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Abstract

Both genetic and environmental factors influence the etiology of age-related macular degeneration 

(AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and 

recently developed machine learning methods can successfully predict AMD progression using 

image data. However, none of these methods have utilized both genetic and image data for 

predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye 

as having progressed to late AMD with a modified deep convolutional neural network (CNN). In 

total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects 

from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus 

images available at baseline and follow-up visits over a period of 12 years. Our results showed that 

fundus images coupled with genotypes could predict late AMD progression with an averaged area 

under the curve (AUC) value of 0.85 (95%CI: 0.83–0.86). The results using fundus images alone 
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showed an averaged AUC of 0.81 (95%CI: 0.80–0.83). We implemented our model in a cloud-

based application for individual risk assessment.

INTRODUCTION

Age-related macular degeneration (AMD) is the leading cause of blindness among older 

adults in Caucasians1–3. It is a progressive neurodegenerative disease influenced by both 

environmental and genetic risk factors4–6. AMD severity is mainly diagnosed by color 

fundus images in a clinical setting by ophthalmologists. Late AMD comes in two forms: (1) 

Geographic atrophy (GA) also known as dry AMD is characterized by a gradual 

degeneration and disappearance of retinal pigment epithelium, photoreceptor cells, and the 

choriocapillaris layer in the central retina; (2) choroidal neovascularization (CNV) also 

known as wet AMD is characterized by the growth of new, leaky blood vessels into the 

retina causing widespread photoreceptor loss and ultimately rapid decline in visual acuity7. 

Some patients with early or intermediate stage AMD maintain their vision for a long time 

with slow disease progression over time, but others quickly progress to one or both forms of 

late AMD.

Genetics plays a critical role in AMD pathogenesis. Genome-wide association studies 

(GWAS) and sequencing studies have identified many variants that are associated with 

AMD8–11. For example, a total of 52 independent genetic markers including both common 

and rare variants from 34 loci were reported to have associations with AMD risk in a recent 

large-scale genome-wide association study (GWAS) by the International AMD Genomics 

Consortium9. In addition to the successes in identifying AMD-related genetic markers from 

case-control designs, a recent study of AMD progression risk using the Age-Related Eye 

Disease Study (AREDS) dataset12 showed that some of the known AMD risk variants could 

also influence progression time to late AMD10.

In parallel to genetic studies, machine learning methods, particularly deep convolutional 

neural networks (DCNN) have been useful in image recognition and classification in 

ophthalmology. CNN have been used for the aforementioned automated AMD grading, 

identifying diabetic retinopathy and cardiovascular risk factors from fundus images, and 

interpreting and segmenting optical coherence tomography (OCT) images13–20. As opposed 

to traditional machine learning approaches that rely on “feature engineering”, which 

involves computing features explicitly defined by experts21–23, CNN can learn features 

directly from the images themselves. CNN is a family of deep learning techniques 

characterized by enabling the networks to contain many computation layers that can 

automatically, deeply and comprehensively learn features from lower-level structures to 

more generalized higher-level structures. Recently several studies have used the color fundus 

images to perform automated AMD grading17,18,20 and estimation of future risk of AMD24 

by applying convolutional deep learning methods. However, none of these methods consider 

genetic data in the prediction model.

In addition to using fundus images for AMD grading, in conjunction with genotypes, fundus 

image data can be used to predict the probability of late AMD progression exceeding certain 

inquired durations. Since late AMD is irreversible, such prediction could urge potential 
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patients to start preventative care beforehand and slow down the disease progression. The 

Age-Related Eye Disease Study (AREDS), a large-scale clinical trial from the National Eye 

Institute, includes massive genome-wide genotyping data, longitudinal color fundus 

photographs, and disease severity assessment over a period of 12 years, providing an 

unprecedented opportunity for us to investigate AMD progressing using both dynamic 

(fundus image) and static (genetics) information.

In this study, we jointly used genotypes and fundus images to predict an eye as having 

progressed to late AMD (which may never occur) within certain inquired durations from the 

current visit. The inquired duration was selected in advance, and it was relative to the time 

when the fundus image was taken, not to the time of the baseline visit. Specifically, for one 

eye, the inputs included one fundus image taken at the current visit and the genotypes of the 

corresponding subject, and the output was the probability that the time to late AMD exceeds 

the inquired duration. To our knowledge, this is the first time to jointly use genotypes and 

fundus images in a prediction model for AMD risk and progression.

