significantly down regulated at 6 h. In addition, a GSA
motif geneset (c3 #162) for genes containing Lefl domains in their
promoters (a Wnt pathway targeted transcription factor) was significantly
down-regulated.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S10.TIFF]

Additional file 11: Effect of 1,25(0H),D on c-Myc transcriptional
activity at 6 h. Image representing effect of vitamin D induced
supression of c-Myc on the mRNA level of c-myc target genes.
Significantly differentially expressed transcripts at 6 h (SAM, FDR<5%)
were analyzed by using Metacore Network analysis (Transcription factor).
Up-regulated genes are marked with red circles; down-regulated with
blue circles. Arrows are color coded to reflect the known regulatory
action between two proteins. Red arrows between proteins indicates a
negative regulatory effect, green arrows indicate a positive regulator
effect, gray arrows indicate an unspecified regulatory effect.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S11.PNG]

Additional file 12: Effect of 1,25(0H),D on antioxidant and DNA
protection at 6 h. Figure showing the effect of 1,25(0OH),D (100 nM, 6
h) on transcripts controlling antioxidant and DNA repair systems in
RWPET1 cells. Differentially expressed transcripts (SAM, any time point,
FDR<5%) were examined by time point for functional changes using
GenMAPP and GSA. The GenMAPP local map for antioxidant responses
to reactive oxygen (Hs_Oxidative_Stress) was identified as significantly
up-regulated at 6 h. While not on this map, the up-regulation of G6PD is
also relevant as this enzyme system contributes to glutathione
production.

Click here for file
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[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S12.TIFF]

Additional file 13: 1,25(0H),D suppresses proinflammatory cytokine
signaling. Figure representing regulation of transcripts controlling
cytokine signaling in RWPE1 cells by 1,25(0H),D treatment (100 nM).
Differentially expressed transcripts (SAM, any time point, FDR<5%) were
examined for functional changes using GenMAPP and GSA. A large
number of pathways related to the signaling through cytokine pathways
were identified as down-regulated. Most of these pathways utilize a JAK-
STAT intracellular signaling pathway. A selection of transcripts affected
and their relationship to JAK-STAT signaling are shown.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S13.TIFF]

Additional file 14: 1,25(0OH),D suppresses STAT1, STAT3 and PU.1
networks at 48 h. Image representing suppression of transcripts
regulated by STAT1, STAT3 and PU.1. Significantly differentially expressed
transcripts at 48 h (SAM, FDR<5%) were analyzed by using Metacore
Network analysis (Transcription factor). Most of these transcripts are
regulated by STAT1 or STAT3. Up-regulated transcripts are marked with
red circles; down-regulated transcripts are identified by blue circles.
Arrows are color coded to reflect the known regulatory action between
two proteins. Red arrows between proteins indicates a negative
regulatory effect, green arrows indicate a positive regulator effect, gray
arrows indicate an unspecified regulatory effect.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-ST4PNG]

Additional file 15: VDRE containing genes, comparison with Wang
et al, 2005. Comparison of VD regulated transcripts in RWPET to those
reported for EB1089 by Wang et al. in SCC25 cells.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S15.XLS]

Additional file 16: RT-PCR primers. List of RT-PCR primers used for
validation of differential expression identified in 1,25(0H),D-treated
RWPET cells.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
26-516.D0C]

Additional file 17: Genes tested for functional VDRE. Table of genes
tested for functional VDRE in promoter regions.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
26-S17.XLS]

Abbreviations

15-PGDH: hydroxyprostaglandin dehydrogenase 15-(NAD); AKAP12: a kinase
(prka) anchor protein 12; AKR1C2: aldo-keto reductase family 1, member C1;
APCDD?1: adenomatosis polyposis coli down-regulated 1; BMP6: bone
morphogenetic protein 6; BRCAT: breast cancer 1; CALML3: calmodulin-like
3; CD14: CD14 antigen; CDC25C: cell division cycle 25 homolog C (S.
pombe); CDC27: cell division cycle 27 homolog (S. cerevisiae); CDK: cyclin-
dependent kinase; CDK6: cyclin-dependent kinase 6; ChIP: chromatin
immunoprecipitation; COX2: prostaglandin-endoperoxide synthase 2; CYP24:
cytochrome p450, family 24, subfamily A, polypeptide 1; CYP26B1:
cytochrome p450, family 26, subfamily b, polypeptide 1; DLL1: delta-like 1
(Drosophila); DR3: direct repeat with 3 bp spacing; DUSP10: dual specificity
phosphatase 10; EGFR: epidermal growth factor receptor; ETS1: v-ets
erythroblastosis virus E26 oncogene homolog 1 (avian); FDR: false discovery
rate; FLT1: fms-related tyrosine kinase 1; G6PD: glucose-6-phosphate
dehydrogenase; GADD45a: growth arrest and DNA-damage-inducible, alpha;
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GAS6: growth arrest

specific 6; GCRMA: GC Robust Multi-array Average; GO: gene ontology; GPX3:

glutathione peroxidase 3; GSA: gene set analysis; HBEGF: heparin-binding
egf-like growth factor; HMOX1: heme oxygenase (decycling) 1; IGF1: insulin-
like growth factor 1; IGFBP3: insulin-like growth factor binding protein 3; IL-
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17: interleukin 17; IL-27: interleukin 27; IL-6: interleukin 6; JAG1: jagged 1;
JAG2: jagged 2; KDR: kinase insert domain receptor; LEF1: lymphoid
enhancer binding factor 1; LOX: lysyl oxidase; MTSS1: metastasis suppressor
1; NFE2L2: nuclear factor (erythroid-derived 2)-like 2; NFKBIA: nuclear factor
of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha;
NOTCH1: Notch homolog 1, translocation-associated (Drosophila); NRP1:
neuropilin 1; NUSE: normalized and the unscaled standard error; P2RY2:
purinergic receptor p2y, G-protein coupled 2; PCR: polymerase chain
rreaction; PPARS: peroxisome proliferator-activated receptor delta; RAD9A:
RAD9 homolog A (S. pombe); RELB: v-rel reticuloendotheliosis viral
oncogene homolog B; RLE: relative log expression; ROS: reactive oxygen
species; RT-PCR: real time polymerase chain reaction; SAM: significance
analysis of microarray; SEM: standard error of the mean; SEMA3B:
semaphorin 3B; SEMA3F: semaphorin 3F; SERPINB1: serpin peptidase
inhibitor, clade b (ovalbumin), member 1; SEM: standard error of the mean;
SFM: serum free medium; SULT1A3: sulfotransferase family, cytosolic, 1A,
phenol-preferring, member 3; TCF4: transcription factor 4; TGFB1:
transforming growth factor, beta 1; TLR4: toll-like receptor 4; TSS:
transcription start site; TXNRD1: thioredoxin reductase 1; VAV3: vav 3
oncogene; VDR: vitamin D receptor; VDRE: vitamin D response element;
VEGF: vascular endothelial growth factor; VEGFA: vascular endothelial growth
factor A; VEGFC: vascular endothelial growth factor C; WNT: Wingless-type
MMTV integration site family.
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