RESULTS

Study Data Characteristics

Of the AREDS participants, 1,351 Caucasians who had at least one eye free of late AMD at 

baseline and at least one follow-up visit had all information on images and genotypes (Table 

1). The baseline mean age was 68.8 (SD=5.0) years. About 56% (N=750) of participants 

were females. About 46% were never smokers (N=626), another 47% were former smokers 

(N=634) and 7% were current smokers (N=91). Smoking status was defined at the baseline 

visit. The participants had mean follow-up time of 10.3 (SD=1.6) years and they were 

followed up every 6 months in the first 6 years to every 1 year after year 6. 2,678 eyes of the 

1,351 participants were not in the late AMD stage at baseline. These eyes had a low mean 

severity score at baseline of 3.9 (SD=3.2), because the majority of eyes had low baseline 

severity scores (54% eyes with baseline severity score 1–3, 23% eyes with 4–6 and 24% 

eyes with 7–8). Moreover, only 4% eyes with baseline severity 1–3 progressed to late AMD 

by the end of the follow-up time, 50% eyes with 4–6 progressed by the end of the follow-up 

time, and 92% eyes with 7–8 progressed by the end of the follow-up time. In addition, the 

number of useable fundus images (i.e., the fundus images of each eye at each visit with 

corresponding genotypes) for prediction decreased as the progression inquired year 

increased from 2 to 7 years due to the censored subjects (Table 1). The inquired years were 

defined as well as an illustrative example was provided in the Methods section. The number 

of useable fundus images for predicting whether the progression time to late AMD exceeded 

the inquired years were shown in Supplementary Figure 1. Note that the useable fundus 

images included the ones at both baseline and the follow-up visits.

Predicting Progression Time to Late AMD Exceeding Inquired Years Using Fundus Images 
Alone

First, we tested the ability of our proposed network to predict the progression time to late 

AMD exceeding inquired years using the AREDS fundus images alone (Supplementary 

Figure 2a). The partitioning of training and testing datasets and the selection of late AMD 
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progression inquired years were previously explained. The ROC and AUC (Figure 1) and 

Brier scores on the testing dataset are reported in Table 2. The performance of our CNN 

showed promising results even when using fundus images alone. In the testing dataset, the 

model achieved AUC range from 0.79 (95% CI [confidence interval]: 0.78–0.81) to 0.84 

(95% CI: 0.82–0.86) for progression inquired year 2 ~ 7 (Figure 1 and Table 2). 

Furthermore, in order to improve the interpretability of our model, we added a secondary 

output layer for current AMD severity between the final convolutional layer and the primary 

output for the progression time to late AMD (Supplementary Figure 2b). The model 

achieved similar AUC range between 0.79 (95% CI: 0.77–0.81) and 0.84 (95% CI: 0.83–

0.86) for progression inquired year 2 ~ 7 (Figure 1 and Table 2). Besides, the model 

automatically graded the AMD severity based on fundus images with an accuracy range of 

0.56 to 0.60 for progression inquired year 2 ~ 7 (Supplementary Table 1). Note that the 

random accuracy is 0.33. The density curves of predicted probability of having late AMD 

progression time before or after each of the six inquired years were generated 

(Supplementary Figure 3 [the first and third columns]) to visually examine the accuracy of 

before and after inquired year prediction separately. The results showed that CNN could 

accurately predict the probability of having late AMD progression time exceeding the 

inquired year. However, although most of the eyes with progression time before the inquired 

year could be correctly predicted when Youden indices25 (Supplementary Table 2) were 

used as the thresholds to dichotomize the predictions, a sizeable number of eyes were falsely 

predicted as having a progression time exceeding the inquired year.

Model Interpretation for Supporting Clinical Decision

Next, we generated saliency maps to visualize the important regions that had the greatest 

impact on the model predictions using the fundus images only models. Generally, the CNN 

should be able to detect the macula region and make decisions based on the features (e.g., 

drusen) in this region. Three representative subjects of left eye fundus images with 

accompanying saliency maps for each inquired year prediction were shown in Figures 2–4. 

Subject #1 (Figure 2) had 4 visits and progressed to late AMD at year 4.8; Subject #2 

(Figure 3) had 4 visits and did not progress to late AMD by the end of 11.1-year follow-up; 

and Subject #3 (Figure 4) had 5 visits and was at late AMD status at baseline. Thus, Subject 

#1 who progressed in the middle of the follow-up was more challenging to predict than 

Subject #2 who did not progress and Subject #3 who progressed before baseline time. Figure 

2 showed that Subject #1 had early/intermediate AMD at the first three visits and was 

labeled as late AMD at the fourth visit. Most models with different cut-off years gave 

accurate predictions. However, the model with inquired year equal to 3 tended to predict a 

long progression time when small drusen was observed. This was also the reason that the 

density curves with only images as predictors led to a second peak on the right side (blue 

curves in Supplementary Figure 3). In other words, the samples that were falsely predicted 

to the category exceeding the inquired years were true labeled in the category before the 

inquired years. The results showed that genotypes could help to correct this 

misclassification. Figure 3 showed that Subject #2 had healthy macula at all visits and the 

models correctly predicted that the subject had a long progression time. Please note that the 

true labels were missing at visit year 5.8 for inquired years equal to 6 and 7, because this 

subject was censored and had 5.3 more follow-up years at visit year 5.8. Thus, at visit year 
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5.8, this subject could finally progress to late AMD before or after 6 more years, which was 

ambiguous to use this cutoff, same to the cutoff of year 7. Figure 4 showed that Subject #3 

had late AMD since baseline, and all models could detect the drusen and correctly assign it 

to the right category.

Predicting Progression Time to Late AMD Exceeding Inquired Years Using Fundus Images 
along with genotypes

In addition to fundus images, we added 52 AMD associated independent genetic variants 

reported by the International AMD Genomics Consortium9 to the model (Supplementary 

Figure 2c). Similarly, we tested the scenarios with and without AMD severity as a secondary 

output (Supplementary Figure 2d). When evaluating the performance using the test dataset, 

the models with AMD severity as a secondary output achieved slightly higher AUC (range 

between 0.85 [95% CI: 0.84–0.87] and 0.86 [95% CI: 0.84–0.87] for progression inquired 

year 2 ~ 7) than without AMD severity (range between 0.83 [95% CI: 0.82–0.85] and 0.85 

[95% CI: 0.83–0.86], Figure 1 and Table 2). The accuracy for AMD severity grading was 

from 0.57 to 0.60 (Supplementary Table 1). The AMD severity as a secondary output helped 

to better explain the prediction model that the fundus images could be used for automated 

AMD severity grading, and then the AMD severity at the current visit could predict late 

AMD progression exceeding the inquired years. Without AMD severity, we only knew 

fundus images could predict late AMD progression exceeding the inquired years, but missed 

the related features (i.e., current AMD severity) in between. These results also indicated that 

genetics could noticeably improve the AUCs for AMD progression time (Table 2). The 

density curves of predicted probability of having AMD progression time before or after the 

six inquired years (Supplementary Figure 3) showed that the addition of genetics in the 

neural network could correct the falsely predicted eyes from the group of after the inquired 

year to the correct group of before the inquired year. This is evidenced by that the blue 

curves on the right (Supplementary Figure 3) were much lower in models with genetics than 

models without genetics.

The feature importance heatmaps (Supplementary Figures 4–6) from LIME for the sub-

network using fundus images along with genotypes (Supplementary Figure 7b inside the red 

rectangle) to predict late AMD progression time for subjects #1, #2 and #3 showed the first 

two variables contributing the most to the predictions for each visit year. Although the 

summarized image inputs (a size of 2,048) and the SNP inputs (a size of 52) were 

unbalanced, SNPs were always shown among the most important variables (e.g., the SNP 

from ARMS2/HTRA1 appears in 23 of 24 models).

Replication Study Using Independent UK Biobank Dataset

In addition to the test dataset we generated from dbGaP, we extracted a set of 200 Caucasian 

subjects from the UK Biobank26 as an independent test dataset, and used 3 years as the 

inquired year. The model (4) showed an AUC of 0.9 (95%CI: 0.85–0.94) for predicting 

whether the eye progresses to late AMD exceeding the 3 years (Supplementary Figure 8). 

Again, please note that we treated the AMD patients from UK Biobank as late AMD 

patients, although some of them could be at early/intermediate stages.
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DISCUSSION

Our results show that the application of CNN to retinal fundus images coupled with 

genotypes can be used to predict the probability of late AMD progression exceeding the 

inquired years and diagnose the current AMD severity. The results indicate that the fundus 

images alone can predict late AMD progression exceeding certain inquired years with 

reasonable accuracy. The addition of secondary inputs of genotypes can noticeably improve 

accuracy (Table 2). The addition of a secondary output of AMD severity further improve the 

model interpretability. We also conducted an additional model using current age and 

baseline smoking status as predictors in addition to fundus images and genetics 

(Supplementary Figure 9), but they did not improve the prediction performance, probably 

because the age and smoking effects were already reflected in fundus images or the dynamic 

age range for those who progressed to late-AMD in our training cohort is limited across the 

range of AMD pathology. Although the training of a deep learning model is computationally 

intensive, once the model is trained and weights are saved, the prediction of a new subject 

takes only a few seconds.

The goal of our study is different from previous ones, which mainly used fundus images for 

automated grading of AMD severity scores. Since the severity score is graded by 

ophthalmologists merely based on the fundus images, those studies did not engage other 

phenotypes or genotypes, although it is known that AMD is associated with age, smoking 

status and a number of genetic variants. We believe that the prediction of late AMD 

progression time is more useful as compared to the current severity score for patients to start 

preventative care early. Furthermore, the automated classification using directly measured 

variables would also help reduce the discrepancy among human graders and reduce costs of 

large-scale image assessment projects.

We used the pre-designed CNN architecture and pre-trained weights as our initial values, 

which are used for general image classification of thousands of objects based on millions of 

images. For our specific fundus image task, this helps the model learn more accurately with 

less data, because the existing CNN architecture and trained weights can identify simple 

features (e.g., edges and orientation) and further combine them to more complex objects, 

which mimics the way our visual system works. Analogously, our proposed model could 

mimic the way that ophthalmologists interpret the fundus images by identifying macula, 

drusen, pigmentary changes, etc. The saliency maps indicate that our model pays attention to 

assess features in the macula region in the retina to predict late AMD progression exceeding 

certain inquired years, which is as expected. Furthermore, the model might capture some 

unknown features that are important for AMD progression, but neglected by 

ophthalmologists.

In addition to AUC values and Brier scores, we were able to calculate the prediction 

accuracy after dichotomizing the prediction risk by using the Youden indices25 

(Supplementary Table 2) as the cutoff, which is based on the AUC curve. Our results showed 

that the fundus images coupled with genotypes could predict late AMD progression with an 

averaged accuracy (SD) of 78.4% (1.6%). The results using fundus images alone showed a 

similar averaged accuracy (SD) of 80.0% (2.7%). The AREDS fundus images have been 
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used in several prediction studies. Although their outcomes were different from ours, it is 

worth checking their accuracies. One study17 classifying 13 classes (9 AREDS steps, 3 late 

AMD stages, and 1 for ungradable images) had an overall accuracy of 63.3%. The second 

study18 performing two-class classification to distinguish the disease-free/early stages from 

the referable intermediate/late stages yielded accuracy that ranged between 88.4% and 

91.6%. The third study20 classifying the AREDS Simplified Severity Scale (score 0–5) had 

an accuracy of 67.1%. In addition to classifying the current AMD status, one study24 

estimating 5-year risk of AMD achieved accuracy of 75.7% for the 4-step and 59.1% for the 

9-step AMD severity scales. Moreover, another study27 using optical coherence tomography 

(OCT) images to predict eyes with intermediate AMD progressing to CNV or GA yield 

AUC of 0.68 and 0.80 for CNV and GA respectively.

Here we included only 52 AMD risk-associated SNPs in our prediction models. To evaluate 

the effect of including a larger number of SNPs, we conducted another set of analyses by 

using the SNPs with P-value < 1×10−5 from a GWAS of AMD progression10 (n = 2,721 

subjects). In total, 1,057 SNPs were included and we used the cutoff of year 3 for 

illustration. Please note that the previous 52 SNPs were identified from a large GWAS of 

AMD case-control study9 (43,566 subjects). Although AMD progression is a better 

phenotype than AMD case-control status, the sample size of the AMD progression GWAS is 

much smaller. Finally, 7 out of the previous 52 SNPs were also on the new list of 1,057 

SNPs. The results (Supplementary Figure 10) showed that AUC = 0.84 for Img+Geno

−>Risk and 0.84 for Img−>AMDstate+Geno−>Risk. On the other hand, the 52 SNP results 

showed that AUC = 0.85 for Img+Geno−>Risk and 0.86 for Img−>AMDstate+Geno−>Risk. 

Thus, the 52 SNPs identified from a much larger study of AMD risk with P-value < 5×10−8, 

although the phenotype is not AMD progression, were slightly better than 1,057 SNPs 

identified from a relatively small AMD progression study with P-value < 1×10−5. Even 

1,057 is not a very large number and can be handled by a fully connected neural network 

(NN), however, if the genome-wide SNPs (e.g., several millions) are used as the input, the 

fully connected NN is not expected to work in terms of computational intensity. In this case, 

some other alternative solutions might be considered: 1. using a CNN for SNPs too; or 2. 

using a network reflecting the SNP-gene-pathway hierarchical structure that is similar to the 

idea of Hao et al28. In other words, after the input layer of SNPs, only the SNPs in the same 

gene region are connected to a neuron in the first hidden layer, then only the genes in the 

same pathway are connected to a neuron in the second hidden layer that is further connected 

to an output layer. In this way, the number of weights needed to be estimated is much 

smaller than the number in a fully connected NN.

Our study has some limitations. First, this study mainly relies on the AREDS dataset. 

Although an independent dataset from UK Biobank is used, the available outcome is any 

AMD rather than late AMD. Even though there are no other large longitudinal AMD studies 

with both fundus images and genotypes available, it would be beneficial to evaluate our 

models on a separately collected dataset. Second, AREDS contains a large number of 

normal to early AMD eyes at the beginning of the study and many of them did not progress 

to the late AMD by the end of the follow-up. Although we used stepwise binary predictions 

instead of predicting a continuous time to try to fully use the censored eyes, we still lose 

some of them. Third, we used stepwise binary predictions to approximate the progression 
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process. However, since each model was trained separately, this could lead to inconsistent 

results from the separate models, especially for the eyes that are hard to predict. It would be 

ideal to directly model the survival outcome in a single model. One possible way is to 

replace the final loss function with a survival type likelihood, such as the Cox partial 

likelihood. We plan to explore this direction in a future work. Another potential limitation is 

that only fundus images were used in this study. It would be desirable to have a coherent 

prediction by using multiple types of images (e.g., optical coherence tomography and fundus 

autofluorescence images). In addition, the fundus images in AREDS were collected on both 

eyes over several years from the same participants. In the current study, the covariance 

between two eyes or between different visits was not considered. Although it is hard to 

consider the information of correlated images using deep learning approaches, incorporating 

such covariance in the model could increase the prediction accuracy, which might be 

implemented by modifying the loss function at the output layer from the neural network. In 

this study, the complex neural network might implicitly capture this information that 

different eyes and visits from subjects having the identical genotypes could be from the 

same subject. To evaluate the impact of adding the status of the other fellow eye, we 

conducted an additional analysis. Instead of directly modeling the correlation between two 

eyes, we added the other eye’s current AMD severity scale as an additional input for the 

study eye’s prediction, although the other eye’s current AMD severity should be unknown, 

because our models were designed for only fundus images and genotypes available and 

predicting current AMD severity and progression time without the need of image specialists. 

Here, we just used this analysis to evaluate the impact of adding the status of the other eye. 

The results showed that adding the status of the other eye could improve the prediction 

accuracy of the study eye to an AUC of 0.91 (Supplementary Figure 11). In the future 

direction, a bivariate approach that simultaneously models the dependency between the two 

eyes, as well as to provide each eye-level and joint subject-level progression probabilities is 

worthwhile to pursue.

In summary, this study showed that deep learning approaches could be used to automatically 

predict late AMD progression exceeding certain inquired years and classify the current 

AMD severity stages. The joint use of fundus images and genotypes can achieve good 

prediction accuracy. The deep learning methods could serve an important role in decision 

support systems for eye services by reducing assessment time, workload and financial 

burden by automated analysis. Such automated analysis identifying individuals who should 

be referred to a specialist could become increasingly acceptable to both patients and 

ophthalmologists. We also developed a web-based application at http://www.pitt.edu/~qiy17/

amdprediction.html. To our knowledge, this is the first cloud-based prediction website for 

AMD with deep learning techniques. In addition to distinguishing retinal pathologies using 

the fundus images, such as AMD, this study can be extended to be applicable to other 

diseases associated with images, genotypes and phenotypes (e.g., Alzheimer’s disease).
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METHODS

Study Population and Phenotype Definition

The study subjects were from the AREDS study sponsored by the National Eye Institute12, 

which was a long-term, multicenter, prospective study of AMD and age-related cataracts 

with a 12-year follow-up period to assess the risk factors and impact of daily supplements. 

Eligible subjects were between 55 and 80 years old at baseline and free of sight-threatening 

conditions other than cataract or AMD. In this study, we confined our analyses to the AMD 

data and only used Caucasian participants with genotype data and at least one follow-up 

visit.

In the analyses, we used 31,262 color fundus images centered above the macula from 1,351 

subjects with corresponding genotypes and phenotypes available at baseline and follow-up 

visits. The detailed image taking procedure was described elsewhere29. The AREDS AMD 

scale30, based upon severity score from 1 to 12, was adopted to determine whether the eye 

was in the late AMD stage or not, which was measured based on centralized grading of these 

fundus images obtained at each semi-annual/annual follow-up visit30. The progression of 

early/intermediate to late AMD is often distinguished by the growth of drusen size and/or 

pigmentary abnormalities at the macula region31,32. For each non-late AMD eye at each 

visit, we calculated its time period between the current visit and the time to late AMD, 

defined as the time to the first visit when the severity score reached 9 (noncentral GA) or 

higher (10: central GA, 11: CNV, and 12: CNV and central GA). If the eye’s severity score 

was less than 9 by the end of follow-up, the time to late AMD was treated as censored at the 

last visit.

Prediction of the Probability that the Time to Late AMD Progression Exceeds an Inquired 
Year

Since the exact times to late AMD of censored eyes were unknown and we only knew the 

eyes were not progressed at certain time points, in order to make the full use of the available 

information, we performed a set of binary predictions instead of predicting a continuous 

progression time. Specifically, we predicted the probability that the time to late AMD 

progression exceeds the inquired durations, 2, 3, 4, 5, 6 and 7 years from the current visit. 

This implies some eyes cannot be used for certain of these prediction models. For example, 

if one subject was censored at year 5.5 without having progressed to late AMD, this 

subject’s eyes were used for inquired years 2, 3, 4 and 5, because it was known that the eyes 

had not progressed by those inquired years. However, these eyes could have progressed on 

either side of the inquired years of 6 and 7, which made this eye unusable for these two 

inquired years. In addition to the late AMD scores (i.e., 9–12), a severity score of 1 indicates 

little or no AMD-related changes, whereas scores 2 through 8 indicate early or intermediate 

AMD30. Other variables we considered were current visit age and baseline smoking status 

(never, former, current).

Replication dataset

In addition to AREDS, we extracted 100 Caucasian subjects labeled with AMD at baseline 

visit and 100 Caucasian subjects without AMD reported by the end of at least 3 years of 
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follow-up from UK Biobank26 as an independent test dataset. For samples labeled with 

AMD, we only kept the ones with clear drusen with the help from experienced image 

specialist. In other words, we had 100 subjects who progressed to AMD within 3 years and 

100 subjects who progressed to AMD after 3 years (it is possible that they never progressed 

to AMD). All the subjects needed to have genotypes and high-quality fundus images at 

baseline. Please note that not all of the AMD subjects had late AMD and some had early/

intermediate stages of AMD. The outcome was not exactly the same as we used in the 

training process, although we could assume that the early/intermediate AMD subjects might 

progress to late AMD in a short time (e.g., within 3 years).

Genotype Data

DNA samples from consenting subjects in AREDS were collected and genotyped centrally 

by the International AMD Genomics Consortium, as described previously9. In brief, a 

custom-modified HumanCoreExome array by Illumina was used to obtain the genotypes 

followed by imputation with the 1000 Genomes Project reference panel (Phase I). In this 

study, we used 52 independent genetic variants from 34 loci that were either confirmed or 

newly discovered to have associations with AMD risk in a GWAS by the International AMD 

Genomics Consortium9. We used additive genotypes (i.e., 0: no minor allele; 1: one copy of 

the minor allele; 2: two copies of the minor allele).

Data Partitioning

The total of 31,262 original images were first randomly divided into a training set (90% of 

the subjects) and testing set (10% of the subjects). Then, the training set was further divided 

into 10 folds so that 10-fold cross-validation was performed with 9 folds for training and 1 

fold for validation and this process was repeated 10 times. Because each subject includes 

multiple images over 12-year visits on both eyes, we performed this separation at the subject 

level, which means that images from the same subject were included in the same fold.

Data Augmentation

A data augmentation procedure was applied to increase the diversity of the training dataset, 

and thus to reduce the risk of overfitting the CNN. We applied several augmentations to each 

image before rescaling to a square. First, images were horizontally mirrored to mimic the 

left and right eye orientations of each image. Second, images were randomly cropped less 

than 10% on both height and width to mimic images with not well-centered macula. The 

augmented images were assigned the same labels as the corresponding original images. The 

purpose of image augmentation is to control for the overfitting problem by artificially 

creating training images, and these augmented images still preserve the key information of 

the image but are different from their original images. The proposed augmentation 

techniques were similar to the previous CNN study of fundus images17. After augmentation, 

all fundus images were resized to squares encompassing the macula and rescaled to 224×224 

pixels.
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Deep Learning Approach Combining Images and Genotypes

The first part of the model architecture is CNN used to extract features from fundus images 

(Figure 5). CNN is a special type of deep neural network that consists of many repeated 

processing layers that match the input image with successive convolutional filters to extract 

image features from low to high levels. A CNN is a member of deep neural networks that 

optimizes the weights of each layer using stochastic gradient descent via a backpropagation 

process. There can be millions of weights33. There are a number of existing CNN 

architectures designed for image processing34. In general, these architectures are similar. 

They are all comprised of sequentially convolutional and pooling layers. Each of the 

different architectures is best suited for specific problems. In this study, we used the 

Inception-v3 CNN architecture35 to extract image features, which has been used for fundus 

images in several studies17,19,20,36. Additionally, we used pre-trained weights as the initial 

values to train our network, which were trained for general image classification using the 

ImageNet database37 that contains thousands of different objects and millions of images. 

This scale of data is usually unavailable in medical image classification studies.

It was reported that the current AMD severity was the strongest predictor for the progression 

time to late AMD38 and fundus images could be used to automatically grade AMD 

severity17,18,20 with similar CNN architectures as presented here. Thus, after obtaining the 

output vector of the final convolutional layer, which contains all the information needed to 

understand the image, we fed these extracted image features to a fully connected layer to 

classify AMD severity (Figure 5). Furthermore, this severity viewed as the current AMD 

severity along with 52 independent genetic variants were fed to another fully connected 

layer to predict the time to late AMD development exceeding certain inquired years (Figure 

5). During training, we used 3-level severity labels (e.g., no AMD when severity score is 

equal to 1; early or intermediate AMD when severity score is between 2 and 8; and late 

AMD when severity score is greater than or equal to 9). The network was built for any 

inquired year k, where k = 2, 3, 4, 5, 6, and 7. The detailed Inception-v3 CNN is shown in 

Supplementary Figure 7.

The aforementioned model could be simplified to sub-models. In total, we considered four 

models: (1) using fundus images taken at the current visit to predict whether the eye’s 

progression time to late AMD exceeds the inquired year; (2) using both fundus images and 

feature SNPs to predict whether the eye’s progression time to late AMD exceeds the 

inquired year; (3) using fundus images to predict whether the eye’s progression time to late 

AMD exceeds the inquired year as well as to classify the AMD severity at the current visit; 

(4) using both fundus images and feature SNPs to predict whether the eye’s progression time 

to late AMD exceeds the inquired year as well as to classify the AMD severity at the current 

visit.

Our deep learning network was implemented by using Keras with TensorFlow39. During the 

training process, we first fixed the pre-trained weights in the CNN and updated the rest of 

the weights using an Adam optimizer with a learning rate of 0.001. The aforementioned 10-

fold cross-validation was performed. Based on the average performance of the validation set, 

the best epoch was selected for testing set evaluation. For each fold, we trained the network 

for 20 epochs (loops of the entire training set) and selected the most suitable epoch for 
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testing after 10-fold cross-validation. Furthermore, we set all weights as trainable and fine-

tuned the network with a learning rate of 0.0001 and selected the best epoch out of 10 

epochs also after 10-fold cross-validation. In this fine-tuning step, we selected a small total 

number of epochs to avoid updating the pre-trained CNN weights too much. All the training 

was conducted on a machine equipped with an EVGA GeForce RTX 2080 Ti 11Gb GPU 

and 128Gb available RAM.

Performance Metrics

For the stepwise binary predictions, we calculated the AUC (area under the curve) of 

Receiver Operator Characteristic (ROC) curves as the primary performance metric. Besides, 

Brier score40 that is the squared error of a probabilistic prediction was used as another 

metric, and the lower the Brier score the better the model predicts. The useful benchmark 

values for the Brier score are 33%, which corresponds to predicting the risk by a random 

number drawn from a Uniform distribution between 0 and 1. For the 3-level AMD severity 

classification, no AMD, early or intermediate AMD and late AMD were treated as levels 0, 

1 and 2 (see supplementary text for details).

Visualizing Model Attention

To help understand what image features were learned and make the “black box” deep 

learning model more transparent, we generated saliency maps41 to highlight the regions that 

most contribute to the predicted values from the output layer for all trained models. The 

saliency is computed by the gradient of output value with respect to the input image. In other 

words, it could detect how a small change in the input image changes the output value. If 

these gradients have the same shape as the region of interest, it indicates that the attention of 

learning is on the right region. Thus, these gradients could be used to highlight input regions 

that result in the most change in the output prediction. The saliency map method only works 

when images are the only input. When both images and SNPs were inputs, we used LIME 

(Local Interpretable Model-Agnostic Explanations)42 instead, which attempts to understand 

the model by perturbing the input data and understanding how the predictions change. 

Specifically, we extracted the network inside the red rectangle in Supplementary Figure 7b. 

After processing images through Inception-v3, an average pooling was used to generate a 

vector of length 2,048 (i.e., V1, V2 … V2048), which summarized the image information. 

Then, this vector was concatenated with the SNP vector of 52 SNPs. Therefore, the input for 

this sub-network is a vector of 2,100 elements, which is what we perturbed in our LIME 

analyses.

Data availability

All the phenotype data and fundus images of AREDS participants required are available 

from dbGap (accession: phs000001.v3.p1). The genotype data on AREDS subjects has been 

reported earlier9 and is available from dbGap (accession phs001039.v1.p1). The UK 

Biobank test dataset was obtained from UK Biobank (application number 43252).
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Code availability

The prediction models with Python implementation and a detailed tutorial are available at 

https://github.com/QiYanPitt/AMDprogressCNN and a web-based graphical user interface is 

also available at http://www.pitt.edu/~qiy17/amdprediction.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ROC curves of the prediction of late AMD progression time exceeding the inquired 
years for four models.
The four models are (1) fundus images predicting late-AMD progression exceeding the 

inquired years; (2) fundus images + genotypes predicting late-AMD progression exceeding 

the inquired years; (3) fundus images both classifying current AMD severity and predicting 

late-AMD progression exceeding the inquired years; and (4) fundus images + genotypes 

both classifying current AMD severity and predicting late-AMD progression exceeding the 

inquired years. (a-f) inquired years from 2 to 7.
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Figure 2. Saliency maps for left eye of Subject #1 over 5.9 years.
This subject progressed to late AMD after 4.8 years of follow-up. The highlighted dots 

indicate the area that the CNN learned to make the decision. The first number in the 

parenthesis is the true label (1=not progressed, 0=progressed) and the second number is the 

estimated probability of late AMD progression time exceeding the inquired year relative to 

the current visit. The green numbers indicate accurate predictions and red numbers indicate 

inaccurate predictions using Youden indices (Supplementary Table 2, Img −> Risk) as the 

thresholds to dichotomize the predictions.
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Figure 3. Saliency maps for left eye of Subject #2 over the first 5.8 years.
This subject was censored after 11.1 years of follow-up. The highlighted dots indicate the 

area that the CNN learned to make the decision. The first number in the parenthesis is the 

true label (1=not progressed, 0=progressed, NA=progression status unknown) and the 

second number is the estimated probability of late AMD progression time exceeding the 

inquired year relative to the current visit. The green numbers indicate accurate predictions 

and red numbers indicate inaccurate predictions using Youden indices (Supplementary Table 

2, Img −> Risk) as the thresholds to dichotomize the predictions.

Yan et al. Page 18

Nat Mach Intell. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Saliency maps for left eye of Subject #3 over 12 years.
This subject developed late AMD before enrollment. The highlighted dots indicate the area 

that the CNN learned to make the decision. The first number in the parenthesis is the true 

label (1=not progressed, 0=progressed) and the second number is the estimated probability 

of late AMD progression time exceeding the inquired year relative to the current visit. The 

green numbers indicate accurate predictions and red numbers indicate inaccurate predictions 

using Youden indices (Supplementary Table 2, Img −> Risk) as the thresholds to 

dichotomize the predictions.
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Figure 5. 
Convolutional neural network (CNN) of retinal fundus images along with feature SNPs and 

AMD severity for the prediction of late-AMD progression exceeding certain inquired years.
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Table 1.

Characteristics of the participants

AREDS Training Test

Subject-level variables 1,351 subjects 1,223 subjects 128 subjects

Baseline age, year (mean ± SD) 68.8 ± 5.0 68.8 ± 5.0 68.5 ± 4.8

Female (N, %) 750 (55.5) 682 (55.8) 68 (53.1)

Follow-up time, (mean ± SD) 10.3 ± 1.6 10.2 ± 1.7 10.9 ± 1.0

Baseline smoking status (N, %)

 Never smoked 626 (46.3) 566 (46.3) 60 (46.9)

 Former smoker 634 (46.9) 576 (47.1) 58 (45.3)

 Current smoker 91 (6.7) 81 (6.6) 10 (7.8)

Eye-level variables 2,678 eyes 2,422 eyes 256 eyes

Baseline AMD severity score at eye-level

 Mean ± SD 3.9 ± 3.2 4.0 ± 3.2 3.9 ± 3.2

 1–3 (n, %) 1,442 (53.8) 1,310 (54.1) 132 (51.6)

 4–6 (n, %) 600 (22.5) 528 (21.8) 72 (28.1)

 7–8 (n, %) 636 (23.7) 584 (24.1) 52 (20.3)

Progressed eyes with baseline severity

 1–3 (n, %) 50 (3.5) 48 (3.7) 2 (1.5)

 4–6 (n, %) 300 (50.0) 260 (49.2) 40 (55.6)

 7–8 (n, %) 585 (92.0) 537 (92.0) 48 (92.3)

Observation-level variables

Fundus images used for prediction with progression cutoff

2 years (n) 27,499 24,654 2,845

3 years (n) 25,862 23,170 2,692

4 years (n) 24,287 21,709 2,578

5 years (n) 22,435 20,041 2,394

6 years (n) 20,240 18,118 2,122

7 years (n) 18,066 16,172 1,894
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Table 2.

AUC values (95% CI) and Brier scores (95% CI) of the prediction of probability of late-AMD progression 

exceeding the inquired years for four models

2 years 3 years 4 years 5 years 6 years 7 years

AUC values

Image −> Risk* 0.81
(0.79–0.83)

0.81
(0.79–0.83)

0.81
(0.79–0.83)

0.79
(0.78–0.81)

0.83
(0.81–0.85)

0.84
(0.82–0.86)

Image + Geno −> Risk 0.84
(0.83–0.86)

0.85
(0.83–0.86)

0.83
(0.82–0.85)

0.84
(0.82–0.85)

0.85
(0.83–0.86)

0.85
(0.83–0.87)

Image −> AMDstate
#
 −> Risk

0.81
(0.79–0.83)

0.80
(0.78–0.82)

0.79
(0.77–0.81)

0.82
(0.80–0.84)

0.82
(0.80–0.84)

0.84
(0.83–0.86)

(Image −> AMDstate) + Geno −> Risk 0.85
(0.84–0.87)

0.86
(0.84–0.87)

0.86
(0.84–0.87)

0.85
(0.84–0.87)

0.85
(0.84–0.87)

0.85
(0.84–0.87)

Brier scores

Image −> Risk 0.13
(0.12–0.14)

0.14
(0.13–0.15)

0.15
(0.14–0.16)

0.16
(0.15–0.17)

0.15
(0.15–0.16)

0.16
(0.15–0.17)

Image + Geno −> Risk 0.13
(0.12–0.15)

0.15
(0.14–0.16)

0.16
(0.15–0.17)

0.17
(0.16–0.18)

0.17
(0.16–0.18)

0.17
(0.16–0.18)

Image −> AMDstate −> Risk 0.13
(0.12–0.14)

0.15
(0.14–0.16)

0.16
(0.15–0.17)

0.15
(0.14–0.16)

0.16
(0.16–0.17)

0.16
(0.15–0.17)

(Image −> AMDstate) + Geno −> Risk 0.13
(0.12–0.14)

0.14
(0.13–0.15)

0.14
(0.14–0.16)

0.15
(0.14–0.16)

0.16
(0.15–0.17)

0.16
(0.15–0.17)

AUC 95% CI uses the DeLong method43; Brier score 95% CI uses bootstrap method.

*
The probability of late-AMD progression exceeding the inquired years.

#
No, early or intermediate, or late AMD (3 levels).
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